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Abstract—The configuration of an IPv6 network is a rather
daunting and error-prone procedure for system administrators.
Each node must be provided with its own (128 bit long) IPv6
address and with a domain name manageable by human beings.
Autoconfiguration methods can give addresses to interfaces but
do not provide any means of configuring the DNS. This paper
presents some methods based on hash functions which highly
simplify the network configuration process. System administra-
tors just need to define the fully qualified domain names of all
the networking nodes (servers and clients) and the networking
prefixes for each LAN or subnet. Each node will acquire its
own IPv6 address and the DNS server will be automatically
configured to support name resolution for all the nodes. The
whole process does not require system administrators to type any
IPv6 addresses, and it is fully compatible with existing protocols
for autoconfiguration and name resolution.

Index Terms—IP networks; TCPIP; Domain Name System;
Next generation networking;

I. INTRODUCTION

IPv6 standard provides two different ways for auto-
configuration - stateless and stateful. In stateless auto-
configuration [1] each networking node broadcasts a router
solicitation request to obtain a list of address prefixes active
on that local area network. The node then self-assigns an IPv6
address by combining each prefix it receives with the EUI-
64 interface hardware address. Stateless auto-configuration
provides the node with valid addresses and routing information
but it does not configure the DNS (Domain Name Service)
server address, nor does it configure its own DNS entries.

As described in [2] and [3], this kind of auto-configuration
can cause privacy problems, since the hardware address,
usually the Ethernet MAC (Media Access Control) address,
is part of the final IPv6 address. So, it is possible to track
the movements of personal computers, laptops, tablets, smart-
phones etc.. The more these devices are personal digital
extensions, the more this permits the tracking of people,
their physical locations and habits. Stateless auto-configuration
changes the IPv6 address of a node in cases of network adapter
substitution. On the other hand, stateful configuration [4] is
based on DHCPv6 (Dynamic Host Configuration Protocol).
In stateful configuration, a node broadcasts a DHCP request
using its own link-local IPv6 address. The server then replies,
providing the node with its own global IPv6 address (or
addresses).

Stateful auto-configuration is not self-configuration. In fact,
whilst no configuration effort is required from the client,
the mapping between hardware and IP addresses must be
configured at the server, by hand.

Another problem related to address configuration is DNS
mapping. Forward and reverse DNS mapping is compulsory
for servers, but it is useful to give symbolic names to clients,
too. Numeric addresses, especially 128 bit IPv6 addresses, are
hard to use: symbolic names facilitate the management, e.g.,
the tracking of networking problems.

Both DHCP and DNS configuration involve the typing of
several IPv6 addresses: sequences of 32 hexadecimal numbers.
Naturally this is highly prone to error.

The results presented in this paper introduce a set of
methods that can help the system and network administrators
to set up an IPv6 network in a simple and effective way.
These methods provide the networking nodes of a local area
network with their addresses, given an IPv6 prefix, a domain
name of the LAN (Local Area Network) and the list of host
names to be configured. Each node just needs to know its
own Fully Qualified Domain Name (FQDN). The only hand
typed IPv6 address is the prefix of the LAN. Those methods
also provide forward name resolution and, if required, reverse
name resolution.

This paper is organized as follows. The next section in-
troduces the idea of hash-based address by presenting some
implementation scenarios. Section III discusses the limits of
the proposed approach and section IV analyzes the cases of
address collision. The final part of the paper include sections
about a proof-of-concept implementation, a comparison with
the related work available in the literature, and final remarks,
also discussing the future developments of this project.

II. HASH-BASED ADDRESSES

The core idea is to compute a 64 bit encoding of the FQDN
of each node and to use it as its host address, following the
64 bit prefix fixed for each specific LAN. This idea can be
implemented in many ways. Each one has pros and cons.

A. Assisted DHCP and DNS management.

Given the list of nodes, a script computes both DHCP
and DNS tables by generating a hash-based address for each
FQDN (see Fig. 1). The router must be configured for stateful
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Fig. 1. Assisted DHCP and DNS management.

auto-configuration, both DHCP servers and clients must use
the fully qualified host names as client identifiers. When
a node starts, it learns from a router advertisement packet
that stateful auto-configuration is required. Then it sends a
DHCPv6 request using its FQDN as its identifier. The DHCP
server assigns to each node its specific address. This method
uses standard DHCP and DNS servers and clients. Node
addresses are not related to hardware addresses, so they do
not change in case of network adapter substitution. DHCP
and DNS tables must be recomputed if a name gets modified
or a new node is added. Given an IPv6 prefix, a LAN domain
name and the list of host names to configure, this method
provides the networking nodes of a local area network with
their addresses. The use of hash-based addresses should be
preferred to other assignment rules, for instance, by a script
which enumerates the hosts, as there is no need for system
administrators to store the mapping between each host name
and its address. The address can be retrieved by running
the hash function when needed. The management of the
accountancy for unused and reassigned host addresses is also
unnecessary.

