
Making an Android Tablet Work as a Set-Top Box

Lorenz Klopfenstein Saverio Delpriori Emanuele Lattanzi Alessandro Bogliolo
Information Science and Technology Division of DiSBeF

University of Urbino
Urbino, Italy 61029

alessandro.bogliolo@uniurb.it

Gioele Luchetti
NeuNet

www.neunet.it
Urbino, Italy 61029

gioele.luchetti@gmail.com

Abstract—The widespread diffusion of connected devices
capable of receiving and decoding multimedia streams is in-
ducing a change in the market of set-top boxes from dedicated
proprietary appliances to software modules running on top of
off-the-shelf devices. In spite of the large number of devices
we use every day, smart phones are the favourite answer
to our communication needs because of their availability,
of their user friendliness, and of the great opportunities of
personalization offered by user-generated mobile applications.
The last generation of tablet PCs, capable of handling HD mul-
timedia streams while also retaining the distinguishing features
of mobile devices, enable the convergence between personal
communication devices and home entertainment appliances.
In this paper we discuss how to use an Android tablet PC as
a set-top box, in order to allow end-users to take advantage
of the tailored run-time environment of their personal mobile
devices while whatching television in the comfort of their living
rooms.

Keywords-Set-top box; Tablet PC; openBOXware; Android;
Streaming

I. INTRODUCTION

IP traffic trends and forecasts [1], [2] indicate that mul-
timedia contents delivered over residential and mobile IP
networks are among the main driving forces of next gener-
ation networks.

The analog switch-off and the advent of digital video
broadcasting (DVB) have enabled the technological conver-
gence of client-side equipment required to take advantage of
broadcast TV channels, IPTV services, and Internet multi-
media streams. Nowadays, all new television sets come with
embedded decoders, and most of them are Internet enabled.
In this scenario, software components running on top of off-
the-shelf connected devices are replacing proprietary set-top
boxes (STBs), while traditional IPTV models are undergoing
deep changes in order to face the pressure of over-the-top
(OTT) multimedia contents streamed across global content
delivery networks (CDNs).

At the same time, the widespread diffusion of smart
phones and Internet enabled mobile devices, together with
the growing coverage of broadband wireless networks, have
induced operators to move from triple-play offers (i.e.,
Internet access, VoIP, and IPTV) to quadruple-play offers
(which includes wireless connectivity) [3], accelerating the

convergence between mobile and residential broadband mar-
kets and creating the conditions for delivering mobile TV
services [4].

In spite of the wide diversity of connected devices which
might work as multimedia boxes (including connected TV
sets, media centers, DVB decoders, video game consoles,
and personal computers), end-users spend most of their
connected time using personal smart phones (or similar
handheld devices) which have several competitive advan-
tages: they are available everywhere and at any time, they
offer intuitive user interfaces, they provide suitable answers
to any communication need, and they provide unprecedented
opportunities of personalization thanks to the thriving market
of user-generated contents and applications [5].

If, on one hand, exploiting addins and configuration
options to create a perfectly tailored run time environment
on a smart phone is an intriguing pastime, both the actual
quality of experience offered by the device and the effort
devoted to personalize it keep end-users from using other
devices.

Although a new generation of STBs has recently sprouted
which allow end-users to create their own applications and
to easily install third-party addins [6], they are far away
from gaining the popularity of their mobile counterparts
and the gap is hard to be closed in the near future. In
fact, mobile devices are always at users’ disposal and they
will maintain their dominant role of personal communication
equipment. Moreover, STBs are typically installed in a living
room where they are mainly expected to provide a lean-back
usage experience, which is in contrast with the lean-forward
attitude typical of smart phone users, which has sustained
the market of mobile applications [7], [8].

On the other hand, personal handheld devices have never
threaten the market of media centers and STBs because of
their tight design contraints, imposed by portability require-
ments, which made them unsuitable to sustain the workload
of high definition multimedia streams. The gap between
personal mobile devices and multimedia boxes is about to be
closed, however, by the last generation of tablet PCs, which
support HD video streams and are equipped with HDMI
interfaces.

This paper investigates the possibility of making an An-

64

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

droid tablet PC work as a STB, thus allowing end-users to
take advantage of their personal runtime environment in the
comfort of their living room, possibly switching from a lean-
forward to a lean-back usage experience. The starting point
is openBOXware (http://www.openboxware.net/trac/), an
open-source framework for the development of bandwidth-
aware multimedia applications originally implemented on
top of Mono, using GStreamer for the multimedia subsystem
and Qt for the graphic user interface. The concept, the main
features, and the architecture of openBOXware are outlined
in Section II, while Section III shows how to port the key
features of openBOXware on top of Android, also discussing
the switching between the lean-forward interface typical of
an Android tablet PC and the lean-back interface of a STB.

