
A Memory Controller for the DIMM Tree Architecture

Young-Jong Jang, Young-Kyu Kim, Taewoong Ahn, and Byungin Moon

School of Electronics Engineering

Kyungpook National University

Daegu, Republic of Korea

e-mail: youngjong25@ee.knu.ac.kr, kyk79@ee.knu.ac.kr, myannet11@gmail.com, bihmoon@knu.ac.kr

Abstract—The dual in-line memory module (DIMM) tree

architecture was proposed to solve signal integrity and data

access latency problems of many-DIMM system. Although the

DIMM tree demands a memory controller specific to it, there

has been little research on the memory controller for the

DIMM tree. For this reason, this paper proposes a new

memory controller architecture for the DIMM tree. This

architecture was modeled using DRAMSim2 for its verification

and analysis, and the experimental results show that the

proposed DIMM tree memory controller works properly and

efficiently.

Keywords-DIMM tree; many-DIMM system; DIMM to

DIMM transfer; memory controller

I. INTRODUCTION

In the traditional computer systems, there are two
memory access methods: one is the multi-drop bus based
memory access and the other is the point-to-point link-based
memory access. The former method is mainly used in the
traditional computer systems [1], but it is not appropriate for
implementation of large-capacity main memory systems due
to its signal integrity issues [2]. In the latter method, DIMM
modules are connected through daisy chains. The fully
buffered DIMM (FB-DIMM) is an example that uses point-
to-point links [3]. In this method, the control signals are
buffered and repeated at each DIMM. This method has the
disadvantage that as the number of connected DIMM
modules increases, the transmission time of control signals
also increases. In order to resolve these problems, the DIMM
tree architecture has been proposed. The DIMM tree
architecture overcomes the transmission delay time and
signal integrity issues by a tree structure connection of
DIMM modules [4].

DIMM
2

Fast Partition DIMM

Slow Partition DIMM

DIMM
3

DIMM
4

DIMM
5

DIMM 0

Page Table

DIMM 1

Page Table

CPU

Figure 1. Partitioned DIMM tree structure.

The structure and operation of the DIMM tree
architecture were presented for the implementation of the
DIMM tree architecture, and the concept of the partitioned
DIMM tree architecture and the direct DIMM-to-DIMM
transfer was established in order to efficiently manage large-
capacity memory of the DIMM tree architecture [5]. The
memory controller for the DIMM tree architecture is also
very important for the implementation of the DIMM tree
architecture. However, there was little concrete discussion on
the memory controller for the DIMM tree architecture. Thus,
this paper proposes a hardware architecture of a memory
controller for the management of the DIMM tree architecture.

The rest of the paper is organized as follows. Section 2
describes the background of the DIMM tree architecture.
Section 3 presents the hardware architecture of the proposed
DIMM tree memory controller. In Section 4, we present the
experimental environments, and analyze the results of the
experiments. Finally, Section 5 concludes the paper.

II. DIMM TREE ARCHITECTURE

Therdsteerasukdi et al. [4] presented the DIMM tree
architecture of better scalability by connecting DIMM
modules in a tree structure to solve signal integrity and
access latency problems. Then, they improved their research
by proposing the partitioned DIMM tree and the direct
DIMM-to-DIMM transfer for efficient memory management.

A. Partitioned DIMM Tree

The partitioned DIMM tree architecture consists of a fast
partition and a slow partition, as in shown Fig. 1 [5]. The fast
partition corresponds to the DIMMs at a level closer to the
CPU. Thus, it takes one DIMM access latency to access the
fast partition. The slow partition contains the remaining
DIMMs. The fast partition is used as a cache of the slow
partition, which works as the main memory. The relation
between the fast partition and the slow partition is similar to
that between main memory and hard disk in a virtual
memory system, so data transfer between the fast partition
and slow partition is performed by page units. In addition,
the page fault handler to process page faults is necessary in
the memory controller [5][6].

B. Page Fault Handler

The partitioned DIMM tree architecture uses a small
space in the fast partition for a fast partition page table to
manage page translation between the fast and slow partitions.
When memory access is requested from the CPU, the fast
partition page table in the fast partition is checked to find the

86Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

fast partition page corresponding to the requested page of the
slow partition. When a page fault occurs, the page fault
handler updates the requested page to the fast partition from
the slow partition, and writes back the replaced page to the
slow partition from the fast partition. These update and write
back are processed with the proposed direct DIMM-to-
DIMM transfer [5]. This direct DIMM-to-DIMM transfer
reduces the overhead of page fault processing.

