
Multi-view Rendering Approach for Cloud-based
Gaming Services

Sung-Soo Kim, Kyoung-Ill Kim and Jongho Won
Electronics and Telecommunications Research Institute (ETRI)

Daejeon, South Korea
{sungsoo, kki, jhwon}@etri.re.kr

Abstract—In order to render hundreds or thousands of views
for multi-user games on a cloud-based gaming at interactive rates,
we need a solution which is both scalable and efficient. We present
a new cloud-based gaming service system which supports multiple
viewpoint rendering for visualizing a 3D game scene dataset at the
same time for the multi-user games. Our multi-view rendering
algorithm maps well to the current graphics processing units
(GPUs) and we have evaluated its performance on two different
GPUs with different rendering resolution. The experimental
results demonstrate the multi-view rendering method can be
successfully applied to the multi-user games.

Keywords-gaming on demand, multi-view rendering, video
encoding, video streaming, cloud computing

I. INTRODUCTION

Cloud computing is a general term for complete services
delivered over the networks using self-service end user por-
tals and flexible business model that incorporates hardware,
software, and services into a single revenue stream. This com-
puting model allows a performance focus at a single location,
the cloud server, and enables user mobility and pervasive
access for the users. One of the latest advancements in gaming
technology that enables such a ubiquitous gaming are cloud-
based gaming service systems, also called Gaming on Demand
(GoD) [1]. They are networked media platforms that offer
web-based services allowing game play on smaller end-devices
like low-cost PCs or set top boxes without requiring the games
to be installed locally.

The ultimate goal of the cloud-based gaming services is
to provide pervasive game access on devices such as set top
boxes and mobile devices that typically do not have a full
set of technical requirements to run high-quality video games.
This goal can be achieved by processing the game execution
logic such as rendering, audio, artificial intelligence (AI) and
physics, on at remote high-end servers being streamed as an
interactive video over a network to be played on lightweight
clients. Recent work in this area has been focused on video
encoding and streaming techniques to reduce the latency in
games. Most of the earlier systems were serial in nature
and designed for a single core or processor in terms of 3D
rendering.

The recent trend in computer architecture has been toward
developing parallel commodity processors, including multi-
core CPUs and many-core GPUs. It is expected that the
number of cores would increase at the rate corresponding

to Moore’s Law. Based on these trends, many parallel game
engines [2] and parallel rendering algorithms [3][4] have been
proposed for commodity parallel processors.

In this paper, we propose a new cloud-based gaming service
system to support the multi-view rendering based on multi-
threaded game engine [2] for the multi-user games. To provide
convincing streaming-based GoD services, we describe the key
requirements of cloud-based service systems as follows:

• User responsiveness: Latency is defined as the time
between a player’s action and the time the actual resulting
game output on the player’s screen. Since computer
games are highly interactive, extremely low latency has
to be achieved. The interaction delay in the games should
be kept below 80ms in order to guarantee suitable user
responsiveness [5].

• High-quality video: In order to provide a high-quality
video (above 720p) interactively, data shall be reduced
as much as possible but keeping quality. However, video
encoding is computationally quite demanding.

• Quality of services: In the case of network congestion,
the network problems like increased latency, jitter, and
packet losses distribute evenly on all competing traffic.
However, the quality can be enhanced using quality of
service (QoS) technologies to giver higher priority to
game traffic in the network bottlenecks [6].

• Operating costs: Since the servers of cloud-based gaming
service system have high-performance CPUs and GPUs,
the operating costs for the servers are quite expensive. So,
it is necessary to develop the optimization technologies
to minimize power consumption and network bandwidth
[7].

Our contributions: We present a novel system architecture
for the cloud-based gaming services, which utilizes parallel
commodity processors, multi-core CPUs. We also present a
novel multi-view rendering algorithm to efficiently support
multi-user game on the server, which has a single GPU with
multi-core CPUs. Our algorithm can easily handle insertion
and removal of viewpoints and can also take advantage of
scalable and parallel processing using multi-core CPUs. In
addition, our approach give the benefits in terms of arbitrary
focal positions for viewpoints and better rendering quality over
prior parallel multi-view rendering methods [8].