II. OPENBOXWARE

OpenBOXware is on open-source framework which works
as a general handler of multimedia flows streamed from
heterogeneous sources to both local and remote targets.
The framework automatically creates the streaming pipelines
between media sources and media targets, possibly including
the required transcoding stages. The capability of handling
multiple simultaneous pipelines while streaming them to
remote targets makes it suitable to be installed not only at
the receiving end point, but also at the intermediate nodes
of a content delivery network.

�����

����

	
�

��������	
�

��
���

�
�
 �����
�����

��

��
��

�
�
��

��

��

����
���

���

	�����������

���

�� ���������

�������� ��� �����

Figure 1. The software architecture of openBOXware.

In particular, openBOXware provides support for incom-
ing and outgoing multicast streams, thus enabling the im-
plementation of bandwidth-aware content distribution mech-
anisms within managed IP networks [9], [10].

OpenBOXware has a layered architecture, as shown in
figure 1, which grants portability by abstracting the under-

lying HW platform and software components. The first level,
which is the kernel, includes the implementation of all actual
components and makes them interact with each other. It also
handles bootstrapping and loading.

The second level, which is composed of the application
programming interfaces (API), provides the abstraction to
the functionalities exposed by the kernel. This interface level
also provides means for external components, built by third-
party developers and deployed as add-ins, to create custom
applications that run on top of openBOXware and to describe
media sources and media targets in an abstract fashion.

Those add-in components represent the highest architec-
tural level, which includes all other software directly relying
on the API. In particular, a special component, called skin,
acts as application manager and determines the main user
interface of the platform. All other applications, including
media sources and targets, can expose new functionalities
to the system. By changing the skin it is possible to change
the usage experience while maintaining compatibility with
the applications. Media sources and media targets, imple-
mented as high-level add-ins, expose external resources to
the system and, thus, to any other component willing to use
them.

A media source represents an abstract browsable tree of
media elements, each one described in such a way to enable
a media target to open it and start playing it back. Given the
abstract descriptions of the source media element and of the
media target of choice, the framework handles multimedia
loading, streaming, transcoding (if needed) and delivery
to the target. For instance, a media source could describe
an online video service, whose videos can be streamed to
a specific media target (for instance, a remote TV set).
This is done either by using a general application, called
media library, which allows the end-user to browse media
sources and easily bind them to a media target, or by using
specific applications which create ad-hoc pipelines between
predefined sources and targets, exhibiting a brand-specific
user interface.

Other possible add-ins include client-side web applica-
tions, ranging from social network clients and feed readers
to fully fledged web browsers, and server-side applications,
such as UPnP services for home entertainment/automation
or any kind of web services. Moreover, any application can
expose a remote interface, possibly built by taking advantage
of the embedded web server. Each application can run in one
or more execution modes, including fullscreen (which takes
over the whole screen area, covering up other applications),
sidebar (which share the foreground with the top-level
fullscreen application), and background (for services that
do not need any graphic user interaction). The execution
modes implemented by a given application are declared in its
manifest, which is an XML file providing to the framework
the information required to present it to the end-user and to
load its components when required.

65

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

OpenBOXware is currently implemented on top of Mono,
an open source implementation of the Microsoft .NET
framework, providing the required abstraction from the
underlying hardware and software components. The mul-
timedia subsystem relies on GStreamer, while the graphic
user interface is based on Qyoto, a binding library of the Qt
framework for .NET. Video output is enabled through the
XV overlay mechanism of X server.

The current 1.2 software release is freely available from
the official website of the openBOXware project, includ-
ing its source code (http://www.openboxware.net/trac/). This
first release has been developed and tested on x86 PCs
running the GNU/Linux operating system, while work on
a port to an ARM based embedded platform (namely the
IGEPv2 board equipped with a TI OMAP processor) is cur-
rently under way, specifically targeting the MeeGo operating
system [11], whose core distribution includes all required
components and exists in both x86 and ARM flavors.

