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Abstract—Social network analysis (SNA) aims to identify and
better determine the relationship amongst data in a graph
representation.The interpretation of several core SNA measures,
degree, closeness and betweenness centrality of a node, have been
the subject of extensive research in recent years. We concentrate
on the betweenness property, which seeks to determine the
relatedness of more than 2 nodes. We propose our betweenness
in unweighted graph algorithm and compare it to the k-path
centrality algorithm on two image collections. By design, our
proposed algorithm is less restrictive with the ability to consider
any subset of nodes for betweenness. Our findings also show
our proposed algorithm has a much shorter execution time as
compared to the k-path centrality algorithm.

Keywords-social network analysis; betweenness centrality; so-
cial networking graph model.

I. INTRODUCTION

In an effort to deal with the large amount of data being
generated in science, research and personally, data models,
frameworks and algorithms are designed to reveal information
connections that will result in useful knowledge. In many
contexts, data remains disjointed with a one-dimensional slice
of information. Data duplication and inconsistency are com-
mon concerns leading to a lack of confidence in the quality
of data. A comprehensive view of information, leading to
knowledge, can be obtained using a collection of semi-relevant
and overlapping data slices. The ultimate aim is in providing
knowledge which allows the end-user to have more confidence
in making informed decisions. These measures can be applied
in various fields like bioinformatics, image retrieval and supply
chain management.

To achieve this goal, social network analysis (SNA) have
been used in recent years to find connections amongst data
using a graphical representation. Given that search and sort
methods are at the center of SNA, the data quality and
information flow are assessed through novel implementations
of the degree, closeness and betweenness centrality of a node
methods, which effectively navigates a social network. The
degree algorithm focuses on popularity and frequency of
a particular node. The closeness algorithm concentrates on
pairwise relationships. The betweenness algorithm considers
the relationships amongst more than two nodes.

For this paper, we examine the challenge of applying
betweenness in isolating image tags’ relatedness, typically
used in image search. With the surge of digital photography,
image search and retrieval is a complex area of research.
Image search and retrieval usually fall into one of two main

approaches: content-based image retrieval (CBIR) or image
annotation/tagging. At the core, CBIR methods use numerical
values while image tagging uses keywords and word phrases
to represent an image. However, both methods have their
obstacles. CBIR can be time-consuming due to the need for
extensive image processing. Image tagging can be error-prone
due to lack of reliable verification and validation of manual
and (semi-) automated labeling.

According to the prior work on image search and retrieval,
image tagging has become the popular choice due to its ease-
of-use factor and reduced requirement of computing resources
as compared to CBIR approaches. We therefore concentrate
on the image tagging approach. We discover that image search
and retrieval is a very complex in social networks. Each image
is represented as a set of connected tags. When these images
are transposed to a graph, we have a multigraph structure.
We seek to navigate an image collection’s multigraph in order
to efficiently determine its betweenness connectivity. High
betweenness connectivity depicts that the node has a high
impact on the other nodes. We show examples of images
and their associated tags in Figure 1. We make the following
contributions:

• we present the betweenness in unweighted graph algo-
rithm and

• we compare it to the state-of-the-art k-path centrality
algorithm on 2 common image datasets, MIRFLICKR
and ImageCLEF.

Section 2 discusses the related work for betweenness
property in terms of algorithm design, experimental setup
and datasets. Section 3 describes the betweenness property
and proposes our algorithm for calculating betweenness in
unweighted graphs. Section 4 demonstrates the experiments
performed on BUG and K-path centrality algorithms. We
conclude and summarize the paper in Section 5.

II. RELATED WORK

In developing an efficient and effective betweenness algo-
rithm, we must compare prior work [1], [2], [14] with regard
to competitive algorithm design and experimental evaluation
e.g., experimental setup and datasets.

a) Algorithm Design: Using the K-path centrality al-
gorithm [1], every node selects another node to pass the
information to, at random, depending on the weights of the
edges and the nodes that have already been visited. It assumes
message traversals only along simple paths and of a maximum
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Query image: woman, who is holding an umbrella, sitting on motorcycle (top center). Other images 
are the relevant and irrelevant returned matches from a top-10 query.
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(a) Sample MIRFLICKR images with corresponding tags (b) Sample ImageCLEF images with corresponding tags

Fig. 1: MIRFLICKR and ImageCLEF sample data

length k. The algorithm runs in time O(k3n2−2α log n), where
k is the path length, n is the number of nodes. An adaptive
sampling algorithm [2] is presented for betweenness centrality.
It selects a subset of vertices and performs shortest path
computations and then varies the number of samples based on
the information obtained from each sample. This algorithm
outputs the centrality of all vertices. Okamoto et al. [14]
presents an algorithm to determine the top-k vertices by com-
bining the exact and approximate algorithms. Hence, unlike the
previous two algorithms, this algorithm is used to determine
the k vertices that have the highest centrality, with some error.
This algorithm takes O((k + n2/3. log1/3 n)(n log n+m)).