The rest of the paper is organized as follows. We briefly

102

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

survey previous work on Gaming on Demand (GoD), parallel
rendering and video encoding for the cloud-based gaming
services in Section II. Section III describes the proposed the
system architecture and the core systems in our system. We
explain implementation details of our multi-view rendering
algorithm and describe the performance result in Section IV.
In Section V, we compare our system and algorithm with prior
GPU-based algorithms and highlight some of the benefits.
Finally, we discuss future work and conclude in Section VI.

II. RELATED WORK

In this section, we give a brief overview of related work
on cloud-based gaming technology and parallel rendering
algorithms. We also highlight many technical characteristics
of cloud-based gaming services, parallel rendering and video
encoding.

Gaming on Demand (GoD): There are a number of commer-
cial Gaming on Demand systems that have been presented to
the market [6]. OnLive is a gaming-on-demand entertainment
platform, announced at the Game Developers Conference
(GDC) in 2009 [7]. Gaikai launched GoD beta service; Gaikai
beta, based on a cloud-based gaming technology that allows
users to play major PC and console games [9]. The clients
of their service can display audio/video (AV) game streams,
which were streamed from the cloud, by using previously
installed plug-ins such as Java or Adobe Flash on client
devices. Even though both are cloud base gaming, OnLive and
Gaikai have different goals in mind. OnLive sells full games,
provides demos, brag clips, and being able to watch other
players play games (Arena) while Gaikai advertises games via
a webpage as demos [7].

Visual effects rendering based on global illumination that
commonly requires extensive hardware and processing time.
However, the OTOY can provide visual effects rendering
in real-time using the cloud; Fusion Render Cloud (FRC),
through the power of server side rendering [10]. However,
there is very little detailed technical information publicly
available about these commercial systems.

The Games@Large (G@L) framework enables commercial
video game streaming from a local server to remote end
devices in local area networks (LANs) [11]. This system and
streaming protocols are developed and adapted for highly
interactive video games [1] [12].

There are two major approaches for the game streaming.
One is 3D graphics streaming approach which exploited
for streaming the game’s output is to directly transmit the
graphics commands to the client device and render the
image on the client device [3]. The other approach is video
streaming that the server renders the game graphics scene, the
framebuffer is captured, eventually downsampled to match
the target resolution, and the current image is encoded using
standard video codes such as MPEG-2, MPEG-4 and H.264
[13][14]. The video streaming is intended for thin-client
devices lacking hardware accelerated rendering capabilities
[15]. In our research, we exploit a video streaming method

since our system should support the thin-client devices.

Parallel rendering: Much of the recent work in the area of
parallel rendering has focused on using networked clusters
of commodity PCs. Such systems can generally drive a tiled
display using a commodity local network as well. There are
three major approaches according to a sorting classification of
parallel rendering such as sort-first, sort-middle and sort-last
rendering [16].

Also, there have been various research efforts to multi-
view rendering and scalable rendering [4]. However, those
methods cannot be directly employed for multi-view rendering
for multi-user games since those methods usually focus on
multipipe display systems, workstations with multiple moni-
tors, walls build out of multiple screens or projectors as well
as immersive environments.

A parallel multi-view rendering architecture in a cluster of
GPUs has been proposed in [8]. This system have shown a
theoretical analysis of speedup and scalability of the proposed
multi-view rendering. However, the critical limitation of this
method is that all the cameras are always looking to the
center of arbitrary tile. This is not suitable for common mutli-
user game applications. Moreover, it is difficult to apply this
method to a high visual quality (photo-realistic) games since
they used a simple phong shader for lighting and shading.

In this paper, we exploit a parallel game engine for
improving the multi-view rendering performance as well as
the visual realism in the games as shown in Fig. 1.

Video encoding: Many techniques have been proposed to
accelerate the performance of video encoding algorithms. In
H.264/AVC encoders, macroblock partitioning and motion
vector calculation are computationally very demanding. An
acceleration based on render context information has been
developed, which allows the direct calculation of motion
vectors, similar to [13]. The parallel model of the encoder
using multiprocessor platforms has been introduced in order
to improve the encoding performance in [17].