III. PORTING OPENBOXWARE ON ANDROID

The Android architecture is built on top of Linux kernel
and consists of three main layers: the Android runtime, based
on the Dalvik virtual machine (VM) with additional support
libraries, the application framework, and the applications
which run on it [12]. An Android application can be made
of several components. For our purposes, the most important
types of components are activities, which represent screens
with specific user interfaces, and services, which run in
background. Each application runs in a separate VM in-
stance for security and protection. Communication among
applications is guaranteed by an asynchronous message
passing mechanism which allows a component to issue an
intent message which is handled by another component
possibly belonging to a different application. Each intent
contains action and data specifications which are used by the
application framework to dispatch the intent and trigger one
of the components registered for performing the requested
action on the specific type of data. The main graphic user
interface is provided by a launcher, which is a special
activity registered to react to a particular intent issued by
the operating system at start up. The launcher allows the
end-user to browse and launch activities which publish the
MAIN intent filter. In addition, the launcher can also act as
a widget host to allow end-users to customize the main page
by embedding their preferred miniature applications.

The porting of openBOXware on top of Android, schemat-
ically represented in Figure 2, can take advantage of the
features of the Android application framework in order to
avoid re-implementing the bootstrapping and component
handling functionalities of the kernel. The task of handling,
installing, and loading component packages can be easily
left to the default package manager provided by Android,
ensuring that all required openBOXware components are
correctly mapped to standard Android activities and services.

��������	
�

���������	

�����

�	�����

������������

����	���� �	������������

�����	�������	������

�����	����

����	
����

�����

�������

����	�	����

�����

Figure 2. The openBOXware ecosystem running on top of Android.

In order to provide the usage experience typical of a STB
system, openBOXware on Android sports a custom launcher
conceived to offer an easy to use lean-back experience and
to discriminate between normal Android applications and
special openBOXware applications (identified by the intents
they are registered to handle, as detailed below). It is worth
noticing that multiple launchers can be installed on the same
device, but only one at the time can be running. Hence, a
home switching mechanism is required to allow the user to
switch from a lean-forward to a lean-back use of his/her own
Android device. There are three main ways to achieve this
switching functionality: by changing the default launcher
in the Android settings, by avoiding to specify a default
launcher (in this case the choice is made by the end-user
on a dialog box which appears whenever he/she presses the
home button on the device), or by means of a specific home-
switching application. Once the openBOXware launcher is
selected, it becomes the main graphical user interface of the
system, which shows a status bar, allows the user to launch
applications, and displays the installed media sources and
targets. In practice, the launcher essentially takes over the
role of the skin in openBOXware, providing three different
home screens: i) the media library, ii) the openBOXware
application grid, and iii) the Android application grid. By
default, the launcher presents the media library home screen
with the previews of the available media sources that can
be easily selected and played back on the default media
target (which is the built in media player) as conventional
TV channels. Advanced functionalities provided by add-ins
can always be accessed from the other home screens.

Applications which provide a graphical interface are to
be implemented as activities. By default, activities that
desire to be listed and started by the launcher must handle
the android.intent.action.MAIN intent, which tells
them to start up and present their user interface. This mech-

66

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

anism is extended in openBOXware by adding one custom
intent, openboxware.app.FULLSCREEN, which allows
the launcher to recognize openBOXware applications, pro-
viding a dedicated STB-like viewing experience, and to list
them into the specific home screen.

On openBOXware, applications could be run both in
fullscreen and sidebar mode. On the Android port however,
only the fullscreen mode has been retained. The decision
to drop the sidebar mode for applications is due to some
limitations of the Android window manager, which does not
correctly support interactions with windows other than the
one in foreground. Displaying a sidebar application is techni-
cally feasible, but it could provide an inconsistent interaction
with the background fullscreen application, if any. Thus,
instead of allowing applications to run in sidebar, a separated
system sidebar has been implemented, which is displayed in
overlay and acts as a widget host, containing any number
of widget applications according to users’ choices. This
solution allows openBOXware to take advantage of the
existing widgets in a manner which fits into the Android
architecture.

Component mapping

The main components of the openBOXware API are
mapped on Android as follows.

Notifications: openBOXware offers a simple API to
enqueue text notifications and display them on the system
status bar, allowing the user to react to the corresponding
events. This API may be used by applications running in
background to ask for user interaction. The notification hub
is directly implemented on top of the Android notification
manager and provides an additional user interface which
makes it compatible with the STB-like experience.

Persistence: The original framework includes a sim-
ple associative key/value map that is persisted to disk, in
isolated storage for each installed application. On Android,
applications can make use of the system SQLite database
storage to this purpose.

Networking: Web server functionalities and UPnP
browsing and service consumption rely on external libraries
which are readily available for Java on the Android operating
system.

Multimedia playback: OpenBOXware 1.0 exposes an
API that wraps the GStreamer multimedia framework. Sim-
ilarly, a thin wrapper around the built-in Android media
player can be provided to developers as a public API.
However, playback capabilities of the system multimedia
backend are heavily constrained due to the nature of the
platform. Hence, many functionalities which are easy to
provide using GStreamer must be emulated, reimplemented,
or dropped altogether (e.g. UDP/RTP output streaming) on
top of Android.