b) Experimental Setup: Alakahoon et al. compare the k-
path centrality algorithm with the Brandes [3], RA-Brandes [4]
and AS-Brandes [2] algorithms. The experiments show that
the k-path centrality algorithm can scale up easily to large
networks. The near optimal performance of k-path in both
correlation and speedup performance metrics can be achieved
when its parameters are set to α = 0.2 and k =ln(n + m),
where n and m are the number of nodes and the number of
edges in the network respectively.

Bader et al.’s experiments demonstrate that the estimated
centrality scores are very close to the exact ones and also
reduce the computation time by a factor of nearly 20. They also
show that the error variance is within acceptable bounds. The
experiments also show the graphs for number of samples/SSSP
computations as a fraction of n to depict the amount of work
done by the approximation algorithm. Since Okamoto et al.
only consider the top-k elements, the computation time is
considerably reduced if one is interested only in determining
the highly ranked nodes instead of the actual centrality values
of all the nodes.

c) Datasets: The scalability of the algorithms are a
concern. Bader et al. uses 6 real world graph instances (4
undirected, 2 directed graphs) where the number of vertices
varies from 2000 to 9914 and the number of edges varies
from 4,435 to 41,601. On the other hand, Alakahoon et al.
uses 7 real networks with the number of vertices varying from
2,424 to 82,168 and the number of edges varies from 13,354
to 948,464. Three of these networks use directed graphs while
the others use undirected graphs. The edges are unweighted
in all the networks except one.

III. BETWEENNESS PROPERTY

The betweenness property has its roots in social network
analysis theory [8], which considers the use of nodes on a
path between a particular source and sink node. A betweenness
method is usually costly, especially in complex networks [2],
[6]. In addition to betweenness, social network analysis also
proposes degree and closeness properties as methods to better
understand how data are connected in a graph. In general, data
has a semi-structured configuration, including data duplication
and naming inconsistency obstacles, led to the need for ex-
plicitly and implicitly leveraging relationships within the data.
Given the heterogeneous nature of today’s data, the challenge
is harnessing these data needs across architectures, operating
systems and devices.

In prior work, the Social Network Graph (SNG) model
[10], [11], [12] aims to integrate a more inclusive data
model for incorporating all forms of data from multiple and
diverse sources. Currently, SNG has an emphasis on repre-
senting personal images and their corresponding annotations.
Tagging can be daunting; hence, semi-automated annotation
approaches [5], [16] are typically employed. We make use of
SNG in identifying a set of attributes, (who, what, when, how,
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where), for an image. Other researchers do not consider this
more comprehensive view of an image. For instance, Ratten-
burg et al. [15] considers “where” the photograph was taken,
“what” is occasion at which it was taken and the association
between objects of “how” they are related. Golder [7] focuses
on images with people and, as a result, infers the picture-
taker’s social relationships.
SNG’s construction consists of a collection of multi graphs,

in which each image is represented by a clique connecting
the image’s tags. At the core of most betweenness algorithm
implementations is a shortest path method. The methods
differ with regard to graph size, number of edges and, most
importantly, navigational techniques. We will describe a state-
of-the-art betweenness algorithm proposed by Alakahoon et
al., which we will compare to our proposed method in the
Experimental Evaluation section.

A. K-Path Centrality Algorithm.

This algorithm attempts to introduce the k-path centrality,
which can efficiently compute randomized centrality with
accurate results even for a large network. By discovering a
way to compute the centrality effectively, the various graphs
can be analyzed to determine the effect of one node on
another. It aims at reducing the computation time by making
two assumptions - consider only simple path (no repetition
of nodes) and maximum path length is k (dependent on
the network). By using these assumptions, the complexity is
greatly reduced as the k-path centrality gives an accurate and
quick result for betweenness.

The pseudocode of this method is given as follows: it takes
as input a graph G = (V,E), a non-negative weight function
on the edges of G, and parameters α ∈ [-1/2,1/2 ] and integer
κ = f(m,n) where m are the number of edges and n is the
number of nodes in the graph. Lines 16-21 compute the sum
count[v] that a message originating from all possible source
nodes s, goes through v, assuming that message traversal
are only along random simple paths of at most κ edges.
To compute this, a vertex is chosen randomly such that it
has not been visited and an edge exists between the vertex
and s, with a probability proportional to the weight of the
edge. This sum is used to calculate the centrality in lines 27-
29.

