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Abstract—This paper proposes the implementation of a Support used. Speech coding systems include those cases in which th
Vector Machine (SVM) for automatic recognition of numerical  purpose is to obtain a parametric representation of thechpee

speech commands. Besides the pre-processing of the speechalign signal, based on the analysis of the frequency, averagerpowe
Cosine Transform (DCT) to generate a two-dimensional matrix  techniques of encoding the speech signal are used both fol
used as input to SVM algorithm for generating the pattern of . mission and for compact storage of speech signals. One

words to be recognized. The Support Vector Machines represerat fth . licati f h coding is to t it th
new approach to pattern classification. SVM is used to recognize or the main applications ol speech coding IS 10 fransmit the

speech patterns from the mean and variance of the speech signal SP€ech signal efficiently [4]. Systems for automatic speech
input through the two-dimensional array aforementioned, the  recognition or Speech Recognition Systems (SRS) are fdcuse
algorithm trains and tests those data showing the best response. 0n the recognition of the human voice by intelligent mackine
Finally, the experimental results are presented for the speech

recognition applied to Brazilian Portuguese language process.

KeywordsSupport Vector Machines; Classification; Pattern B. Methodology Proposed

Recognition; Statistical Learning Theory; Application in Speech . . .
Recognition. This article uses as a recognition default

locutions from Brazillian Portuguese of the digits
1y 23 48678 9. The speech  signal
is sampled and encoded in mel-cepstral coefficients and
A. Digital Processing of the Speech Signal coefficients of Discrete Cosine Transform (DCT) [2] in
order to parameterize the signal with a reduced number of
Digital speech processing is a specialty in full expansionparameters. Then, it generates two dimensional matrices
There are numerous applications of this research area, weferring to the mean and variance of each digit. The elesnent
can refer to automatic speech recognition for purposes obf these matrices representing two-dimensional temporal
interpretation of commands by machines or robots, aut@matipatterns will be classified by Support Vector Machines
speech recognition for the purpose of biometric authetitioa  (SVMs) [3]. The innovation of this work is in the reduced
recognition of pathology in the mechanism of speech pronumber of parameters lies in the SVM classifier and in the
duction for biometric and or medicinal purposes. The speeckeduction of computational load caused by this reduction of
processing systems are divided basically into three se@sar parameters.
speech coding, speech synthesis and automatic speech recog
nition. Regardless of the specific purpose, the initial ssagf
a system for processing digital speech is sampling follobled  c. SvM (Support Vector Machine)
segmentation of words or phonemes [1] for short-term aiglys
by Fourier transform [2] or by spectral analysis [2]. The Based on Statistical Learning Theory, SVM classifier is
speech signal processing first involves obtaining a par@net another category of feed-forward, whose outputs of neurons
representation based on a certain model and then applyingfeom a layer feed neurons from the next layer where feedback
transformation to represent the signal in a more convenierdoesn’t occur [3]. This technique originally developed for
form for recognition. The last step in the process is thebinary classification, seeks to build hyperplanes as datisi
extraction of important characteristics for a given apgiiien.  surfaces, in such a way so that the separation between glasse
This step can be performed either by human listeners ois maximum, assuming that the patterns are linearly sefsrab
automatically by machines [2]. Among the techniques thatAs for non-linearly separable patterns, the SVM seeks an
have been developed for segmentation of speech, those basggpropriate mapping function to make the mapped set lin-
on Hidden Markov Models (HMM) [2] are quite traditional. early separable. Due to its efficiency in working with high-
Hybrid methods based on Atrtificial Neural Networks (ANN) dimensional data, it is cited in the literature as a highly
[3] and criteria, such as average energy, selection of doicerobust technique [5]. The results of applying this techriqu
phonemes and non voiced, Mel Frequency Cepstral Coeffiare comparable and often superior to those obtained by othel
cients (MFCCs) [2], spectral metrics [2], and others, aswal learning algorithms, such as ANN.