Media sources: Add-ins that export a media source to
the system are implemented as Android services, which react

to the openboxware.mediasource.ACCESS_MEDIA
intents. This intent allows other applications to bind to the
service and start a bidirectional RPC communication session,
which allows the application to browse the media tree and
the service to return structured data bundles representing
media elements. These data bundles encapsulate all data
required to play back the media resource and they can be
consumed directly by the media player API.

Media targets: Since additional media targets cannot
rely on GStreamer, their whole streaming backend must be
implemented from the ground up. Thus, media targets are
implemented as full-fledged media player instances that can
be used instead of the default one provided by the system.

Dæmons: Applications that do not provide a graphical
interface are naturally implemented as Android services.

IV. CONCLUSIONS

In summary, openBOXware can be ported on Android
as an ecosystem which encloses a multimedia subsystem, a
custom launcher, a set of specific intents and a development
framework for applications that want to be recognized as
openBOXware add-ins.

As a last remark, the default multitouch input device of
Android has to be complemented by a remote control in
order to provide full support to a lean-back living room
experience. The bluetooth interface makes it possible to use
off-the-shelf input devices to this purpose. More advanced
control functionalities can be achieved by using an Android
smart phone as remote.

The proposed architecture is currently under development
on Android 2.2 running on two different devices: a Samsung
Galaxy Tab with dock station, representative of state-of-the-
art tablet devices, and an IGEPv2 board, representative of
open-source embedded hardware platform. In both cases,
a Logitech diNovo Mini is used as bluetooth remote and
keyboard.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the EU IST Seventh Framework Programme
([FP7/2007-2013]) under grant agreement n 25741, project
ULOOP (User-centric Wireless Local Loop), and from the
Italian ICT4University Programme, project U4U (University
for University).

REFERENCES

[1] Akamai, “Q3 2010 - The State of the Internet,” Akamai report,
2011.

[2] Cisco, “Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2010-2015,” Cisco White Paper, 2011.

[3] K. Mikkonen, “Exploring the creation of systemic value for
the customer in advanced multi-play,” Telecommunications
Policy, vol. 35, no. 2, pp. 185 – 201, 2011.

67

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

[4] L. Zhou, A. V. Vasilakos, L. T. Yang, and N. Xiong,
“Multimedia Communications over Next Generation Wireless
Networks,” EURASIP Journal on Wireless Communications
and Networking, 2010.

[5] A. Holzer and J. Ondrus, “Mobile Application Market: A
Mobile Network Operators’ Perspective,” in Exploring the
Grand Challenges for Next Generation E-Business, ser. Lec-
ture Notes in Business Information Processing, W. Aalst et al.,
Eds. Springer Berlin Heidelberg, 2011, vol. 52, pp. 186–191.

[6] C. Maturana, A. Fernndez-Garca, and L. Iribarne, “An im-
plementation of a trading service for building open and inter-
operable dt component applications,” in Trends in Practical
Applications of Agents and Multiagent Systems, ser. Advances
in Intelligent and Soft Computing, J. Corchado et al., Eds.,
2011, vol. 90, pp. 127–135.

[7] D. Gavalas and D. Economou, “Development platforms for
mobile applications: Status and trends,” IEEE Software,
vol. 28, no. 1, pp. 77–86, 2011.

[8] E. Tsekleves, R. Whitham, K. Kondo, and A. Hill, “Inves-
tigating media use and the television user experience in the
home,” Entertainment Computing, 2011.

[9] L. Klopfenstein, A. Seraghiti, S. Bonino, A. Tarasconi, and
A. Bogliolo, “Multicast TV Channels over Wireless Neutral
Access Networks,” in Proceedings of Int. Conf. on Evolving
Internet, 2010, pp. 153–158.

[10] L. Klopfenstein, S. Delpriori, A. Seraghiti, and A. Bogliolo,
“Protected Delivery of Multimedia Contents over Multicast IP
Networks: an Open-Source Approach,” in Proceedings of the
International Symposium on a World of Wireless, Mobile and
Multimedia Networks, ser. WoWMoM-2011. IEEE, 2011.

[11] A. Schroeder, “Introduction to MeeGo,” IEEE Pervasive
Computing, vol. 9, no. 4, pp. 4–7, 2011.

[12] M. Butler, “Android: Changing the Mobile Landscape,” IEEE
Pervasive Computing, vol. 10, no. 1, pp. 4–7, 2011.

68

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