III. PROPOSED DIMM TREE MEMORY CONTROLLER

In this section, a hardware architecture of a memory
controller is proposed for the DIMM tree architecture
described in Section 2. The proposed hardware architecture
of the DIMM tree memory controller is shown in Fig. 2. The
organization and operation of the DIMM tree memory
controller is as follows.

When a read or write request is entered from the CPU to
the bus, and the request is loaded into the Transaction Buffer,
and then four fast partition page table entries, which are
accessed using the least significant bits of the requested slow
partition page number as the index, as shown in Fig. 3, are
loaded into the Page Table Buffer. The Hit/Miss Control
Unit is used to check whether a page fault occurs or not for
the request. This module compares the tag of the slow
partition address with each of the slow partition page number
tags of four page table entries loaded on the Page Table
Buffer. When one of the four page table entry tags matches
the tag of the slow partition address and the valid bit of the
corresponding page table entry is 1, the state becomes ‘hit’.
Otherwise the state is ‘miss’ meaning that a page fault occurs.
In case of ‘hit’, the hit/miss signal of the Hit/Miss Control

Figure 2. Architecture of the proposed DIMM tree memory controller.

Figure 3. Address translation from the slow partition to fast partition.

Unit is set to 1, and the Page Table Buffer outputs the way
number of the ‘hit’ page table entry.

The Page Fault Control Unit generates the DIMM-to-
DIMM transfer command. When the hit/miss signal from the
Hit/Miss Control Unit is “1”, the Page Fault Control Unit
directly transfer the request command in the Transaction
Buffer to the Page Transaction Control Unit. However, when
a page fault occurs, Some DIMM-to-DIMM commands are
inserted. When the page-faulted request command is a write,
the Page Fault Control Unit inserts the DIMM-to-DIMM
update command (D2D_RD) to transfer the faulted page
from the slow partition to the fast partition. After the write
request command, the DIMM-to-DIMM writeback command
(D2D_WR) is issued to write the corresponding page of the
fast partition to the slow partition. When the request
command is a read, the Page Fault Control Unit inserts the
DIMM-to-DIMM update command (D2D_RD) for getting
the faulted page of the slow partition to the fast partition
before issuing the read request command to read data from
the fast partition. These generated command streams are
transferred to the Page Transaction Control Unit.

The Page Transaction Control Unit processes the
commands from the Page Fault Control Unit, and makes
DRAM control commands such as row active (RAS),
column read (CAS), CAS source to destination (CAS_S2D),
REFRESH, and PRECHARGE. The CAS_S2D is a special
command for the DIMM tree architecture [5], but the others
are common commands for controlling DRAM. When the
command from the Page Fault Control Unit is either a write
or read, the Page Transaction Control Unit generates RAS
and CAS commands. Since the CPU can only access the fast
partition, the RAS and CAS from the Page Transaction
Control Unit are associated with the fast partition. On the
other hand, if the command from the Page Fault Control Unit
is either D2D_WR or D2D_RD, the Page Transaction
Control Unit generates RAS and CAS_S2D commands. The
D2D_WR and D2D_RD have two addresses, one is a source
address and the other is a destination address. The source
address and destination address are determined depending on
the type of the command. If the command is D2D_WR, the
source address is a fast partition address, and the destination
address is a slow partition address. It is vice versa in case of
the D2D_RD command.

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE I. SIMPLESCALAR PARAMETERS

Simulation Tool SIM-cache

Processor ISA PISA instruction

L1 D-cache 256 sets, 32 bytes cache line,
4-way set-associative, LRU policy L1 I-cache

L2 D-cache 1024 sets, 64 bytes cache line,

4-way set-associative, LRU policy L2 I-cache

I-TLB
16 sets, 4096 bytes cache line,

4-way set-associative, LRU policy

D-TLB
32 sets, 4096 bytes cache line,

4-way set-associative, LRU policy

TABLE II. DRAMSIM2 PARAMETERS

DRAM type DDR3-1600a

DRAM Data Width 8 bytes

Row buffer policy close page policy

Bank per rank 8

Row count 16384

Column count 1024

DIMM size 1 GB

Page size 1 KB

a. Micron, x8 DDR3-1600 DIMM [12]

The command generated by the Page Transaction Control
Unit, is transferred to the Command Buffer. The Command
Buffer sends the DIMM tree commands (RAS, CAS and
CAS_S2D) and addresses (rank, bank, row and column) to
DIMM modules, which process those commands.