I. INTRODUCTION
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1) Theory of Statistical LearningThe Theory of Statistical
Learning aims to establish mathematical conditions tHatal

that represents a smaller valueRémp( f) is called Empirical
Risk Minimization.

the selection of a classifier with good performance for the
data set available for training and testing. In other words,
this theory seeks to find a good classifier with good gen-
eralization regarding the entire data set. But, this digssi

abstains from particular cases, which defines the capabili

to correctly predict the class of new data from the sam . ” ; D), o=
o ; - : ; ated by an independent and identically distributed digtidim
domain in which the learning occuretflachines Learning (iid) of probability P(z,y). The probability of incorrect

(ML) [3] employs an inference principle called induction, in L LA . . .
which general conclusions are obtained from a particulr SeClassmcatlon from classifief is called Functional Risk, which

of examples. A model of supervised learning based on Theor9uantiﬁes the capability of generalization, accordingp{].
of Statistical Learning is given in Figure 1 [3].

if
otherwise

L,
0,

yif(xi) <0

(i) = § @)

téA\ssuming that the patterns used for trainiing, y;) are gener-

R(f) = /C(f(l"nyi))dp(xi,yi) (4)

During the training procesRemp(f) can be easily obtained,
while R(f) cannot, since probability? is unknown. Given a
set of training datdxi, yi) with z; € RY andy; € {£1},i =
1,2,...n, i =1, 2, ..., n, the input vectox; and y; is the
output related to class;, then the goal is to estimate a
function f : ®Y — {£1} and if no restriction is imposed
on the class of functions in which one chooses to estinfiate

it may happen that the function obtains a good performance
in the training set, but not having the same performance
in unknown patterns. This phenomenon is called the error
“overfitting'. Thus, the minimization of the empirical risk does
not guarantee a good generalization capability, and being a
great classifier is desireff such thatR(f*) = minsepR(f),
where F' is the set of possible functiong . The Theory

of Statistical Learning provides ways to limit the class of
functions (hyperplanes), in order to exclude bad modelst, th
is, those leading to the error of overfitting, implementing a
function with an adequate capacity to correctly classifg th
set of training data. Restrictions on Risk Functional use th

Supervisor: It shows a desired respongéor each input vector concept of VC dimension [7].
x is provided by the environment accordance to a conditional
cumulative distribution functior¥,,(z|d) which is also fixed
but unknown. The desired response due to input vectes
related by (1):

Environment X:
distribuition of
Probability
Fx(x)

(x,dy; xod,; .., Xy, d)y)

X e .‘II:>

Machine of Learning
oeW

— > Flxw)=d

Figure 1. Flowchart of a model of supervised learning.
Environment: It is stationary. It provides an input vectar
with a function of distribution of cumulative probabilityxgéd,
but unknownF, ().

3) SVM (Mathematical Modeling)Classifiers that separate
the data through a hyperplane are called Linear and SVM fits
this definition, therefore, we must pay attention to all that
there is to train and classify, for as a SVM must also deal
with non-linearly separable sets, this will resort to tdges.
d= f(z,0) @ In the appl_ication of Techniques of Statist_ic_;s Learning ys

’ the classifier must be chosen the classifier with the lowest
wherev is noise that allows the supervisor to be noisy. Thepossible empirical risk and which also satisfies the comgtra
kind of learning discussed in this work is supervised, but noof belonging to a familyF” with a small VC dimension. Also,
noisy. to determine the separability of the optimal hyperplaneit as
was assumed that the training set is linearly separable. The

2) Functional of Risk:The desired performance of a clas- equation of a decision surface folows below:

sifier f is that it gets the smallest mistake during training,
with the error being measured by the number of incorrect
predictions of f. Therefore, its defined as Empirical Risk

Remp(f) the extent of loss between the desired response and
the actual response. In (2), it is shown the definition of the
Empirical Risk.

whz+b=0 (5)
where x is an input vectorw is a vector of adjustable
weight (maximum separation possible between true and false
examples) and is abias And from this consideration follows

a sequence of calculations in order to find the hyperplanie wit
higher separability between classes. Under these consljtio
the surface found is called optimal. In Figure 2, the geom-
etry of an optimal hyperplane for two-dimensional space is
illustrated.

