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Abstract— Understanding source code is crucial for a software
engineer. To efficiently grasp the semantics of source code, an
experienced engineer recognizes semantic chunks and relations
(code patterns) in source code as clues. If a rich repository of
searchable code patterns, together with human understandable
meanings, is available, comprehension of unfamiliar source code
would be easier. However, explicitly defining a source code query
even for a simple code pattern can be prohibitively complex
for human. In this paper, a tool for search-by-example through
abstract syntax tree is presented. A programmer gives sets of
desired and undesired nodes, then the system presents some
candidate nodes resembling desired ones. This kind of implicit
definition by examples is suitable for constructing and revising a
repository socially. The method is supervised incremental learning
of decision trees. The proposed system uses a set of primitive
attributes to reflect domain-specific knowledge safely and easily.

Keywords—source code search; search by example; abstract
syntax tree

I. INTRODUCTION

Observing common programming habit, an engineer seems
to locate and loosely combine apparent semantic chunks of
various granularity to understand source code. We call such
an apparent semantic chunk a code pattern. Although formal
correctness of this coarse understanding is not guaranteed, this
often successfully outlines the structure of the source code, and
thus it becomes good guidance to the engineer. Rich knowledge
of code patterns is one of the primary sources of the strength
of an experienced software engineer.

If code patterns in source code can be explicitly given by
the author or other person who understands the code before,
or automatically searched by a tool, understanding unfamiliar
source code would be easier. Unfortunately, neither of them is
realized. As for the former, comment lines embedded in source
code are too ambiguous for automatic processing. As for the
latter, defining syntactic search pattern for a code pattern would
be too complicated for human, since a code pattern may appear
with many minor variations.

We believe that software engineering community should
share and socially evolve the “dictionary for code understand-
ing” in the form of queries through source code. This is like
a searchable code snippet. Contributors are expected to add
and refine these searchable snippets together with description
in natural language and example codes.

In this paper, a define-by-example framework for a code
pattern is presented based on [1]. In the framework, each
instance of a code pattern is represented as an anchored
abstract syntax tree (AST). An anchored AST is a tuple

(t1, t2, · · · , tn; T ) (1)

where (t1, t2, · · · , tn) is a tuple of AST nodes, or anchors,
and T is the enclosing AST, say a class. A tuple of
anchors provides a syntactically clear (i.e., tightly coupled
with source code) chunk for semantic annotaion, while T
indicates the maximum extent (context) of the interest in which
possible relationships among (t1, t2, · · · , tn) are searched for.
The number of anchors n may be arbitrarily chosen by a user.
A prototype system is presented, too.

In the next section, related work is presented. In Section III,
a motivating example of the code pattern is presented. In
Section IV, anchored abstract syntax tree is propsed as a means
of representing instances of a code pattern, then a system
which infers a candidate definition of a code pattern from
user specified code pattern examples is presented. Section V
outlines the algorithm for inferring a code pattern definition.
Some experience with our prototype system is in Section VI,
the conclusion in Section VII.

II. RELATED WORK

Comprehension of computer programs by human program-
mer is one of the most important activities in software engi-
neering. There are a wide variety of researches in the literature.
Dynamic analyses [2] try to understand runnable programs,
while static approaches analyse source codes without running
them. The essential difficulty of program comprehension exists
in the broad gap of complexity between human and software.
When coding a program, abstraction mechanisms such as
libraries, code fragments (code snippets), or design pattern help
a programmer. However, when reading a code in practice, a
programmer can rely only on comments in source code and
documents. Feature (concept) location systems may suggest
possible locations of interest in source code, but a programmer
still have to read the code line by line. Design pattern detection
systems may report the meaning of the located code, but their
targets are small number of well-known design patterns.

When searching through source code, conventional string
search tools are not suitable, because they do not assume the
syntax of a programming language. Some tools search source
code based on its structure to overcome this limitation. For
example, sourcerer[3] is a search engine for open source
code. sourcerer allows a user to ask about implementation
and program structure. They compare some ranking methods
for the search result ordering.

A brief history of software reuse is presented in [4].
Signature matching [5] tries to search a function using types
of its parameters and the return value as a query. There are
extensions, such as, [6] using formal semantics, [7] using a
specification language, [8] using contract-based specification
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matching, or [9] using a type system for specification descrip-
tion. All of these approaches are based on “static” information
which is extracted from source code or specification without
running it.

Another way of charactrising a function is specifying a set
of expected (input, output) pairs as a query. Each candidate
function is run against these inputs to check whether the output
becomes the same with the specified ones. This is “dynamic”
characteristics of a function. Researches based on this method
include [10], [11], and [12]. Generally, however, signature or
type matching alone seldom gives satisfactory search result.