1: function kpathcentrality(graph:G(V,E), array:W , int:k)
2: output Array Ck of k-path centrality estimates
3: N = number of vertices
4: α ∈ [-1/2, 1/2]
5: for v = 1 to N do
6: count[v]=0
7: explored[v] = false
8: end
9: /* S is a stack */

10: T ← 2k2n1−2α ln n ; S ← ∅
11: for i = 1 to T do
12: /* simulate message traversal from s containing l edges

*/
13: s ← a vertex chosen uniformly at random from V;
14: l ← an integer chosen uniformly at random from [1,k];

15: explored[s] ← true; push s to S; j ← 1;
16: while j ≤ l and ∃(s, u) ∈ E s.t. !explored[u] do
17: v ← a vertex chosen randomly from { u | (s, u) ∈ E

and !explored[u] } with probability proportional to
1/W (s,v);

18: explored[v] ← true; push v to S;
19: count[v] ← count[v] + 1;
20: s ← v; j ← j+1;
21: end
22: /* reinitialize explored[v] to false */
23: while S is nonempty do
24: pop v ← S; explored[v] ← false
25: end
26: end
27: for v = 1 to N do
28: Ck[v] ← kn . (count[v]/T);
29: end
30: return Ck;
31: end

B. Betweenness in Unweighted Graphs (BUG) Algorithm.

We propose a betweenness method that is best-suited for
unweighted dense graphs. We leverage the nearest neighbor
relationship SNG nodes and edges. Below we provide our
BUG pseudocode that makes execution calls to our closeness
method [12]. In our closeness algorithm, we implement Di-
jkstra’s algorithm (beginning at line 8) to find the shortest
search path from source node vi to the target node vj . Given
that our edges are not weighted, we implement a randomized
K Nearest neighbor (KNN) to select the neighboring unseen
node.

1: function closeness(graph: SNG, object: vi, object: vj)
2: for object vy ∈ SNG do
3: e(vi, vy) = ∞ // Unknown distance function from

source vi to vy
4: prev(vy) = null // Previous node in optimal path from

source
5: e(vi, vi) = 0
6: Q = all vertices V ∈ SNG
7: vcurr = vi
8: while Q 6= null OR reach vj do
9: object vclose = KNN(e(vcurr, vu))

10: if e(vcurr, vclose) =∞ then
11: break
12: remove vclose from Q
13: for each neighbor vn of vclose do
14: alt = e(vcurr, vclose) + e(vclose, vn)
15: if alt < e(vclose, vn) then
16: prev(vn) = vclose
17: vcurr = vn
18: break for-loop
19: return prev
Our BUG algorithm first computes the closeness between

each node-pair and stores each path in an adjacency matrix
(line 3-6). Then, we construct the final path from v1, . . . , vn
by identifying when (or if) path overlap occurs (line 9-22).
We divide the path overlap into three categories: (1) path 1
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(a) MIRFLICKR dataset with 24 nodes and 31,000+ edges (b) ImageCLEF dataset with 258 nodes and 970,000+ edges

Fig. 2: Visual Representation of MIRFLICKR and ImageCLEF Datasets

and path 2 overlap in path 1 with the node at the beginning of
path 2, (2) path 1 and path 2 overlap with path 1 connecting
to a substring of path 2, and (3) path 1 and path 2 are disjoint,
which results in a union of both paths.

1: function BUG(graph:SNG,objects:{v1, . . . , vn})
2: pmatrix[n][n] =∞ // stores the path between each node-

pair
3: for i = v1 to vn−1 do
4: for k = v2 to vn do
5: pathik = closeness(i , k , SNG)
6: pmatrix[i][k] = pathik
7: fpath =∞
8: l = v1
9: while l 6= vn do

10: pathl = pmatrix[l][l + 1]
11: pathl+1 = pmatrix[l + 1][l + 2]
12: for j = 1 to r do
13: for m = 1 to s do
14: if pathl.get(j) = pathl+1.get(m) AND m = 1

then
15: pmatrix[l][l + 2] = pathl.substring(1, j) ∪

pmatrix[l + 1][l + 2]
16: boolean flag=true
17: break
18: else
19: pmatrix[l][l + 2] = pmatrix[l][l + 1] ∪

pathl+1.substring(m, end)
20: boolean flag=true
21: break
22: if flag = false then
23: pmatrix[l][l + 2] = pathl ∪ pathl+1

24: fpath.append(pmatrix[l][l + 2])

25: l+=2
26: return fpath

IV. EXPERIMENTAL EVALUATION

In this section, we describe the experimental results of our
BUG methods with that of the k-path centrality method. To
perform a more balanced comparison, we test these methods
on two datasets: MIRFLICKR-25000 [9] and ImageCLEF Seg-
mented and Annotated IAPR TC-12 [13]. One MIRFLICKR
collection consists of 25,000 images downloaded from the
social photography site Flickr through its public API. With
only 24 annotations, this dataset is very dense having a
large number of edges between any two annotations e.g.,
‘baby’ is labeled in 259 images and ‘people’ is labeled in
10,373 images. MIRFLICKR annotations are arranged in a
shallow hierarchical structure of general topic and sub topic
categories. The ImageCLEF SAIAPR TC-12 dataset contains
segmentation masks and segmented images for 20,000 images
and organized in a more complex conceptual hierarchical
structure with 258 annotations.