N
1

Remp(w) = i Z e(fi(zxi,yi)) 2

=1
wherey; = F(z;,w;), w; is a vector of adjustable weights,
is the cost function related to the predictife;), with desired
output f(y;), where one type of cost function is the “loss 0/1”
defined by (3). The process of search by an equafion)

For the case of a non-linear set, SVM creates another
feature space from the original space, and the concepts anc
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= shows the main features commonly used as kernel functions.
Support Vet Optimal Hyperplane The expansion of the inner product cofe(x;,z;) in (6)
/" po . . . .. . .
g Y makes it possible to find a decision surface that is noninea
JZ{ in the input space, but whose image in the feature space is
| ) linear [3].
/] @
/ }é TABLE I. APPLICATION OFSVM
/
. Name of Kernel Function
- ' T T v
/ [ Polinomial (a: x; + 1)
/
// @ RBF Kernel ezp( - 525 e — o) )
// Perceptron tanh (ﬁoITl'q‘, + 51)

Support Vectors

. . , The Kernel functions used have the following restrictions:
Figure 2. Optimal hyperplane for linearly separable pattern

e In the Polynomial kernel, the parameteris first

calculations of linear optimal hyperplane are applied iis th specified by the user;

new space [3]. e Inthe kernel RBF, the parametef is common to all
. . . . cores;
4) SVM for multiple classesThe SVM is a dichotomic
algorithm, that is, for pattern classfication based on tvassts e In the perceptron, Mercer’s theorem is satisfied only
[3]. However, it is possible to obtain a classifier for mukip for some values of, 1

classes using the SVM algorithm. Scholkopf et al. proposed ) . .
a classifier model of type “one vs. all’ [8]. Clarkson and . 6) Automatic Systems for Speech Recognition with SVM:
Brown have proposed a classifier model of the “one vs. onetidden Markov Models (HMMs) have become the most em-

[9]. However, both models are indeed classifiers of only twoPloyed technique for Automatic Speech Recognition (ASR).
classes: Class +1 and Class -1 [3]. On system “one vs. ak¥, ontiowever, the HMM-based ASR systems may reach their limit
machine for each group is used, in which each group is traine@f Performance. Hybrid systems based on a combination of
separately from the rest of the set. In the system “one v¢, one@'tificial intelligence techniques provide significant iroge-
only three machines are used, in which a group is classifief€Nts of performance. However, the progress in this panadig

against another; then, this one is rated against anotheipgro 'S been hindered by their training computational reqoisze
and so on. until the whole set is trained. which were excessive when these systems were proposec

Recently, several methods of Speech Recognition have beel
5) Functions Kernel: The decision surface of the SVM, proposed using mel-frequency cepstral coefficients andalleu
which in the feature space is always linear, usually is m&ar  Networks Classifiers [12][13][14], Sparse Systems for 8pee
in the input space. As seen earlier, the idea of SVM dependrecognition [15], Hybrid Robust Voice Activity Detection
on two mathematical operations: System [16], Wolof Speech Recognition with Limited vocabu-
lary Based HMM and Toolkit [17], Real-Time Robust Speech

1) Nonlinear mapping of an input vector into a feature Recognition using Compact Support Vector Machines [6].

space of high dimensionality, which is hidden from

the entry and exit; Thus, the SVM has many functions; it is a binary algo-
2) Build an optimal hyperplane to separate the featuresithm, based in the Theory of Statistical Learning and in the

discovered in the first step. To design the optimalFunctional of Risk. And, finally, it has many functions for

hyperplane, a kernel function is needed, or a core otlassification, such as in the case of multiple classes.