OnLive introduced interactive video compression method
designed for video games. In order to achieve high perfor-
mance encoding, they developed two dedicated compression
hardware for video encoding; optimized compressor based on
human perception and live compressor similar to conventional
compressor [7].

Current GPUs are regards as high-throughput processors,
which have a theoretical peak performance of a few Tera-
Flops. In order to accelerate the performance of the motion es-
timation, fast motion estimation implementation using CUDA
on GPU has been proposed in [18]. Recently, OTOY intro-
duced new video encoding method, so-called ORBX. ORBX
has been designed from the ground up to take advantage of
OpenCL based GPU servers (FRC). ORBX encodes video
entirely on the GPU, with more than 30-100x the scaling of
H.264 encoding solutions requiring either a CPU or specialized
encoding ASIC [10]. Unfortunately, the technical information
of the ORBX encoding method is not publicly available.

103

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

Fig. 1. The result of our multi-view rendering algorithm (eight views with 640x480 resolution for each view.)

III. SYSTEM ARCHITECTURE

In this section, we describe the proposed system architec-
ture for the cloud-based gaming services. Our architecture
consists of three major systems such as distributed service
platform (DSP), distributed rendering system (DRS) and en-
coding/QoS/streaming system (EQS) as shown in Fig. 2.

A. System Overview

The Distributed Service Platform (DSP) is responsible for
launching the game processes on the game execution nodes
or rendering job on the Distributed Rendering System (DRS)
after client-side invocation, monitoring its performance, allo-
cating computing resources and managing user information.
And, the DSP is responsible for processing user’s game input
via UDP from the client-side devices. In client-side, the user’s
game input is captured and transmitted via UDP by the
user input capturing and transmission software on the client
devices. Also, the DSP performs execution management of
multiple games. In order to perform streaming the game A/V
streams to the clients, the DSP requests capturing rendered
frame buffer for video encoding and streaming to the Encod-
ing/QoS/Streaming System (EQS).

Client input processing

Game execution

DRS / EQS management

Game node monitoring

DSP

3D scene rendering

Multi!view rendering

DRS

H.264 encoding

QoS / Streaming

EQS

Fig. 2. Our system architecture: DSP-Distributed Service Platform, DRS-
Distributed Rendering System, EQS-Encoding, QoS and Streaming System

The DRS is responsible for rendering a 3D scene and multi-
view rendering for multi-user games. To improve 3D rendering

performance in games, we utilize the multi-threaded game
engine [2] that is designed to scale to as many processors
as are available within a platform.

The EQS is responsible for audio/video encoding and
streaming the interactive game content to the clients. In order
to implement the visual capturing for the games, we utilize
the DirectShow SDK. And we utilize the H.264 video coding
standard for low-delay video encoding of the captured game
content. Before the EQS performs the H.264 encoding, we
perform a color space conversion from RGB to YUV on the
captured frames. Finally, we exploit the Real Time Protocol
(RTP) packetization to transmit the encoded video stream in
real-time [19][20].

Distributed Rendering System (DRS) Block

Rendering Scheduler

Multi!view

Manager

3D Renderer Library (OGRE)

Distributed Service Platform (DSP) Encoding/QoS/Streaming System (EQS)

System Interfaces

Rendering Task Manager

(Decomposition/Parallelization)

Fig. 3. The DRS block architecture

B. Distributed Rendering System

The Distributed Rendering System (DRS) consists of four
major block components such as rendering scheduler, multi-
view manager, rendering task manager and renderer library
as shown in Fig. 3. The rendering scheduler is responsible
for rendering process monitoring, performance timer control,
rendering statistics management and communicating other
modules for external rendering requests in the DRS blocks.
The key performance improvements for the game applications
is the use of per-thread task queues. This eliminates the syn-
chronization checkpoint when one shared task queue is used.