While above approaches aim at reusing functions or meth-
ods, other techniques such as [13] or [14] are intended for
reusing code fragments.

III. CODE PATTERN

As an example of code pattern, we will compare some
implementations of memoization in Java language. Memoiza-
tion [15] is a technique to avoid redundant computation of a
referentially transparent function, at the cost of storing and
recalling already computed results. Referential transparency
requires a function to always return the same result for
the same given arguments. Memoization is effective when
computationally expensive function is called repeatedly. In the
design pattern, the flyweight pattern is essentially similar with
this technique.

The code in Fig. 1 illustrates a typical memoization. The
method get(P p) returns the value of function calc(P p)
either by actually calculating it or by recalling it from al-
ready calculated table. For this purpose, this method has a
table Map<P, V> values which is used to keep already
calculated values. If get(P p) is called with p for the first
time, the value calc(P p) is added into the table with p
as its key. If get(P p) is called again, this method returns
the result by retrieving it from the table without calculating it
again.

Although memoization is a quite simple technique, it
may be implemented in various ways like in Fig. 2. Some
characterizations of memoization should be given to a system,
but it is practically impossible for a user to define a search
pattern which matches all of these code patterns selectively.

abstract class Memoize<P, V> {

Map<P, V> values = new HashMap<P, V>();

public V get(P p) {
if (! values.containsKey(p)) {

values.put(p, calc(p));
}
return values.get(p);

}

public abstract V calc(P p);

}

Fig. 1: Example code of memoization in Java language.

if (! values.containsKey(p)) { // Code A
values.put(p, calc(p));

}
return values.get(p);

if (tab.containsKey(this.d)) // Code B
return tab.get(this.d);

else {
Node newNode = new Node(this.d,

new P(this.d - 1, this.t),
new P(this.d + 1, this.t));

tab.put(this.d, newNode);
return newNode;

}

if (memo.get(n) == null) { // Code C
memo.put(n,

memoizedFibonacci(n - 1).
add(memoizedFibonacci(n - 2)));

}
return memo.get(n);

Byte cb = (Byte) cache.get(nInt); // Code D
if (cb == null) {

byte b = runAlgorithm(n);
cache.put(nInt, new Byte(b));
return b;

} else {
return cb.byteValue();

}

if (r[x][z] == -1) { // Code E
r[x][z] = compute(x, z);

}
return r[x][z];

Fig. 2: Examples of the memoization code pattern.

To cope with this difficulty, we have adopted a decompose-
and-conquer strategy. Let us focus on the conditional ex-
pression of if statement as an example. The followings are
from Fig. 2 and other codes:
if (! values.containsKey(p)) {...
if (tab.containsKey(this.d)) ...
if (built.containsKey(m)) ...
if (value == null) {...
if (memo.get(n) == null) {...
if (solved.get(newVal) != null) {...
if (cb == null) {...
if (rem[x][z] == -1) {...
if (c[i][j] == -1) {...

Some common patterns are observed. If the table is im-
plemented as a Collection object, a predicate method
containsKey() is used. If the result type is int, the value
-1 seems to represent the absence of the data in the table,
while null is used for reference types (e.g., objects) after
trying to get the value using get().

We expect the code pattern would be something like the
followings:
_X_.containsKey(_Y_)
_X_.get(_Y_) == null
_X_ = _Y_.get(_Z_); ...; _X_ == null
_X_[_Y_][_Z_] == -1

allowing boolean negation such as ! or !=. Note that this
pseudo notation is only for explanation here.
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IfStatement // root ASTNode of this part
// conditional expression of the if-statement
// ASTNode for condition expression
EXPRESSION

PrefixExpression
> (Expression) type binding: boolean
OPERATOR: ’!’
OPERAND

MethodInvocation
> (Expression) type binding: boolean
> method binding:

Map<P,V>.containsKey(Object)
EXPRESSION

SimpleName
> (Expression) type binding:

java.util.Map<P,V>
> variable binding:

Memoize<P,V>.values
IDENTIFIER: ’values’

TYPE_ARGUMENTS (0)
NAME

SimpleName
> (Expression) type binding:

boolean
> method binding:

Map<P,V>.containsKey(Object)
IDENTIFIER: ’containsKey’

ARGUMENTS (1)
SimpleName

> (Expression) type binding: P
> variable binding: p
IDENTIFIER: ’p’

THEN_STATEMENT // then-part
Block // then-part is a block

STATEMENTS (1)
ELSE_STATEMENT: null // no else-part

Fig. 3: AST for if statement of Fig. 1 (generated using [17] and
adapted).

Once this code patter is defined, this can be used as
a building block of other code patterns. Of course, these
syntactic characteristics do not guarantee that this conditional
expression is a constituent element of memoization. Although
they just suggest it, the existence of multiple clues gradually
increases the confidence of it.

