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Abstract—Paradoxes have raised a lot of interest in mathematics
and computer science. What fascinates people about them is
that such a paradox contains a self-contradictory statement
that dissents with usual believes and expectations. The range of
discovered paradoxes is long. One of the most famous is probably
the proposition of Russell that states that no set can exist that
contains all sets that do not contain itself as a subset. The paradox
arises in the proof, where it is shown that such a set must contain
itself if and only if it does not contain itself. In this paper, we
derive a paradox about the F-measure, one of the most important
metrics in machine learning. The contribution of this paper is two-
fold. On the one hand, we investigate typical properties of the F-
Measure, on the other hand, we show that they are contradictory
and therefore constitute a paradox, to several properties of the
harmonic mean, where the F-Measure is a special case of.
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I. INTRODUCTION

The word paradox originates from Greece and is composed
of the word para (beyond) and doxa (opinion). A paradox
contains a self-contradictory statement and dissents with
people’s believes and expectations [1]. It often does not have
a direct practical use case but it gives theoretical insights and
helps to understand certain problems better. Especially in the
area of mathematics, there is a large amount of identified
paradoxes. A quite well-known paradox is the proposition of
Russel.

Russel’s Paradox: This proposition [2] claims that no set can
exist that contains all sets that do not contain themselves
and nothing more. The proof is done by contradiction. Let
us assume such a set would exist. Then exactly one of the
following propositions must be true about this set:

• This set contains itself. This is not possible since this
set only contains sets that do not contain themselves.

• This set does not contain itself. Then per definition,
this set must contain itself, which is a contradiction.

Since both cases lead to a contradiction, such a set cannot exist.

Banach-Tarski Paradox: Another well-known paradox
from mathematics is the so-called Banach-Tarski-Paradox [3]
that claims that a sphere can be decomposed and put together
afterward in such a way that one has obtained two spheres
of the same volume as the original sphere. Thus, one of the
spheres was seemingly created out of nothing. This paradox
is based on the principle that some concepts of mathematics
cannot be transferred into reality.

Actual
value

Prediction outcome

p n total

p′ 8 2 P′

n′ 12 9978 N′

total P N

Figure 1. Example of confusion matrix for an imbalanced class distribution.

Stein’s Paradox: Normally, the expected value is best
approximated by the average value, since the average value
is actually its best unbiased estimator. Stein’s paradox [4]
states that, if several expected values of the same type are
to be determined (like batting statistics for a collection of
baseball players), the isolated averages are no longer the best
choice. Instead, all the estimates should be determined jointly
by shifting the individual estimates in direction of the overall
cross-estimate average.

Accuracy Paradox: Related to Data Science is the so-called
accuracy paradox [5][6]. It states that when comparing two
classification methods, the one with the lower accuracy can
have in fact higher predictory capability. This phenomenon
usually occurs in the case of highly imbalanced class
distributions. Consider for example a very infrequent event
like a rare disease that only shows up for around 0.1% of
the cases. Let us assume, we have a method that can detect
40% of the events correctly and its precision is 80%. So, its
confusion matrix could look like the one in Figure 1, where
the columns denote the predicted and the rows the actual
values. The obtained accuracy of this method would then
amount to 9986/10000=0.9986 while predicting always the
majority class (event not occurring), which has in fact no
predictive power, would achieve an accuracy of 0.999.

In this paper, we will first derive several general statements
about the harmonic mean of two variables. Afterward, we will
proof that these statements are indeed incorrect for the F1-
score, which is a special case of the harmonic mean, in partic-
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ular, it is the harmonic mean of precision and recall. Finally,
we will analyze the reasons for this paradox and investigate
the consequences for mathematical proofs in general.

The remainder of this paper is organized as follows. In
Section II, we define the general harmonic mean and show
several of its principal properties. Section III gives an overview
of the F1-score, which is the harmonic mean of precision
and recall. In the next section (Section IV), the paradox of
the F1-score is described. The findings and the cause of this
paradox are discussed in the next Section V. Finally, the paper
concludes with Section VI, which summarizes the obtained
results.