104

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

Advanced task schedulers may use heuristics to determine
which thread to steal from and which task to steal and this may
help cache performance. In order to implement the rendering
scheduler, we use the Intel Threading Building Blocks (TBB)
[21], which is highly optimized scheduler for Windows, Mac
OS X, and Linux. The multi-view manager is responsible
for performing the management of user’s viewpoints (such
as insertion, deletion, update and search operations) for the
shared spaces in the multi-user games. The rendering task
manager module performs the rendering task decomposition
and parallelization in order to improve the rendering perfor-
mance. In our work, we use the Object-oriented Graphics
Rendering Engine (OGRE) [22], which performs a 3D scene
graph management and rendering. In order to provide the
cloud-based gaming service, the DRS should have common
system interfaces to the DSP and the EQS.

C. Multi-view Rendering

In the case of multi-user games, multiple viewpoints are
needed if we want to support several users visualizing a given
3D scene at the same time. However, rendering multiple views
using the standard graphics pipeline is a challenging problem.

In order to provide the interactive multi-view rendering re-
sults for the cloud-based gaming service, we utilized the shared
resources for the rendering such as scene graph, textures and
shaders in a GPU as much as possible and keeping the quality
of the rendering results.

If Ri denotes a i-th rendered image in framebuffer of the
DRS, then Sk, which has i image sequences is defined as:

Sk = {R1, R2, ..., Ri}

The CPi denotes the i-th viewpoint parameters, which con-
tains internal parameters such as focal length fl(fx, fy), center
c(cx, cy), aspect ratio a and external parameters such as
position p(cx, cy, cz) and orientation r(rx, ry, rz). The DSP
generates this CPi according to the requests of the clients.

Algorithm 1 Viewpoint addition algorithm.
1: procedure ADDVIEW(Ui, CPi)
2: RenderWindow W ;
3: Camera Ci;
4: Viewport Vi;
5: RenderedFrameBuffer Ri;
6: Ci ← createCamera(Ui, CPi);
7: Vi ← addViewport(Ci);
8: Ri ← renderOneFrame(W,Vi, Ci);
9: return Ri

10: end procedure

The DRS provides the function for adding the multiple
viewpoints to support the multi-view rendering. First, the DSP
receive the service requests from the clients. These requests
include several user information, Ui, such as user identifica-
tion, selected game, which they want to play and initial or
previous viewpoints in the 3D game space. Then, the DSP

sends these information to the DRS to request for multi-view
rendering. According to this request, the DRS provides the
function for adding viewpoints, CPi. To perform this function
on the DRS, we create the cameara Ci and viewport Vi objects
to attach the viewport to the render window Wi. After the
viewport was successfully added to the render window, the
DRS performs the rendering procedure to generate an image
on the framebuffer in a GPU. The pipeline of our algorithm
for multi-view rendering is shown in Algorithm 1. Another
function for multi-view rendering is deletion function for
viewpoints in the multi-user games. This function can be easily
implemented similar to the viewpoint addition algorithm.

If EAi and EVi denote a i-th encoded audio and video in
interactive game content respectively, then ESk, which has i
encoded audio/visual gaming sequences is defined as:

ESk = {(EA1, EV1), (EA2, EV2), ..., (EAi, EVi)}

Therefore, the EQS performs the streaming ESk to the clients
for the cloud-based gaming services. In order to address
the game’s audio/visual output capturing, we develop the
capturing module on the EQS in C++ and DirectShow SDK.
We also develop the H.264 encoder for achieving low-delay
video coding. Before the EQS performs the H.264 encoding, a

Algorithm 2 Video encoding and streaming algorithm.
1: procedure ENCODINGANDSTREAMING(Ui)
2: YUVImage Yi;
3: FrameCapture Fi;
4: FrameNumber f ;
5: EncodedAudio EAi;
6: EncodedVideo EVi;
7: Fi ← captureRenderedFrameBuffer(Ui, f);
8: while Fi ̸= NULL do
9: Yi ← convertRGB2YUV(Fi);

10: EVi ← encodeFrame(Yi);
11: EAi ← captureAndencodeAudio(Ui, f);
12: ESi ← transmitAVstream(EAi, EVi, f);
13: Fi ← captureRenderedFrameBuffer(Ui,f);
14: end while
15: end procedure

color space conversion from RGB to YUV (convertRGB2YUV
function in Algorithm 2) takes place on the captured frames
Fi. We utilized the 4:2:0 method for the YUV sampling to
achieve the reduction of storage data. We also capture and
encode the audio data for the games to transmit the interactive
game content to the clients. In our work, HE-AACv2 is utilized
for audio streaming. And then, the EQS transmits the encoded
AV content for the game to the client via RTP/RTCP [20].
The details of our video encoding and streaming algorithm
for interactive gaming content is shown in Algorithm 2.