the inner product. A Kernel function is a function that

receives two pointg; andx; of the input space and II. SYSTEM OF SPEECHRECOGNITION
calculates the scalar product of the data in the feature ) )
space, given by (6). A. Pre-processing of Speech Signal
k(as,z;) = 07 (2;) - (x;) 6) Initially, after the segmentation of the speech is passed
1Yy ) — 7 J

through the process of windowing, the speech signal is sam-
To ensure the convexity of the optimization problem andpled and segmented into frames and is encoded in a set o
introduce the Kernel mapping in which the calculation of melcepstral parameters. The number of parameters obtaine
scalar products is possible, a kernel function that follales is determined by the order of mel-cepstral coefficients. The
conditions set by Mercers Theorem [10][11]must be used. Thebtained coefficients are then encoded by Discrete Cosine
kernels that satisfy Mercers conditions are characterfped Transform (DCT) [2] in a two dimensional matrix that will
giving origin to semi-definite positive matricés in which  represent the speech signal that to be recognized. Thegsroce
each element;; is defined byk;; = k(z;,z;), Vi,j = of windowing in a given signal, aims to select a small portion
1,2,...,n. Once the mapping is performed by a SVM kernel of this signal, which will be analysed and named frame. A
function, and not directly byp(x), it is not always possible to short-term Fourier analysis performed on these framedlesdca
know exactly which mapping is actually performed, becausesignal analysis frame by frame. The length of the frdfmes
the kernel functions perform an implicit mapping. Table |defined as the length of time upon which a parameter set is
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valid. The term frame is used to determine the length of timeC. Generation of machines
between successive calculations of parameters. Nornfally,

speech processing, the time frame is between 10ms and 30ms In the technical literature about SVMs, the standards are
[18] ' called classes. The mean and variance matrices are traresfor

in two column vectorsC Me (vector with means) and'Var
(vector with variances).

B. Generation of two-dimensional DCT-temporal matrix

After being properly parameterized in mel-cepstral coeffi- CMe! = (CM?,,CMP,,...CM)y,C M3, ,CM3,,....C M3y,

cients, the signal is encoded by DCT performed in a sequence CMjy) (10)
of T observation vectors of mel-cepstral coefficients on the
time axis. The coding by DCT is given by the equation
following: CVarl = (CVR,CVY,...CV y,CVH OV, .CVEy,
' ; (11)
. CVin)
1 (2t + )nm
Ciy(n,T)=— mfecy(t)cos———— 7 . ; .
k(. T) N ; feex(t) 2T @ For example, in the case of a matdx\/3,, that is, where

K=2 e N=2, the matrice€'Me and CVar take the following
wherek,1 < k < K, refers to thek—th line (number of Mel  form:
frequency cepstral coefficients) bfth segment of the matrix
n, 1 < n < N component refers to the—th column (order

Jo_ 0 0 0 0 1
of DCT), mfecei(t) represents the mel-cepstral coefficients. o fﬁ?lfﬁlzfﬁmffﬁ}?ﬂ”’ (12)
Thus, one obtains the two-dimensional matrix that encode th B
long term variations of the spectral envelope of the speech
signal [19]. This procedure is performed for each spokerdwor i 0 o e e
Thus, there is a two-dimensional matii;(n, T) = C,, for OVar] = (CVE, OV, OV OV OV CVi, (13)

1 1 J
each input signal. The matrix elements are obtained as the OV31,CVaz-CVid)

following: . . )
Each class in this example is represented by 4 elements
1) For a given model of spoken word® (digit), In the vector of mean and 4 elements in vector of variance
ten examples of this model are pronounced. Eacrccording to (12) and (13), that is, the f|_rst 4 eleme_nts of the
example is properly divided into T frames dis- Vector of mean and of the vector of variance refer into class
tributed along the time axis. Thus, we have: 0. the following 4 elements of each vector to the class 1, and
PPV, .. PO PL PL. PL P2 P2 .. P2. Pi so on. Figure 3 shows data of the peers of mean and variance

where j=0,1,2,...9 is the number of patterﬁs to’be of the speech signals from the examples of (12) and (13).
recognized anan=1,2,3,...,10, is the number of sam-

ples to generate each pattern. 0.025 — sF’ACETRANSFORMEDOFPARAMETERS
2) Each frame of a given example of modebenerates o Casst °

a total of K mel-frequency cepstral coefficients, and vod O Cies

then, significant characteristics are obtained within } Cams

Class 6
Class 7
Class 8
Class 9

each frame over this time. The DCT of ordaft is
then calculated for each mel-cepstral coefficient of
the same order within the frame, that is, in the

