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Abstract—The dual in-line memory module (DIMM) tree 

architecture was proposed to solve signal integrity and data 

access latency problems of many-DIMM system. Although the 

DIMM tree demands a memory controller specific to it, there 

has been little research on the memory controller for the 

DIMM tree. For this reason, this paper proposes a new 

memory controller architecture for the DIMM tree. This 

architecture was modeled using DRAMSim2 for its verification 

and analysis, and the experimental results show that the 

proposed DIMM tree memory controller works properly and 

efficiently. 
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I.  INTRODUCTION 

In the traditional computer systems, there are two 
memory access methods: one is the multi-drop bus based 
memory access and the other is the point-to-point link-based 
memory access. The former method is mainly used in the 
traditional computer systems [1], but it is not appropriate for 
implementation of large-capacity main memory systems due 
to its signal integrity issues [2]. In the latter method, DIMM 
modules are connected through daisy chains. The fully 
buffered DIMM (FB-DIMM) is an example that uses point-
to-point links [3]. In this method, the control signals are 
buffered and repeated at each DIMM. This method has the 
disadvantage that as the number of connected DIMM 
modules increases, the transmission time of control signals 
also increases. In order to resolve these problems, the DIMM 
tree architecture has been proposed. The DIMM tree 
architecture overcomes the transmission delay time and 
signal integrity issues by a tree structure connection of 
DIMM modules [4]. 
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Figure 1.  Partitioned DIMM tree structure. 

The structure and operation of the DIMM tree 
architecture were presented for the implementation of the 
DIMM tree architecture, and the concept of the partitioned 
DIMM tree architecture and the direct DIMM-to-DIMM 
transfer was established in order to efficiently manage large-
capacity memory of the DIMM tree architecture [5]. The 
memory controller for the DIMM tree architecture is also 
very important for the implementation of the DIMM tree 
architecture. However, there was little concrete discussion on 
the memory controller for the DIMM tree architecture. Thus, 
this paper proposes a hardware architecture of a memory 
controller for the management of the DIMM tree architecture. 

The rest of the paper is organized as follows. Section 2 
describes the background of the DIMM tree architecture. 
Section 3 presents the hardware architecture of the proposed 
DIMM tree memory controller. In Section 4, we present the 
experimental environments, and analyze the results of the 
experiments. Finally, Section 5 concludes the paper. 

II. DIMM TREE ARCHITECTURE 

Therdsteerasukdi et al. [4] presented the DIMM tree 
architecture of better scalability by connecting DIMM 
modules in a tree structure to solve signal integrity and 
access latency problems. Then, they improved their research 
by proposing the partitioned DIMM tree and the direct 
DIMM-to-DIMM transfer for efficient memory management. 

A. Partitioned DIMM Tree 

The partitioned DIMM tree architecture consists of a fast 
partition and a slow partition, as in shown Fig. 1 [5]. The fast 
partition corresponds to the DIMMs at a level closer to the 
CPU. Thus, it takes one DIMM access latency to access the 
fast partition. The slow partition contains the remaining 
DIMMs. The fast partition is used as a cache of the slow 
partition, which works as the main memory. The relation 
between the fast partition and the slow partition is similar to 
that between main memory and hard disk in a virtual 
memory system, so data transfer between the fast partition 
and slow partition is performed by page units. In addition, 
the page fault handler to process page faults is necessary in 
the memory controller [5][6]. 

B. Page Fault Handler 

The partitioned DIMM tree architecture uses a small 
space in the fast partition for a fast partition page table to 
manage page translation between the fast and slow partitions. 
When memory access is requested from the CPU, the fast 
partition page table in the fast partition is checked to find the 
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fast partition page corresponding to the requested page of the 
slow partition. When a page fault occurs, the page fault 
handler updates the requested page to the fast partition from 
the slow partition, and writes back the replaced page to the 
slow partition from the fast partition. These update and write 
back are processed with the proposed direct DIMM-to-
DIMM transfer [5]. This direct DIMM-to-DIMM transfer 
reduces the overhead of page fault processing. 

III. PROPOSED DIMM TREE MEMORY CONTROLLER 

In this section, a hardware architecture of a memory 
controller is proposed for the DIMM tree architecture 
described in Section 2. The proposed hardware architecture 
of the DIMM tree memory controller is shown in Fig. 2. The 
organization and operation of the DIMM tree memory 
controller is as follows. 