IV. EXPERIMENTS

For the verification of the proposed DIMM tree memory
controller hardware architecture, we modeled the proposed
hardware architecture by DRAMSim2 [7] and generated six
workloads each of which has 500 thousand requests for the
simulation.

A. Workload

For the performance verification of the proposed DIMM
tree memory controller hardware architecture, we need
workload of large size with a wide range of memory
addresses. For this reason, we extracted the memory
transaction traces by running bzip2, gromacs, hmmer, lbm,
mcf and milc in the SPEC CPU 2006 benchmark [8] in the

SimpleScalar simulator [9]. Bzip2, gromacs and hmmer use
a wide range of memory addresses, but have high locality.
Lbm, mcf and milc have high locality and use a small range
of memory addresses [10]. Experiments were carried out
using the SimpleScalar with the parameters describes in

Table Ⅰ. Also, the PIN [11] was used to attach the time

stamp to the memory transaction traces extracted from the
SimpleScalar.

B. Experimental Environments

The DRAMSim2 was used for modeling the proposed
DIMM tree memory controller. It is assumed that capacity of
each DIMM is 1GB and the page size is 1 KB. The DIMM
tree architecture has a tree structure with the depth of 2 and
the degree of 4, as shown in Fig. 4. The fast partition has the
size of 4 GB, and the slow partition is composed of 16 GB.
The block diagram of the proposed DIMM tree memory
controller model is shown in Fig. 5. The detailed parameters

applied to DRAMSim2 is shown in Table Ⅱ.

Figure 4. DIMM tree structure used in experiments.

Figure 5. Simulation environment of the proposed DIMM tree memory controller.

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

C. Results

The generated workloads, each of which has a total of
500 thousand requests, are used for the CPU Requests of the
DIMM tree memory controller model of DRAMSim2.
Through simulations with workloads, it was verified that the
proposed DIMM tree memory controller operates properly.
In addition, performance analysis of the proposed DIMM
tree memory controller was carried out as follows.

Fig. 6 shows hit rate per 1,000 traces when a total of 10
thousand traces of each workload are processed. Lbm, mcf
and milc are memory-intensive workload, thus have high hit
rate. After 5 thousands of traces have been processed, the hit
rates of lbm, mcf and milc was maintained at about 73%. On
the other hand, hit rates of bzip2, gromacs and hmmer were
continuously increased. As shown in Fig. 7, the hit rates of
gromacs and hmmer increased rapidly after 50 thousands of
traces were processed. This is mainly because that the
number of compulsory misses, which occur intensively at the
early time of simulation, decreases after running 50 thousand
traces. Workloads such as bzip2, gromacs and hmmer have a
wide address range, so they need a longer time to fill the fast
partition pages. The number of cycles taken to run all the

traces is shown in Table Ⅲ . The performance for the

workload hmmer is measured best because the hit rate for
hmmer is best.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a hardware architecture of the
DIMM tree memory controller. The proposed architecture
was modeled using the DRAMSim2, Workloads were
generated using the SPEC CPU 2006 to verify the
functionality and performance. The experimental results
show that the proposed DIMM tree memory controller works
properly. This paper presented a DIMM tree memory
controller which can be used as a reference model in DIMM
tree based large memory systems. The study of this paper
assumes that he DIMM tree memory controller operates on
the single-processor environment. However, recently, the
multiprocessor environment is used widely. So, our future
work is to run multiple loads in parallel on the DIMM tree
memory controller for multiprocessor systems.

ACKNOWLEDGMENT

This investigation was financially supported by
Semiconductor Industry Collaborative Project between
Kyungpook National University and Samsung Electronics
Co. Ltd. This study was supported by the BK21 Plus project
funded by the Ministry of Education, Korea
(21A20131600011). This research was supported by the
MSIP (Ministry of Science, ICT & Future Planning), Korea,
under the C-ITRC (Convergence In-formation Technology
Research Center) support program (NIPA-2014-H0401-14-
1004) supervised by the NIPA (National IT Industry
Promotion Agency).