In Figure 2, we display the visual representation of both
datasets using Gephi, an open source graph visualization and
manipulation software (https://gephi.org). The edge thickness
correlates to the frequency of connection between two nodes.
We load each dataset into our SNG model, forming a clique
of the tags (nodes) for each image. Our MIRFLICKR dataset
has only 68 unique edges while the ImageCLEF dataset has
19,509 unique edges.

For our experiments, we execute tests which compare the
run times of the k-path centrality and our proposed algorithms
on both image datasets. In Figure 3, we display the run time
of each tag’s betweenness assessment for the MIRFLICKR
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(a) MIRFLICKR dataset

(b) ImageCLEF dataset

Fig. 3: K-Path Centrality Results, when K=3

and ImageCLEF collections e.g., x-axis denotes the image
tags and y-axis denotes the time in milliseconds. The time
on y-axis indicates the average time required to find the
shortest path between a node and other pairs of nodes. Each
collection’s hierarchical structure is revealed by the length
of the run time in which image tags located at or near the
tree leaves are accessed less frequently. Based on the design
of the k-path centrality algorithm, the betweenness evaluation
is conducted for each image tag as shown in Figure 3. Our
BUG algorithm, on the other hand, first identifies which image
tags are of interest and then computes their betweenness.
Hence, BUG considers the binomial coefficient in which we
find the betweenness of a set of nodes while the k-path

centrality focuses in the information-theoretic aspect in which
the information flow through a node is assessed. The k-path
centrality finds a path only of length k whereas the BUG
algorithm finds the shortest path between nodes without any
restriction on the path length. The k path algorithm maintains
a list of visited nodes and hence requires more overhead. BUG
does not require such tracking of these details.

Below we show a path samples from both datasets:
• MIRFLICKR

– BUG(baby, car, flower) has path baby → people →
transport → car → plant life → flower and takes 19
ms.

– BUG(car, lake, tree) has path car → transport →
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water → lake → plant life → tree and takes 7 ms.
– BUG(clouds, flower, portrait) has path clouds→ sky
→ plant life → flower → people → portrait and
takes 13 ms.

• ImageCLEF
– BUG(fabric, cloth, flock-of-birds) has path fabric
→ cloth→ humans→ flock-of-birds and takes 406
ms.

– BUG(glass, deer, hedgehog-porcupine) has path
glass → ground → deer → landscape-nature →
hedgehog-porcupine and takes 558 ms.

– BUG(diver, beetle, elephant) has path diver→ beetle
→ animal → elephant and takes 415 ms.

These samples showcase the shortest path planning route
given each collection’s hierarchical structure. The betweenness
assessment for the selected three image tags is not a simple and
direct path. For instance, the image tags, baby, car, flower, are
all child nodes within this MIRFLICKR collection with parent
nodes people, transport and plant life, respectively.

K-Path Centrality BUG
MIRFLICKR 519.39 ms 10.55 ms
ImageCLEF 71678.87 ms 776.93 ms

TABLE I: Run Time Averages

Table I shows the average execution times for each
algorithm-dataset pair. We set k-path centrality parameter
k = 3 denoting a 3NN information flow. We implement our
BUG algorithm with n = 3 denoting that we are finding the
relatedness of 3 image tags by not setting a restriction on K
within the KNN. The BUG algorithm takes a fraction of the
run time than that of k-path centrality. In addition, the BUG
algorithm generates the path of any number of objects even
when the objects do not have a direct edge between them.

V. CONCLUSION & FUTURE WORK

We propose our betweenness algorithm, that is designed
for a dense multigraph environment. We performed an ex-
perimental evaluation using an MIRFLICKR 25,000 image
collection and an ImageCLEF 20,000 image collection, in
which we compared our proposed method to the k-path cen-
trality method. Our findings show that the proposed algorithm
executed in a fraction of the run time than the k-path centrality
method. Additionally, our proposed method is designed with
a less restrictive interpretation of betweenness as the shortest
path including any subset of nodes is produced. In the future,
we plan to work on a weighted closeness and betweenness
for larger image datasets, including the MIRFLICKR 1M
collection. We would like to better incorporate information
theory principles in these methods and assess its impact in a
large-scale data environment.
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