0.015|

ottt

Variance (MFCC x DCT)

+ +

frame t1, ¢; in the framet,,...,, ¢; in the frame oo + ° o
tr, co in the framety, co in the framet,,...,, X o
co in the frametr, and so on, generating ele- 000 100G ¥

+ o *+ + o
ment3{8117612,613,...,ClN}, {621,022_7623_,...,6_2]\[}, o o, + [o
{CKla CK2, CK3.3 teey CKN} in the matrix given In.(7)' O3 02 o1 ? 01 02 03 04
Thus, a two-dimensional temporal array DCT is gen- Mean (MFCC x DCT)

erated for eactn example of modeP, represented by
CI™. Finally, arrays of mearC' M, (8) e variance Figure 3. Classes and their different points.
cvy, (9) are generated. The parameters(ai/]

and C'V}, are used as datas of input in SVM algo-  The set of functions mapping of type input-output is given
rithm. by (14):
s 0 =f([CMel;CVarl],w) (14)

CMj, = M Z Cin (8)  whereQ s the real response produced by the learning machine
m=0 associated with the entry pairs of means and variances, anc

w is a set of free parameters, called weights for weighting,

_ ;M [ _ ( M ? selected from the parameter space related to patternsteFigu

o - ]l ©

Vi Z 4 shows a general model of the supervised learning from the
m=0 examples, having three components:
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_ work, the results of this remain more effective, because the
Environment| | Supervisor d amount of MFCC's is smaller and, also, the input of paranseter
in the machines are lower. Consequently, the computational
load is lower.

Machine 7 | Class 7 vs. All
ML 0.025

+  Other (training)

+  Other (classified)
Class 7 (training)

0.02 Class 7 (classified)

Figure 4. Model of Learning. O Support Vectors

0.0151

The Environment is the fixed input system; this
yields z; (points that come from the pairs of coordinates
(CMe,CVar)) from the response of the DCT matrix of

Variance (MFCC x DCT)
°
2
™

speech signals. Th8upervisor returns a value of the desired R B I L
output d; for each input vectorz; in accordance with a o %, o o®
conditional distribution functior¥ (d;|z;)), also setMachine S5 02 03 o4

0 0.1
Mean (MFCC x DCT)

of Learning (ML), is an algorithm capable of implementing
a set of functionsf [CMe{;CVan],w?, wherew € W,

where W is a set of parameters belonging to the set of
desired responses. In this context, the learning problembea

Figure 5.  Machine generated for class 7 from matri@bM272 and CV272.

. . . o R Machine 7 | Class 7 vs. All
interpreted as @roblem of approximation, which involves ozs s
finding a functionf ([CMel; CVar!],w) that generates the e
i 1 1 0.02- upport Vectors
best approximation to th€& output of the supervisor. The O Sepportiedt

selection is based on a set of independent training exaniples
and identically distributediid), generated according to:

0.0151

Variance (MFCC x DCT)
°
2

F(z,d) = F(z)F(d|x) : (z;,d;) (15)

where (z;,d;) are peers with desired input and output with
d; e R"andi=1,....1.

0.005

0
-0.3 -0.2 -0.1 0.2 0.3 04

0 0.1
Mean (MFCC x DCT)

Ill. EXPERIMENTAL RESULTS

A. Training Figure 6. Machine generated for class 7 from matrice¥/7, and CV.J.
After performing the pre-processing of the speech signal e | Goss v Al

coding and generation of temporal matricgsd/;,, andCV}/,, o0 o [ omer(ramng

the models were trained by SVM machin€3/3, andCVs,, - Gt

that is, K=2 andN=2, as shown in Figure 5, fof’ )/, and o 0 suppetvectrs

CVis, that is,K=3 andN=3, as shown in Figure 6 , ar@\/},

e CV},,i.e.,K=4 eN=4, as shown in Figure 7. The best results
for matrices withK=2, N=2 , K=3 andN=3 were generated by
polynomial function of order 3. However, the best results fo
matrices withK=4 e N=4 were generated bigernelcachelimit
function, because as each class is represented by 16 poihts a o
there are 10 classes to be classified (separated), ther&@re 1