TABLE III. CLOCK CYCLES TAKEN TO PROCESS EACH WORKLOAD

Workloads
10000 traces

(cycles)

100,000 traces

(cycles)

500,000 traces

(cycles)

bzip2 1,263,919 12,720,015 39,481,566

gromacs 538,966 3,409,885 11,668,567

hmmer 508,589 1,999,400 6,265,317

lbm 522,217 5,168,498 25,814,382

mcf 535,822 5,276,435 26,298,294

milc 535,397 5,279,990 26329965

Figure 6. Hit rate per 1,000 traces when running 10,000 traces of each

workload.

Figure 7. Hit rate per 10,000 traces when running 100,000 traces of each

workload.

Figure 8. Hit rate per 50,000 traces when running 500,000 traces of each

workload.

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

REFERENCES

[1] J. H. Kim, et al., “Challenges and Solutions for Next
Generation Main Memory Systems,” Proc. IEEE 18th
Conference on Electrical Performance of Electronic
Packaging and Systems (EPEPS 09), Oct. 2009, pp. 93-96,
doi: 10.1109/EPEPS.2009.5338468.

[2] B. Jacob, S. Ng, and D. Wang, “Memory Systems: Cache,
Dram, Disk,” Morgan Kaufmann, 2008, pp. 377-391.

[3] B. Ganesh, A. Jaleel, D. Wang, and B. Jacob, “Fully-Buffered
DIMM Memory Architectures: Understanding Mechanisms,
Overheads and Scaling,” Proc. IEEE 13th International
Symposium on High Performance Computer Architecture
(HPCA 07), Feb. 2007, pp. 109-120, doi:
10.1109/HPCA.2007.346190.

[4] K. Therdsteerasukdi, et al., “The DIMM Tree Architecture: A
High Bandwidth and Scalable Memory System,” Proc. IEEE
29th International Conference on Computer Design (ICCD
11), Oct. 2011, pp. 388–395, doi:
10.1109/ICCD.2011.6081428.

[5] K. Therdsteerasukdi, et al., “Utilizing Radio-Frequency
Interconnect for a Many-DIMM DRAM System,” IEEE
Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 2, no. 2, June 2012, pp. 210–227, doi:
10.1109/JETCAS.2012.2193843.

[6] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable
High Performance Main Memory System Using Phase-
Change Memory Technology,” Proc. 36th annual
international symposium on Computer architecture (ISCA 09),
June 2009, pp. 24–33, doi: 10.1145/1555754.1555760.

[7] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMsim2: A
Cycle Accurate Memory System Simulator,” IEEE Computer
Architecture Letters, vol. 10, no. 1, June 2011, pp. 16-19, doi:
10.1109/L-CA.2011.4.

[8] J. L. Henning, “Spec CPU2006 Benchmark Descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34. no. 4,
Aug. 2006, pp. 1–17, doi: 10.1145/1186736.1186737.

[9] T. Austin, L. Eric, and D. Ernst, “SimpleScalar: An
Infrastructure for Computer System Modeling,” IEEE
Computer, vol. 35, no. 2, Feb. 2002, pp. 59-67, doi:
10.1109/2.982917.

[10] X. Mingli, D. Tong, Y. Feng, K. Huang, and X. Cheng, “Page
policy control with memory partitioning for DRAM
performance and power efficiency,” IEEE International
Symposium on Low Power Electronics and Design (ISLPED
13), Sept. 2013, pp. 298-303, doi:
10.1109/ISLPED.2013.6629312.

[11] V. Reddi, A. M.Settle, D. A. Connors, and R. S. Cohn. “PIN:
A Binary Instrumentation Tool for Computer Architecture
Research and Education,” Proc. ACM Workshop on
Computer Architecture Education (WCAE 04): held in
conjunction with the 31st International Symposium on
Computer Architecture, June. 2004, p. 22, doi:
10.1145/1275571.1275600.

[12] Micron. 1 Gb: x4,x8,x16 DDR3 SDRAM Features 2006.

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