II. HARMONIC MEAN

The harmonic mean H(a, b) of two values a and b is the
Hoelder-mean with coefficient -1 and is formally given by [7]:

H(a, b) =

(
a−1 + b−1

2

)−1
=

2
1
a + 1

b

(1)

with a, b ∈ R (or C). An alternative and simpler formulation
is:

H(a, b) =
2ab

a+ b
(2)

In contrast to the arithmetic mean, the harmonic mean is
a rather pessimistic mean that is drawn in direction to the
minimum of both arguments. Note that it can only be applied
to argument values of identical signs [7]. To see this, consider
the following example:

H(−2, 4) = 2(−2) · 4
−2 + 4

=
−16
2

= −8 6∈ [−2, 4]

Since -8 is not located between -2 and 4, it cannot possibly
constitute any mean of those values.

Consider now the following two propositions (1+2):

1. a = 0⇒ H(a, b) = 0

2. H(a, b) = 0⇒ a = 0
(3)

Note that without limitation of generality a=0 can be replaced
by b=0 due to the symmetry of the harmonic mean.

It is not difficult to show that the first statement is true and
the second false.

Proof: Let us first have a look at proposition 1. The
following two cases can be discerned: b 6= 0 and b = 0. First,
we consider the case b 6= 0. Plugging in a = 0 in formula 2
results in:

H(a, b) =
2 · 0 · b
0 + b

=
0

b
= 0 (4)

Now consider a = 0, b = 0. Plugging both values into
H(a, b) results in an expression 0

0 , which is not defined. Let
us, however, look at the behavior of H(a, b) for a and b
approaching zero using formula 1. Since the sign of a and
b must coincide, we get:

lim
a,b→0

H(a, b) =
2

1
a + 1

b

=
2

∞
= 0 (5)

Therefore, it is a reasonable approach to define H(0, 0) as 0,
to which we henceforth abide.

Proposition 2 is straight-forward to show by the following
counterexample: H(2, 0) = 0 but 2 6= 0.

One can also draw some conclusions, under which con-
ditions the harmonic mean H and one of its input arguments
have to coincide. In particular, assuming a is not diminishing,
then from the fact that a and H coincide one can infer that b
must also assume their common value. The opposite, however,
is false.

Formally, the first proposition (proposition 3) is true and
the second (proposition 4) is false:

3. a 6= 0 ∧ a = H(a, b)⇒ b = H(a, b)

4. a 6= 0 ∧ b = H(a, b)⇒ a = H(a, b)
(6)

Proof of Proposition 3: From the definition of the
harmonic mean, it follows that: H(a, b) = 2ab

a+b
Since H(a, b) equals a, we can plugin a on the left-hand side:
a = 2ab

a+b
Since a 6= 0, both sides can be divided by a
1 = 2b

a+b
Afterward, we multiply both sides by a+ b:
a+ b = 2b
By subtracting b from both sides one finally obtains:
a = b

The opposite direction (proposition 4) can be shown by
contraction, let a=1,b=0=H(a,b), then herewith it follows that
a 6= H(a, b).

III. F1-SCORE

The F1-Score is the harmonic mean of precision and recall,
where precision is the percentage of predicted positive events
that are indeed positive, while recall is the percentage of
positive events that are actually correctly detected by the
algorithm [8]. All three measures originated from the area of
information retrieval but quickly spread into other areas of
machine learning too. Let TP be the true positives, i.e., the
number of positive events that were correctly classified by the
algorithm, FP the number of negative events that were actually
classified as positive, and FN the number of positive events that
were misclassified as negative. Then precision (prec), recall
(rec), and F-measure are formally defined as follows:

prec =
TP

TP + FP

rec =
TP

TP + FN
F1 (prec, rec) =H(prec, rec)

=
2prec · rec
prec + rec

(7)