0.015

Variance (MFCC x DCT)
°
2

®

points separated and tRelynomialfunction obeys an ordeP L R TR SN T TR ra—

Mean (MFCC xDCT)

as shown in Table | antl < P < 3, P € Z resulting in a very
limited hyperplane relative to the curvature that the fiorct - _ . ’
line can make with a limi” equal to 3. Thekernelcachelimit 79U 7. Machine generated for class 7 from matricedl,, and CV,.
function provides a value that specifies the size of the cache

memory of the kernel matrix, while the algorithm maintains aB. Test

matrix with up to5000 x 5000 of double precision floating- . . -
point numbers in memory. With the result of the best function from training, the

tests were made from voice banks where the speakers are
In Bresolin [20], the use of SVM with wavelet digital voice independent and classified with the best function of tragnin
recognition in Brazilian Portuguese, obtained an averdge dPolynomialof order 3, except the matrices witki=4 e N=4
97.76% using 26 MFCC's in the pre-processing of voice andvere tested (classified) with the same function of the tngini
SVM machine’s with the following characteristics: MLP as Kernelcachelimit The speakers 1 and 2 are male and the
Kernel functions, ten machines (one for each class) and “onspeaker 3 is female. The Tables II, lll and IV show the rates
vs. all” as method of multiple classes. In comparison to thisof successes.
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TABLE II. T EST PERFORMED FROM r\/|ATR|CEaaZ’M§2 AND CVQJ2
Machines | Training Test
Speaker 1] Speaker 2| Speaker 3
Class 0 10 10 10 10
Class 1 10 10 7
Class 2 8 5 7 5
Class 3 8 5 5 5
Class 4 10 5 5 5
Class 5 10 3 5 7
Class 6 8 5 7 5
Class 7 10 7 5 5
Class 8 10 10 10 10 [1
Class 9 10 3 0 0
TOTAL 94 63 61 62
[2
TABLE III. T EST PERFORMED FROM MATR|CE3€M§3 AND CV333 [3]
: __ [4]
Machines | Training Test
Speaker 1| Speaker 2] Speaker 3
Class 0 10 9 8 9
Class 1 10 10 9 10 (5]
Class 2 8 8 7 7
Class 3 10 9 7 10 [6]
Class 4 10 3 4 2
Class 5 10 3 4 3
Class 6 10 6 7 7
Class 7 8 9 8 9
Class 8 10 9 10 7 [7]
Class 9 10 6 7 7
TOTAL 96 72 71 71 [8]
TABLE IV. T EST PERFORMED FROM MATR|CE$’JMZ4 AND CV‘f4 [0
Machines | Training Test [10]
Speaker 1| Speaker 2] Speaker 3
Class 0 8 8 8 8
Class 1 10 10 10 10 11
Class 2 10 8 9 8
Class 3 10 9 7 8
Class 4 10 6 7 8
Class 5 10 8 9 7 [12]
Class 6 8 8 7 8
Class 7 10 10 10 10
Class 8 10 10 10 10
Class 9 10 6 6 5
TOTAL % 82 83 82 (13]
V. CONCLUSION [14]

Analysing the methodology and applications of SVM, one
realises that it is a technique with excellent response time (15]
computational execution. Despite being a dichotomic nebtho
of classification, this also has possible means to work with a
larger number of classes of different data types to be stgghra
In the standards classification proposed in this work, th&ISV [16]
presented problems to correctly classify points very close
among to each other, because of the form generalizationeof on
versus all. However, as it has a very wide scope in relation 1017
the classification functions during the learning processhef
machines, the SVM ends up compensating for the problem of
generalization with the use of more points for classifigatio
That is, the greater the number of points to represent thés]
class the higher the amount of hits. In general, the patterns
were classified very well, except with the digit ‘9’. The digi  [19]
‘1’ and ‘8’ obtained the highest classifications. The use of
mean and variance chosen as characteristics of the data 0]
be generated patterns was the most appropriate way to find
a better separability between points and therefore a better
classification.
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