On the other hand, the client side devices for our system
support the H.264 decoding functionality. Also, the client is
responsible for capturing the commands of the input controller
such as keyboard and mouse, and sending them to the DSP
via UDP.

105

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

IV. IMPLEMENTATION AND PERFORMANCE

In this section, we describe the implementation of our
system and highlight the performance of our multi-view
algorithm.

Implementation: We have implemented our multi-view al-
gorithm on two different commodity GPUs: a NVIDIA GTX
480, a NVIDIA Quadro 4000. In order to test the performance

Game Node

DRS/EQS

DSP Manager

Game Node

Clients

100 base T switch

Fig. 4. Performance test setup: This figure shows the system configuration;
five workstations for servers, eight laptops as thin-clients, for the performance
testing.

of our system, we used five workstations (Intel Core i7, 8G
RAM) which were connected to a 100 Mbps switch via a wired
Ethernet connection. Also, the eight laptops as thin-clients
(Intel 2GHz, 1G RAM) were connected to the 100Mbit LAN.
These laptops are capable of H.264 decoding and displaying
the game videostream as shown in Fig. 4.

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71 81 91 101 111 121 131

Frame time (sec)

F
P
S

 (
fr
a
m
e
s
p
e
r
se
co
n
d
)

Fig. 5. Performance of multi-view rendering: This figure shows the frames per
second (fps); 25.4 on average, for multi-view rendering (640x480 resolution
for each view) on a NVIDIA Quadro 4000.

Performance: First we evaluate the performance of multi-
view rendering on a PC running Windows 7 operating system
with Intel Core i7 2.93GHz CPU, 8GB memory and a NVIDIA
Quadro 4000. We used OGRE library based on DirectX as a
graphics API and Microsoft HLSL for a shading language.

The frames for second (FPS) is the number of frames per
second that have been rendered by the DRS. High FPS results

with smooth movements in the 3D scene. Our system rendered
8 views at 25.4 fps on average with one GPU. We measured
the FPS every second at the DRS for rendering at 640x480
resolution for each view. Fig. 5 shows the performance result
of multi-view rendering.

We utilized the parallel game engine; Intel Smoke [2], and
we adopted our multi-view rendering algorithm. Then we ran
it on a 8 core system with a NVIDIA GTX 480 to measure
the scalability of our rendering system as shown in Fig. 6.

0

10

20

30

40

50

60

70

80

90

100

1 16 31 46 61 76 91 106 121 136

1 core

4 cores

8 cores

Frame time (sec)

F
P
S

 (
fr
a
m
e
s
p
e
r
se
co
n
d
)

Fig. 6. Scaling performance of the DRS according to the number of
CPU cores: This figure shows the scalability of our parallel (multi-threaded)
rendering (1600x1200 resolution) on a Intel i7 8-core (quad-core with
hyperthreading) with a NVIDIA GTX 480. Average FPS - 1 core: 16.9, 4
cores: 52.6, 8 cores: 69.7

In terms of the performance of our encoding system, our
system can encode in 25.6ms on average for eight views (inter-
active gaming videos) with 640x480 resolution in parallel and
24.9ms for a 1600x1200 video. Table I shows the supported
technical features of AV encoding in the proposed system.

TABLE I
THE SUPPORTED FEATURES OF AUDIO/VIDEO ENCODING IN OUR SYSTEM.