Note that recall or precision can potentially be undefined.
Consider, for example, that the positive class never shows up in
the evaluation data. In this case, TP and FN assume both zero,
which results in an undefined recall value. Similarly, if the
positive class is never predicted, the precision is left undefined.
Analogously to the definition of floating point numbers, we
use the expression NaN to denote an undefined value, which

2Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-812-9

ADVCOMP 2020 : The Fourteenth International Conference on Advanced Engineering Computing and Applications in Sciences



stands for Not a Number. We also define arithmetic on NaN
in the following way by following the Bochvar extension [9].
Let a ∈ R ∪ {NaN } be arbitrarily chosen, then:

a ·NaN =NaN

a+NaN =NaN

a−NaN =NaN
a

NaN
=NaN

(8)

As one can easily perceive, if at least one of the oper-
ator arguments assumes NaN, then also the result is NaN.
Therefore, NaN is also called an absorbing element. Regarding
the algebraic structure, R ∪ {NaN } is a semi-group for both
summation and multiplication with 0 (1 respectively) as its
neutral element. (R∪{NaN },+) and (R∪{NaN }\{0}, ·) are
no groups, since there is no inverse element of NaN .

Consider the example precision=NaN, and recall=0, then
the F1-score becomes

F1(NaN , 0)

=
2NaN · 0
NaN + 0

=
NaN

NaN
= NaN

(9)

Note that sometimes, the F1-score is also defined directly
based on TP, FP, and FN as follows [10]:

F1(TP ,FP ,FN ) =
2TP

2TP + FP + FN
(10)

which leads to other behaviors regarding definedness. How-
ever, in this paper, we stick to the usual definition based on
precision and recall.

IV. THE F-MEASURE PARADOX

Recall the four propositions from Section II.

1. a = 0⇒ H(a, b) = 0

2. H(a, b) = 0⇒ a = 0

3. a 6= 0, a = H(a, b)⇒ b = H(a, b)

4. a 6= 0, b = H(a, b)⇒ a = H(a, b)

(11)

If we set a=prec(ision) and b=rec(all), those four propositions
become:

1. prec = 0⇒ F1(prec, rec) = 0

2. F1(prec, rec) = 0⇒ prec = 0

3. prec 6= 0, prec = F1(prec, rec)⇒ rec = F1(prec, rec)

4. prec 6= 0, rec = F1(prec, rec)⇒ prec = F1(prec, rec)
(12)

From Section II, one would expect that Proposition 1 and
3 are true and Proposition 2 and 4 are false. But, surprisingly,
it is just the opposite. In fact, propositions 1 and 3 are false
and propositions 2 and 4 are true.

Proof: For proposition 1, we give a counterexample.
Consider the confusion matrix in Figure 2. For this matrix,
the precision assumes 0 and the recall NaN. Therefore, the
F1-Score is given as 2·0·NaN

2+NaN = NaN 6= 0, which concludes
the proof by counterexample.

Actual
value

Prediction outcome

p n total

p′ 0 8 P′

n′ 0 10000 N′

total P N

Figure 2. Example confusion matrix as counterexample for proposition 1

Proposition 2: Consider the second proposition and let us
assume that the F1-Score is zero. Hence, either precision or
recall is zero. In case, the precision is zero, our proof is
finished. So let us, therefore, assume instead that the recall
is zero. Since the F1-score is defined (not NaN), both recall
and precision must be defined too. Furthermore, we have:

0 = rec =
TP

TP + FN
⇒ TP = 0

⇒ TP

TP + FP
= 0

(Precision is not NaN , therefore TP + FP 6= 0)

⇒ prec = 0

(13)

Proposition 3: Again, we give a counterexample, we can
use the same confusion matrix as for proposition 1. With this
we get prec = NaN = F1(prec, rec) and rec = 0.

Proposition 4:

Proof: We discern the following three cases:
Case 1: rec = F1(prec, rec) = NaN

rec =F1(prec, rec) = NaN

⇒ TP =0

⇒ FP + TP =0

(since prec 6= 0)

⇒ prec =NaN = rec = F1(prec, rec)

(14)

Case 2: rec = F1(prec, rec) = 0
Due to proposition 2, it follows that prec = 0 = F1(prec, rec).
Since the precision cannot diminish, this case actually turns out
to be impossible.
Case 3: rec = F1(prec, rec) 6= 0 and rec = F1(prec, rec) 6=
NaN .