IV. CODE PATTERN BY EXAMPLE: USER INTERACTION

A. Code Pattern as Anchored AST

Source code that conforms to the syntax specification
of the language can be represented as AST. Fig. 3 is
an AST which corresponds to the if statement in Fig. 1.
This AST is generated by Java development tools (JDT)[16]
in Eclipse IDE. The root node IfStatement represents
the whole if statement, which has three branches, namely,
EXPRESSION (condition expression), THEN_STATEMENT
(then-part), and ELSE_STATEMENT (else-part). In this ex-
ample, ELSE_STATEMENT is null since the if statement
has no else-part. Fig. 3 shows just an overview the AST for
simplicity.

We represent an instance of a code pattern as an anchored
AST. If a user wants to express a code pattern for the

conditional expression in the above example, anchored AST’s
(t1; T ) where t1 is conditional expression such as
values.containsKey(p)

or
cb == null.

As for the latter one, if a user wants to give explicit hint for
the constraint on variable cb, constraining AST node
Byte cb = (Byte) cache.get(nInt);

may be specified as an additional anchor t2, resulting an
anchored AST (t1, t2; T ).

B. User Interaction Model

A user interactively defines a new code pattern by giving
positive or negative examples of a code pattern. Each example
is an anchored AST. Negative example refers to an anchored
AST which is not an instance of the code pattern. Typically,
a negative example is obtained when the system mistakenly
locate a false positive code pattern. In such a case, a user
teaches that it is a negative example.

We will give the overview of this user interaction using
our prototype system. The prototype system has been im-
plemented as a plug-in of Eclipse IDE [18]. A plug-in can
take advantage of functions for manipulating Java source code
provided by Eclipse JDT [16]. Fig. 4 is the screen shot of the
prototype system. In the window, a special pane for anchored
AST registration and classification is placed on the right-hand-
side.

Part (a) through (d) in Fig. 5 are screen snapshots when
a user is defining an single anchored AST (t1; T ). A user
selects a code region corresponding to the intended AST node
(part (a)), then add this either as a positive (part (b)) or as
a negative (part (c)) example by clicking appropriate button.
Added AST node is displayed in the pane with a character ‘P’
or ‘N’ indicating positive or negative, respectively.

For each code pattern, the system keeps positive example
set S+ and negative example set S-. A user can add arbitrary
number of positive examples to S+. Once a user thinks that he
has put enough positive/negative examples, the system infers
a hypothetical definition of the intended code pattern from S+
and S-, the system infers the definition of a code pattern as a
supervised discrimination learning on AST.

Then, the sytem searches through source code for a tuple
of AST nodes that match the hypothetical definition. If such
a tuple is found, it is presented to the user. The user judges
whether the found tuple is an instance of the intended code
pattern or not, and add it as either positive or negative example
to the system. Updated S+ and S- are used for the next search.
A user continues this interaction until he is satisfied with the
inferred code pattern.

V. CLASSIFYING ATTRIBUTE VECTORS

A. Projecting Anchored AST onto Attribute Vector

The problem to solve is finding a common pattern in S+
and not in S-. Since anchored AST has complex structure to
compare directly, we have decided to project an anchored AST
onto a vector of attributes. Let us illustrate an attribute vector
with a simple example. Suppose that we are interested in a
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Fig. 4: A screen shot of the prototype system.

(a) (b) (c) (d)

Fig. 5: (a) Select an AST node on source code, add it as a (b) positive or (c) negative example, repeat this to register some examples, then
(d) classfy to compose a decision tree.

code pattern represented as anchored AST’s with two anchors.
That is,

S+, S- ⊆ U (2), S+ ∩ S+ = ∅ (2)

where U (2) = {(t1, t2; T )} denotes the set of all anchored
AST’s with two anchors. And suppose that we have choosen
a vector of four attribute functions A = (a1, a2, a3, a4) where

ai : U
(2) 7→ (various attribute value) (i = 1, · · · , 4) (3)

as shown in Table I. Then, if t1 is the if-statement

TABLE I: ATTRIBUTE FUNCTIONS (EXAMPLE).

a1(t1, t2; T ) true if t1 is an if-statement; false otherwise
a2(t1, t2; T ) true if t2 is an if-statement; false otherwise
a3(t1, t2; T ) Method name if t2 is a method invocation; null otherwise
a4(t1, t2; T ) true if t2 is under t1 in AST T ; false otherwise

if (! values.containsKey(p)) {
values.put(p, calc(p));

}

and t2 is “put(p, calc(p));” in t1, A(t1, t2; T ) would
be an attribute vector (true, false, ”put”, true).