Supported features Audio Video
Codec HE-AACv2 MPEG-4, H.264
Resolution - 320x240 - 1600x1200
Bitrate 16Kbps - 64Kbps 384Kbps - 5Mbps
Frame Rate - 5 - 30fps
Sampling Rate 22.05KHz - 48KHz -
Channel Mono, Stereo -

V. ANALYSIS

In this section, we evaluate the performance of our system
in terms of rendering and encoding functionalities and
highlight some of the benefits.

Analysis: Our rendering system provides good performance
scaling of multi-core CPUs for multi-view rendering. And
the multi-view rendering algorithm maps well to the current
GPUs and we have evaluated its performance on two different
GPUs with different rendering resolution. Furthermore, it is
relatively simple to combine the video encoding methods
and optimizations in the streaming-based gaming service
framework. This makes it possible to develop a more flexible

106

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

GPU-based framework for the video encoding methods like
H.264/AVC or ORBX which is GPU-based encoding schemes.

Limitations: Our approach has some limitations. First, we
support the multi-view rendering for one multi-user game,
since it is difficult to share the rendering resources in a GPU
among different games. We believe that this can be resolved
by using multi-GPUs. Secondly, our system performs directly
rendering to the framebuffers on the server-side machines.
However, in terms of efficient services in the cloud-based
gaming, we should exploit the off-screen rendering approaches
and GPU virtualization techniques.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a system architecture for
the cloud-based gaming service and multi-view rendering.
Our rendering system greatly improves utilization of hardware
resources present in the system, allowing to utilize both multi-
core CPUs and a GPU simultaneously.

We found that the proposed system provide the multi-view
rendering for different focal positions for each viewpoint with
high visual quality. Moreover, our approach is flexible and
maps well to current GPUs in terms of shared resources
such as textures and shaders for rendering. In addition, we
demonstrate that the proposed rendering system could prove
to be scalable in terms of parallel rendering. So, we believe
that our rendering system will provide high-quality with good
performance for the cloud-based gaming services.

There are many avenues for future work. It is possible to use
new capabilities and optimizations to improve the performance
of the video encoding especially H.264/AVC through the GPU-
based implementation. Furthermore, we would like to develop
algorithms for integrating the multi-view rendering with the
video encoding in a GPU.

ACKNOWLEDGMENTS

The game technology demo (Intel’s smoke demo) in Fig. 1
is courtesy of the Intel Corporation. The authors appreciate
valuable comments for the development of the multi-view
rendering algorithm from Dr. Choong-Gyu Lim. This work
was supported in part by the SW computing R&D program of
MKE/KEIT [10035184], Game Service Technology Based on
Realtime Streaming.

REFERENCES

[1] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David, J. P.
Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari, P. Perälä,
A. De Gloria, and C. Bouras, “Platform for distributed 3d gaming,”
Int. J. Comput. Games Technol., vol. 2009, pp. 1:1–1:15, January 2009.
[Online]. Available: http://dx.doi.org/10.1155/2009/231863

[2] J. Andrews. (2009, June) Designing the framework of a
parallel game engine. [Online]. Available: http://software.intel.com/en-
us/articles/designing-the-framework-of-a-parallel-game-engine/

[3] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D.
Kirchner, and J. T. Klosowski, “Chromium: a stream-processing
framework for interactive rendering on clusters,” ACM Trans.
Graph., vol. 21, pp. 693–702, July 2002. [Online]. Available:
http://doi.acm.org/10.1145/566654.566639

[4] S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A scalable
parallel rendering framework,” IEEE Transactions on Visualization
and Computer Graphics, vol. 15, pp. 436–452, May 2009. [Online].
Available: http://portal.acm.org/citation.cfm?id=1515609.1515684

[5] M. Claypool and K. Claypool, “Latency and player actions in online
games,” Commun. ACM, vol. 49, pp. 40–45, November 2006. [Online].
Available: http://doi.acm.org/10.1145/1167838.1167860

[6] A. Jurgelionis, F. Bellotti, A. D. Gloria, J.-P. Laulajainen, P. Fechteler,
P. Eisert, and H. David, “Testing cross-platform streaming of video
games over wired and wireless lans,” in Proceedings of the 2010 IEEE
24th International Conference on Advanced Information Networking
and Applications Workshops, ser. WAINA ’10. Washington, DC, USA:
IEEE Computer Society, 2010, pp. 1053–1058. [Online]. Available:
http://dx.doi.org/10.1109/WAINA.2010.186