The precision cannot assume NaN , since otherwise the F1

score would be NaN , too.

Furthermore, from the definition of the harmonic mean, it
is known that:
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actual
value

Prediction outcome

p n total

p′ 0 0 P′

n′ 8 10000 N′

total P N

Figure 3. Example confusion matrix as an counterexample for proposition 1
(case recall)

rec = F1(prec, rec) =
2prec·rec
prec+rec

Since rec 6= 0, we can divide both sides of the equation
by the recall and obtain:
1 = 2prec

prec+rec
We then multiply both sides of the equation by prec + rec:
prec + rec = 2prec
Finally, we subtract from both sides of the equation the
precision and get:
rec = prec which constitutes just the conducted claim.

Finally, let us investigate if the same paradox holds also
for F-measure and recall instead of precision. Analogously
to the precision case, we first present a counterexample (see
Figure 3).

This time, the recall is 0 and the precision NaN, which
leads to a NaN F1-Score.

Proof: Let us now prove the second proposition for F-
measure and recall. Again, since the F1-score is zero, neither
of precision and recall can be NaN. If the recall is zero, our
proof is finished. Therefore, let us instead assume the precision
is zero.

0 = Precision =
TP

TP + FP
⇒ TP = 0

⇒ TP

TP + FN
= 0

⇒ Recall = 0

(15)

The two remaining properties 3 and 4 can be proven
analogously.

V. DISCUSSION

Purely formally seen, the computation rules for NaN values
are mathematically consistent and correct and also reflect the
standard procedure for computer-based F1-Score implementa-
tions if they make use of ordinary floating-point computation
logic. It remains, however, to investigate, if these rules are also

reasonable in the given context. The answer is partly yes and
partly no. Consider first the case the recall is undefined (NaN),
which means that the positive class never shows up in the
evaluation data set. If the algorithm predicts only for a single
data item the positive class, then the precision immediately
turns to zero. In this case, an NaN F1-Score seems to be the
best choice.

However, if the precision is undefined (NaN), the matters
look a bit different. In this case, the tested machine learning
method would never predict the positive class. If the positive
class shows up quite a few times in the evaluation data, such
a method would clearly perform very poorly and an F1-score
of zero would seem adequate.

So far, we investigated only the F1-score, although in the
title we mentioned the F-measure in general. This generalized
F-measure is given by:

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

(16)

For β = 2 we get for instance the F2-score, which is defined
as:

F2 = 5 · precision · recall
(4 · precision) + recall

(17)

The F-measure for β ≥ 2 penalizes a poor recall stronger
than a bad precision, since in some situations, like cancer
detection, missing any items of the positive class can be fatal in
practice. However, the use of different weighting factors does
not influence in any way the properties derived here. Thus, our
findings also hold for the F-measure in general.

Finally, this paradox also reveals a shortcoming of most
mathematical proofs. Undefined values are not rare in practice.
They can be caused by missing values or incomputability as
investigated here. Albeit, in proofs, they are usually completely
ignored. The paradox investigated here shows that such unde-
fined values can easily flip statements completely around.

While the findings as stated here are mainly theoretical,
they can have some practical implications as well. If the dif-
ferent behaviors of harmonic mean and F-measure as described
here were ignored, then in certain anomalous situations, incor-
rect conclusions might be drawn from the data.

VI. CONCLUSION

We presented two basic statements about the harmonic
mean, where the first is true and the second false. However, for
the F1-score as the harmonic mean of precision and recall, the
truth value of both statements is completely turned around.
This paradox is caused by the fact that the possibility that
input values can be undefined is not taken into account in
the original propositions for the harmonic mean. Hence, with
this paradox, we also revealed an important shortcoming of
mathematical proofs in general.
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