B. Generating Attribute Vector

An attribute function vector A is generated by recursively
combining predefined primitive attribute functions. Table II
is an excerpt of the list of primitive attribute functions used
in the current prototype system. There are primitive functions
too that have multiple inputs not shown in this table.

ASTNode is a class type which represents AST node in
JDT. Current implementation of primitive attribute function
returns null when its imput(s) are illegal or nonsense. For
instance, paIfThenStatement returns the AST node of
then-part if the input is if-statement and then-part exists, but
it returns null otherwise.

An attribute function vector A for an anchored AST
with one anchor U (1) is shown in Fig. 6. Line 0 is
the given AST node t1. After that line, generated at-
tributes follow. For example, line 1 means that this at-

100Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences



TABLE II: PRIMITIVE ATTRIBUTE FUNCTIONS (EXAMPLE).

Function name Input type Output type
paAstNodeType (ASTNode) Class
paIfExpression (ASTNode) Expression
paIfThenStatement (ASTNode) Statement
paBlockStatements (ASTNode) List<Statement>

...
...

...

tribute is defined as application of primitive attribute func-
tion paAstNodeType() to the value of line 0, that
is t , and the type of value is java.lang.Class .
Similarly, line 2 uses another primitive attribute function
paIfExpression() , which returns another AST node
of class org.eclipse.jdt.core.dom.Expression
(subclass of ASTNode). If line 0 is not an instance of if-
statement, the value would be null. The value type of line 2
is obtaind as an attribute at line 11.

By applying generated attribute function vector A to an
anchored AST, an attribute value vector is obtained. Fig. 7
shows an example of attribute value vector. This is logically
single vector (wrapped to fit the page width). NA denotes the
value which is not used for constructing a decision tree. For
example, if a value is an instance of ASTNode, it is used as an
input of other attributes, but is not directly used as an attribute
for classification.

C. Discrimination by Constructing Decision Tree

From attribute value vectors projected from S+ and S-, a
decision tree is constructed for classification. A decision tree
is a tree-structured cascade of decisions in which each node
represents a decision on a certain attribute at a time. Current
prototype system uses J48 in [19]. Fig. 8 is an example of
constructed decision tree. N0. . . are nodes, and N0->N1. . . are
transitions labeled with a condition. For example, At the root
node N0, primitive attribute functions paIfExpression(),
paInfixExpressionRightOperand(), and
paAstNodeType() are applied to the given ASTNode
( param0 ) in this order. paIfExpression()
assumes the given ASTNode is an if-statement,
and returns its condition expression. Then,
paInfixExpressionRightOperand() assumes the
condition is infix expression, and returns its right-hand-side
operand. Finally, paAstNodeType() extracts its node
type. Depending on the type, one of N0->N1, N0->N2, . . . ,
N0->N5 is chosen. If the decision flow reaches N1, that
indicates that the given tuple is classified as positive.

VI. EXPERIENCE WITH PROTOTYPE SYSTEM

A. Searching a Tuple Through Source Code

A decision tree can classify a given tuple of ASTNode.
Current prototype system does not have efficient search mech-
anism yet. It uses brute-force exhaustive search by enumerating
all combination of ASTnode’s in the given source code.
This works when applied to small tuple and source code,
improvement is necessary.

B. Current Set of Primitive Attribute Functions

The primitive attribute functions currently implemented in
our prototype system are in two types, namely, (1) function
which gives some value describing a feature of the given
ASTnode, (2) function which traverses to another ASTnode
from the given ASTnode.

Since most of type (2) follow parent-to-child relationship in
AST, structurally similar code pattern can be defined. However,
anchored AST’s that have different structures to each other
are recognized as different ones. For instance, x = 3; and
{ x = 3; } are semantically equivalent, but the existence
of an extra block prevents the intended recognition. In the
same way, an operator such as equivalence operator == is
commutative (if there is no side effect), but current system
cannot generalize x == null and null == x. Rather, the
system just enumerate these two patterns as distinct ones.

Another example is ASTnode traverse by following data
flow or control flow. When the AST node at if-statement is
given as an anchor in the next code, the variable cb should
be treated as if it is cache.get(nInt).

Byte cb = (Byte) cache.get(nInt);
if (cb == null) {

This can be realized if a primitive function exists which
traverse AST following data flow backward.

To improve such situations, more sophisticated primitive
functions should be introduced.

VII. CONCLUSION

A framework for incremental definition of a code pattern
has been presened. In the framework, a code pattern is repre-
sented as an anchored AST by a user. An anchored AST is
then projected onto an attribute vector for classification using
a decision tree. An attribute function vector is generated by re-
cursively combining primitive attribute functions. A prototype
system is implemented as a plug-in of Eclipse IDE. Inferred
decision tree if good for exact exact search.

Future improvements include enriching primitive attribute
functions, reducing redundant or nonsense attributes.
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