B. Hash address self-assignment and automatic DNS forward
resolution.

This method does not even require a list of nodes. Each
node autonomously compute its own address by combining
the prefix learned from the router advertisement and the hash
of its FQDN (see Fig. 2). A custom DNS server for the
subnet provides a forward resolution for any name within
the domain of the local area network. This method simplifies
the deployment of local area networks composed of client
computers. Provided no nodes share the same FQDN and
there are no hash collisions, the IPv6 address assignment and
the DNS forward resolution require no configuration. Name

Fig. 2. Hash address self-assignment.

collisions are very rare events, as shown in section IV. This
solution requires a specific DNS server and a program to self-
assign the address.

C. Hash address self assignment plus DNS forward and
reverse resolutions

By itself, the DNS can obtain the address of any host in
the subnet by computing the hash of the FQDN, but it is
not possible to perform the reverse resolution automatically.
The hash function is not injective. In any case, it is possible
for the DNS to cache the mapping between names and their
addresses so as to be able to give correct answers to reverse
DNS resolution, requests. The DNS should not store any DNS
resolutions as it may refer to non-existent nodes: an attack
based on DNS requests for large numbers of random host
names could cause table overflows and delays. The simplest
solution is to store the reverse mapping of a host only if the
request comes from the address which is being resolved. This
means that a host can request its own reverse resolution by
introducing itself to the DNS server: it sends a DNS forward
resolution of its own FQDN. The DNS server gets the request,
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Fig. 3. Hash address self-assignment supporting reverse DNS mapping

uses the hash mapping and recognizes that the request comes
from the same address, so it saves the mapping for the reverse
resolution (Fig. 3). In this way, it is not possible for external
DNS clients to add fake reverse mapping items. However,
some assumptions are needed to grant this security property:
the internal nodes and the routing must be trusted. Otherwise,
misbehaving internal nodes, or nodes able to forge source
addresses of the local network, can attack the DNS and add
fake entries.

D. Further methods
The methods described in II-B and II-C have been designed

for an environment where each LAN is assigned its specific
prefix and all the nodes on the LAN belong to the same
domain. Although this is quite a common situation, hash-
based addresses can also support different and more general
scenarios.

• Several Domains, one prefix. The hosts of several do-
mains use the same 64 bit prefix for their IP addresses.
This scenario is already supported using the methods
described in II-B and II-C: the hash-based address is com-
puted on the FQDN, which is different, so the addresses
will not interfere with each other (except for the address
collision problem, see IV).

• One or Several Domains, Several Prefixes. Hosts of
several domains are working on the same LAN but each
domain has its own prefix, routing rules, etc. While the
previous methods are still valid for the node resolution
by remote nodes, it is not possible for nodes to self-
assign their addresses. In this situation each node receives
advertisements from the router/routers for all the prefixes
and cannot autonomously choose the right one for its
domain. In this case, the hash-based assignment can be
implemented in the DHCPv6 server (see Fig.4). Each host
is able to acquire its address using a standard stateful
configuration interaction.

III. LIMITS

The hierarchical structures of fully qualified names and
IP addresses are not necessarily related. Symbolic names

are useful for humans to reach servers and services, whilst
IP addresses are machine oriented representations used by
routers to dispatch packets towards the right networking
nodes. The methods introduced in this paper require di-
rect mapping between a DNS domain and a prefix. In
real applications, this is quite usual for small business
firms, client nodes in computer labs, or office LANs. A
company may have several networks, and then it would
need to use several (sub) domains. e.g., the company
famouscorp.com may have several IPv6 sub-nets. Hash
configuration requires the subnets to be named as sub-domains,
e.g., lab.famouscorp.com, adm.famouscorp.com,
londonoffice.famouscorp.com, etc. In general, there
is no problem assigning FQDN to clients, as client names are
for internal use, for system and network administrators, so the
more specific they are, the clearer they are. On the other hand,
institutional servers (e.g., www.famouscorp.com) should
not refer to the internal sub-netting structure. It is always pos-
sible to assign names to externally visible servers using DNS
CNAME entries, e.g., define www.famouscorp.com as
a CNAME of www.londonoffice.famouscorp.com.
CNAME entries can provide network administrators with a
means of defining all the symbolic names needed. Using
the hash address assignment, the administrator just writes
symbolic names. Thus, no IPv6 address typing is required,
reducing the probability of configuration errors.