[7] S. Perlman. (2009, Dec.) The process of inven-
tion: Onlive video game service. [Online]. Available:
http://www.youtube.com/watch?v=2FtJzct8UK0

[8] W. Lages, C. Cordeiro, and D. Guedes, “A parallel multi-view rendering
architecture,” in Proceedings of the 2008 XXI Brazilian Symposium
on Computer Graphics and Image Processing. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 270–277. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1440461.1440894

[9] D. Perry. (2010, Nov.) What is gaikai? [Online]. Available:
http://http://www.gaikai.com/

[10] J. Urbach. (2009, Dec.) Otoy technology. [Online]. Available:
http://www.otoy.com/

[11] F. B. A. J. Y. Tzruya, A. Shani, “Games@large - a new platform for
ubiquitous gaming and multimedia,” in Proceedings of the Broadband
Europe Conference, ser. BBEurope ’06, 2006, pp. 11–14.

[12] A. S. Y. T. A. L. P. E. Itay Nave, Haggai David and P. Fechteler,
“Games@large graphics streaming architecture,” in Proceedings of the
12th Annual IEEE International Symposium on Consumer Electronics,
ser. ISCE ’08, 2008, pp. 1–4.

[13] L. Cheng, A. Bhushan, R. Pajarola, and M. E. Zarki, “Realtime 3d
graphics streaming using mpeg-4,” in In Proc. IEEE/ACM Wksp. on
Broadband Wireless Services and Appl, ser. IEEE/ACM BroadWise 04,
2004, pp. 1–16.

[14] T. Karachristos, D. Apostolatos, and D. Metafas, “A real-time streaming
games-on-demand system,” in Proceedings of the 3rd international
conference on Digital Interactive Media in Entertainment and Arts, ser.
DIMEA ’08. New York, NY, USA: ACM, 2008, pp. 51–56. [Online].
Available: http://doi.acm.org/10.1145/1413634.1413648

[15] D. De Winter, P. Simoens, L. Deboosere, F. De Turck, J. Moreau,
B. Dhoedt, and P. Demeester, “A hybrid thin-client protocol
for multimedia streaming and interactive gaming applications,” in
Proceedings of the 2006 international workshop on Network and
operating systems support for digital audio and video, ser. NOSSDAV
’06. New York, NY, USA: ACM, 2006, pp. 15:1–15:6. [Online].
Available: http://doi.acm.org/10.1145/1378191.1378210

[16] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification
of parallel rendering,” in ACM SIGGRAPH ASIA 2008 courses, ser.
SIGGRAPH Asia ’08. New York, NY, USA: ACM, 2008, pp. 35:1–
35:11. [Online]. Available: http://doi.acm.org/10.1145/1508044.1508079

[17] H. K. Zrida, A. Jemai, A. C. Ammari, and M. Abid,
“High level h.264/avc video encoder parallelization for
multiprocessor implementation,” in Proceedings of the Conference
on Design, Automation and Test in Europe, ser. DATE
’09. 3001 Leuven, Belgium, Belgium: European Design and
Automation Association, 2009, pp. 940–945. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1874620.1874851

[18] A. Colic, H. Kalva, and B. Furht, “Exploring nvidia-cuda for
video coding,” in Proceedings of the first annual ACM SIGMM
conference on Multimedia systems, ser. MMSys ’10. New
York, NY, USA: ACM, 2010, pp. 13–22. [Online]. Available:
http://doi.acm.org/10.1145/1730836.1730839

[19] R. 3550, RTP: A Transport Protocol for Real-Time Applications.
[20] R. 3984, RTP Payload Format for H.264 Video.
[21] Intel. Intel threading building blocks. [Online]. Available:

http://www.threadingbuildingblocks.org/
[22] OGRE. Object-oriented graphics rendering engine. [Online]. Available:

http://www.ogre3d.org

107

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