When a read or write request is entered from the CPU to 
the bus, and the request is loaded into the Transaction Buffer, 
and then four fast partition page table entries, which are 
accessed using the least significant bits of the requested slow 
partition page number as the index, as shown in Fig. 3, are 
loaded into the Page Table Buffer. The Hit/Miss Control 
Unit is used to check whether a page fault occurs or not for 
the request. This module compares the tag of the slow 
partition address with each of the slow partition page number 
tags of four page table entries loaded on the Page Table 
Buffer. When one of the four page table entry tags matches 
the tag of the slow partition address and the valid bit of the 
corresponding page table entry is 1, the state becomes ‘hit’. 
Otherwise the state is ‘miss’ meaning that a page fault occurs. 
In case of ‘hit’, the hit/miss signal of the Hit/Miss Control  

 

 
Figure 2.  Architecture of the proposed DIMM tree memory controller. 

 
Figure 3.  Address translation from the slow partition to fast partition. 

Unit is set to 1, and the Page Table Buffer outputs the way 
number of the ‘hit’ page table entry. 

The Page Fault Control Unit generates the DIMM-to-
DIMM transfer command. When the hit/miss signal from the 
Hit/Miss Control Unit is “1”, the Page Fault Control Unit 
directly transfer the request command in the Transaction 
Buffer to the Page Transaction Control Unit. However, when 
a page fault occurs, Some DIMM-to-DIMM commands are 
inserted. When the page-faulted request command is a write, 
the Page Fault Control Unit inserts the DIMM-to-DIMM 
update command (D2D_RD) to transfer the faulted page 
from the slow partition to the fast partition. After the write 
request command, the DIMM-to-DIMM writeback command 
(D2D_WR) is issued to write the corresponding page of the 
fast partition to the slow partition. When the request 
command is a read, the Page Fault Control Unit inserts the 
DIMM-to-DIMM update command (D2D_RD) for getting 
the faulted page of the slow partition to the fast partition 
before issuing the read request command to read data from 
the fast partition. These generated command streams are 
transferred to the Page Transaction Control Unit. 

The Page Transaction Control Unit processes the 
commands from the Page Fault Control Unit, and makes 
DRAM control commands such as row active (RAS), 
column read (CAS), CAS source to destination (CAS_S2D), 
REFRESH, and PRECHARGE. The CAS_S2D is a special 
command for the DIMM tree architecture [5], but the others 
are common commands for controlling DRAM. When the 
command from the Page Fault Control Unit is either a write 
or read, the Page Transaction Control Unit generates RAS 
and CAS commands. Since the CPU can only access the fast 
partition, the RAS and CAS from the Page Transaction 
Control Unit are associated with the fast partition. On the 
other hand, if the command from the Page Fault Control Unit 
is either D2D_WR or D2D_RD, the Page Transaction 
Control Unit generates RAS and CAS_S2D commands. The 
D2D_WR and D2D_RD have two addresses, one is a source 
address and the other is a destination address. The source 
address and destination address are determined depending on 
the type of the command. If the command is D2D_WR, the 
source address is a fast partition address, and the destination 
address is a slow partition address. It is vice versa in case of 
the D2D_RD command. 
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TABLE I.  SIMPLESCALAR PARAMETERS 

Simulation Tool SIM-cache 

Processor ISA PISA instruction 

L1 D-cache 256 sets, 32 bytes cache line, 
4-way set-associative, LRU policy L1 I-cache 

L2 D-cache 1024 sets, 64 bytes cache line, 

4-way set-associative, LRU policy L2 I-cache 

I-TLB 
16 sets, 4096 bytes cache line, 

4-way set-associative, LRU policy 

D-TLB 
32 sets, 4096 bytes cache line, 

4-way set-associative, LRU policy 

TABLE II.  DRAMSIM2 PARAMETERS 

DRAM type DDR3-1600a  

DRAM Data Width 8 bytes 

Row buffer policy close page policy 

Bank per rank 8 

Row count 16384 

Column count 1024 

DIMM size 1 GB 

Page size 1 KB 

a. Micron, x8 DDR3-1600 DIMM [12] 

The command generated by the Page Transaction Control 
Unit, is transferred to the Command Buffer. The Command 
Buffer sends the DIMM tree commands (RAS, CAS and 
CAS_S2D) and addresses (rank, bank, row and column) to 
DIMM modules, which process those commands. 