IV. ADDRESSES’ BIRTHDAYS

It is possible that multiple FQDNs generate the same hash
code, so that they collide, pretending to use the same IPv6
address. The discussion is focussed on one network where all
the hosts share the same networking prefix, as no collision can
take place if the prefixes are different. This section shows that
there is a very low probability of this event, so it can safely be
ignored. Should it happen, it is possible to avoid it by changing
one of the colliding names. If we consider that the hash
keys follow a uniform distribution, the probability of collision
becomes an instance of the Birthday Problem (also known as
Birthday Paradox, see page 507 in [5]). The probability of
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Fig. 4. Hash address assignment using a modified DHCPv6 server for multiple-prefixes LAN

Fig. 5. Probability of address collision in a 64 bits hash

m nodes choosing the same random key, amongst n possible
keys, is

Pr[(n,m)] = 1−
n!
(
m
n

)
mn

(1)

Using a Taylor series approximation (as m/n << 1) the
probability can be estimated as follows:

Pr[(n,m)] ≈ 1− e−
m2

2n (2)

Figure 5 shows the probability function (2) plotted for up to
1Mi (i.e., 220 ) computers. The probability of two addresses
colliding is less than one in 30 million for a LAN connecting
more than 1 million hosts. In more realistic cases, network
connecting less than one thousand nodes, the probability has
the order of magnitude of one in 3 · 1014.

Anyway, it is possible to implement methods in order to
warn system administrators if such a collision should occur.
Using the technique described in II-A, the address assignment
script can take care of the collision detection. For II-C the
updating function of the address cache for reverse resolution
can reveal the collision problem and start some warning
procedure.

V. PROOF-OF-CONCEPT IMPLEMENTATION

Some software tools have been implemented to test the
effectiveness of the approaches proposed in this paper. A first
tool is a command to compute the address of a host. This

command, named hashaddr, uses the MD5 algorithm [6] to
compute the hash of the FQDN.
hashaddr takes two arguments: the first is a prefix (or a

base address, as explained in the following) P and the second
is the FQDN.

The final address is computed as follows:

hash = md5hash(FQDN) (3)

address = P ⊕ hi64bits(hash)⊕ lo64bits(hash) (4)

where the function hi64bits returns the 64 most significant
bits, and lo64bits returns the 64 least significant bits.

For example, a test running of hashaddr together with its
output follows:

$ ./hashaddr 2001:a:b:c:: tizio.rome.mycorp.com
2001:a:b:c:9e50:7571:373:6ab2

The MD5 hash of tizio.rome.mycorp.com is
a2ea0c2518c2756b3cba79541bb11fd9. The final ad-
dress is computed as follows (the IPv6 encoding of 128 bit
numbers is used for clarity):

addr = 2001 : a : b : c :: ⊕ :: a2ea : 0c25 : 18c2 : 756b

⊕ :: 3cba : 7954 : 1bb1 : 1fd9

hashaddr can be used in the scripts to compute the tables
for the DHCPv6 and DNS servers as presented in II-A. These
scripts must be run each time there is a change in the set
of managed hosts to update the tables. No modifications are
needed for DHCPv6 and DNS servers, because they simply
use automatically generated tables instead of manually inserted
data. Clearly the performance of the stateful auto-configuration
and name resolution operations is not affected by the usage of
hash computed addresses.
hashaddr uses getaddrinfo [7] to get the prefix (or

base address), so it can be expressed in a symbolic way
(using DNS resolution). For example, if the base address
2001:a:b:c:: for rome.mycorp.com has been manually
added to the DNS table, this is the result:

$ ./hashaddr rome.mycorp.com tizio.rome.mycorp.com
2001:a:b:c:9e50:7571:373:6ab2

In the examples, we have used a prefix as the second
argument, i.e., the 64 least significant bits of the address were
zeroes. When a general address is used instead, the 64 low
order bits and the hash of the FQDN are combined by a XOR
operation. In this case we name this base address, as it allows
us to provide a specific mapping.
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TABLE I
PROXY IMPLEMENTATION PERFORMANCE

Test #1: 100 DNS lookups
average standard deviation

DNS(no proxy) 35.3 5.22
Proxy 75.6 11.27

Test #2: scp of 1k file
average standard deviation

DNS(no proxy) 156,6 4.72
Proxy 158.9 5.89

This idea can be used to implement an extension of the
method to preserve some address privacy. IPv6 architecture
and philosophy does not include the idea of masqueraded ad-
dresses for clients (unique local addresses [8] are site-local and
not routed to the Internet). If the hash-based address resolution
of local clients and DNS resolution for base addresses are
allowed only for local clients, it is harder for a remote attacker
to guess the IP addresses. He cannot just compute the hash of
some known FQDN. The knowledge of the entire base address
is needed to succeed.

The proof-of-concept implementation for the method de-
scribed in II-B, hash address self-assignment and automatic
DNS forward resolution, uses a specific DNS proxy program:
hashdns (see Fig. 6). This program takes three or more
arguments. The first argument is the IP address the proxy DNS
server will use; the second is the address of a real existing
DNS, where the requests will be forwarded; the third and
following arguments are a list of domains managed by the
proxy.

./hashdns 2001:a:b:c::2 2001:a:b:c::3 rome.mycorp.com

All the DNS requests received by the proxy (at the address
2001:a:b:c::2) get forwarded to the DNS server specified
by the second argument (2001:a:b:c::3) except those
asking for an AAAA record of a host of one of the managed
domains. In this case (e.g., tizio.rome.mycorp.com
in the example above) the proxy forwards the request for
the domain (rome.mycorp.com) by stripping away the
preceding part of the FQDN. When the real DNS server returns
the address corresponding to the domain, hashdns performs
the same process described for hashaddr to compute the
hash-based address, using the address received by the real
DNS server as its base address. The result is returned by the
proxy as its reply to the original request.

Table I shows some of the proxy performance figures. The
test environment is consists of a dual core 2Ghz CoreDuo2
processor, 3GiB RAM. The proxy is running on the same
machine using the user mode stack LWIPv6 [9]. The first test
evaluates the time needed for name resolution using a real
DNS server and the proxy supporting hash-based addresses.
The time in the table is in milliseconds for 100 calls of
getaddrinfo. Although the overheads are high, the proxy
takes about twice the time of the DNS, the second test shows
that it is not appreciable for a normal networking usage. In
fact, the second test measures the time needed to transfer one

1KB file by scp from the same machine: the address returned
by the DNS or proxy resolution is one of the addresses of the
same computer. If this is not the worst case for an scp transfer,
it is an unfavorable situation: the transfer of a small file on a
very fast line. The cost of name resolution would impact less
on large files or slow lines. The computed overhead is less
than 2%.

VI. RELATED WORK

Hash-based addresses are very useful when applied to the
Internet of Threads. This new idea, presented in [10], changes
the concept of communication endpoints in the Internet: each
process can be provided with its own IPv6 address and can be
a node of the network.

This change of perpective permits the development of many
new services and a higher level of flexibility but, at the same
time, increases the number of IP addresses to manage.

Cryptographically Generated Address (CGA) protocol, de-
fined in [11], uses a one-way hash function to define the least-
significant 64 bits of the IPv6 address. The meaning and the
purpose of the operation is completely different from those
defined in this paper: CGA computes a hash function on the
public key of the sender to enforce a secure communication;
hash-based address is computed on the FQDN of the host to
ease the network management.

IPv6 privacy extension [2] generates the least-significant
64 bits of the IPv6 address in a random manner to preserve
the privacy of the hardware controller MAC address. A new
random address is generated if an address collision is detected.
This method is for clients and does not provide methods to
update a DNS server map.

VII. CONCLUSION AND FUTURE WORK

This paper has explained how to use hash-based IPv6
addresses to simplify the network deployment by system
administrators. The proposed methods open a new perspective
on IPv6 network configuration. The use of the MD5 algorithm
as well as the proxy based implementation are just examples
to support the effectiveness of these methods. It is possible to
envision several further developments for this project. A non-
exhaustive list of ideas by the author at the time of writing
this paper follows:

• Per site defined hash function: each company, institution,
etc., can design its own hash function. All the methods
work provided that the same hash function is shared
between the node, for address self assignment, and the
DNS resolution.

• Native support of hash-based addresses in DNS servers.
This enhancement would provide better performance to
the name resolution process.

• DHCPv6 proxy for multiple domain support. An imple-
mentation of the method proposed in section II-D is still
missing.

• It is possible to support the co-existence of static IPv6
addresses and hash-based ones. For example, the DNS
proxy can forward the request for the entire FQDN to
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Fig. 6. hashaddr: DNS proxy proof-of-concept implementation

the real DNS server and perform the hash-based name
resolution only when the FQDN resolution fails.

• It is common for companies to have different DNS servers
to provide different views of their networking structure
for local and external users. For example, customers
should be able to access the company’s web server,
but it is useless (and potentially dangerous) to provide
the name resolution of the accountancy office personal
computer. An extension for the DNS proxy can provide
filters to decide the visibility boundary of the hash-based
address resolution for each domain, i.e., which source IP
addresses are allowed to know the resolution for the hosts
in each domain.

The source code to test the experiments
presented in this paper can be downloaded from
svn://svn.code.sf.net/p/view-os/code/branches/hashaddrtest

and has been released under the GNU General Public License
(GPL) v. 2 or newer. The programs are intended as just
a proof-of-concept to show the effectiveness of the ideas
introduced here.
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