IV. EXPERIMENTS 

For the verification of the proposed DIMM tree memory 
controller hardware architecture, we modeled the proposed 
hardware architecture by DRAMSim2 [7] and generated six 
workloads each of which has 500 thousand requests for the 
simulation. 

A. Workload 

For the performance verification of the proposed DIMM 
tree memory controller hardware architecture, we need 
workload of large size with a wide range of memory 
addresses. For this reason, we extracted the memory 
transaction traces by running bzip2, gromacs, hmmer, lbm, 
mcf and milc in the SPEC CPU 2006 benchmark [8] in the 

SimpleScalar simulator [9]. Bzip2, gromacs and hmmer use 
a wide range of memory addresses, but have high locality. 
Lbm, mcf and milc have high locality and use a small range 
of memory addresses [10]. Experiments were carried out 
using the SimpleScalar with the parameters describes in 

Table Ⅰ. Also, the PIN [11] was used to attach the time 

stamp to the memory transaction traces extracted from the 
SimpleScalar. 

B. Experimental Environments 

The DRAMSim2 was used for modeling the proposed 
DIMM tree memory controller. It is assumed that capacity of 
each DIMM is 1GB and the page size is 1 KB. The DIMM 
tree architecture has a tree structure with the depth of 2 and 
the degree of 4, as shown in Fig. 4. The fast partition has the 
size of 4 GB, and the slow partition is composed of 16 GB. 
The block diagram of the proposed DIMM tree memory 
controller model is shown in Fig. 5. The detailed parameters 

applied to DRAMSim2 is shown in Table Ⅱ. 

 

 
Figure 4.  DIMM tree structure used in experiments. 

 
Figure 5.  Simulation environment of the proposed DIMM tree memory controller.
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C. Results 

The generated workloads, each of which has a total of 
500 thousand requests, are used for the CPU Requests of the 
DIMM tree memory controller model of DRAMSim2. 
Through simulations with workloads, it was verified that the 
proposed DIMM tree memory controller operates properly. 
In addition, performance analysis of the proposed DIMM 
tree memory controller was carried out as follows. 

Fig. 6 shows hit rate per 1,000 traces when a total of 10 
thousand traces of each workload are processed. Lbm, mcf 
and milc are memory-intensive workload, thus have high hit 
rate. After 5 thousands of traces have been processed, the hit 
rates of lbm, mcf and milc was maintained at about 73%. On 
the other hand, hit rates of bzip2, gromacs and hmmer were 
continuously increased. As shown in Fig. 7, the hit rates of 
gromacs and hmmer increased rapidly after 50 thousands of 
traces were processed. This is mainly because that the 
number of compulsory misses, which occur intensively at the 
early time of simulation, decreases after running 50 thousand 
traces. Workloads such as bzip2, gromacs and hmmer have a 
wide address range, so they need a longer time to fill the fast 
partition pages. The number of cycles taken to run all the 

traces is shown in Table Ⅲ . The performance for the 

workload hmmer is measured best because the hit rate for 
hmmer is best. 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposed a hardware architecture of the 
DIMM tree memory controller. The proposed architecture 
was modeled using the DRAMSim2, Workloads were 
generated using the SPEC CPU 2006 to verify the 
functionality and performance. The experimental results 
show that the proposed DIMM tree memory controller works 
properly. This paper presented a DIMM tree memory 
controller which can be used as a reference model in DIMM 
tree based large memory systems. The study of this paper 
assumes that he DIMM tree memory controller operates on 
the single-processor environment. However, recently, the 
multiprocessor environment is used widely. So, our future 
work is to run multiple loads in parallel on the DIMM tree 
memory controller for multiprocessor systems. 
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TABLE III.  CLOCK CYCLES TAKEN TO PROCESS EACH WORKLOAD 

Workloads 
10000 traces 

(cycles) 

100,000 traces 

(cycles) 

500,000 traces 

(cycles) 

bzip2 1,263,919 12,720,015 39,481,566 

gromacs 538,966 3,409,885 11,668,567 

hmmer 508,589 1,999,400 6,265,317 

lbm 522,217 5,168,498 25,814,382 

mcf 535,822 5,276,435 26,298,294 

milc 535,397 5,279,990 26329965 

 

 
Figure 6.  Hit rate per 1,000 traces when running 10,000 traces of each 

workload. 

 

 
Figure 7.  Hit rate per 10,000 traces when running 100,000 traces of each 

workload. 

 

 
Figure 8.  Hit rate per 50,000 traces when running 500,000 traces of each 

workload. 
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