
Scalable OpenFlow Controller Redundancy Tackling Local and Global Recoveries

Keisuke Kuroki, Nobutaka Matsumoto and Michiaki Hayashi
Integrated Core Network Control And Management Laboratory

KDDI R&D Laboratories, Inc.
Saitama, Japan

e-mail:{ke-kuroki, nb-matsumoto, mc-hayashi}@kddilabs.jp

Abstract—OpenFlow is expected to be an enabler that solves
the problems of today’s network. Thanks to the centralized
management with OpenFlow, agile network operation can be
achieved with flexible programmability; however, the
centralized management implies a significant impact of any
outages of the OpenFlow controller. Hence, a high availability
technology is indispensable for building the OpenFlow
controller, and the high availability system should consider
extraordinary events (e.g., power outage) affecting the entire
data center as well as anticipated server failures within a local
system. In this paper, the high-availability of the OpenFlow
controller is investigated, and a redundant method considering
both local and global (i.e., inter data-center) recoveries is
proposed by using the multiple-controllers functionality that is
defined in OpenFlow switch specification version 1.2 and later.
The proposed redundant scheme eliminates frontend server
causing limitation of performance scalability, while it achieves
competitive role change and failover times.

Keywords-OpenFlow; controller; redundancy.

I. INTRODUCTION

Towards future telecom services, programmability of the
network is expected to shorten the service delivery time and
to enhance flexibility of service deployment meeting
diversified and complex user requirements on various
applications (e.g., real-time and non real-time applications).
OpenFlow [1] is an enabler of the centralized management
solution meeting the aforementioned expectations, and
many researches have addressed the scalability issue of the
OpenFlow-based solution.

In [1], several OpenFlow controllers are evaluated from
the viewpoint of scalability in centralized management and
control. Message processing performances of two operation
modes (i.e., proactive and reactive) of the OpenFlow
controller are evaluated using several existent
implementations (e.g., Floodlight, NOX, Trema). In [2], the
scalability of the OpenFlow solution for a data center
environment is analyzed to show an implementation
guideline. The paper concludes that, to achieve lossless and
low delay performance in the data center application, the
number of OpenFlow switches managed by one controller
should be limited to eight. To leverage an advantage of the
centralized management, the OpenFlow controller should
not be a simple flow switching policy server. In [3],
OpenQoS architecture delivers end-to-end quality of service
(QoS) with OpenFlow-based traffic control. The OpenFlow

controller with OpenQoS has the role of collecting the
network state to perform dynamic QoS routing, i.e., the
controller has the route calculation function just like the
Path Computation Element (PCE). Indeed, in IETF, PCE
architecture is growing as a stateful operation supporting the
enforcement of path provisioning in addition to its original
path computation role. Hence, the importance of the
OpenFlow controller is growing with the broader concept of
Software Defined Networking (SDN), and thus the high
availability of the controller system must be discussed.
However, there is little research on the high availability of
the OpenFlow controller that must play the important role
on SDN.

In this paper, the high availability of the OpenFlow
controller is investigated, and a high availability method
applicable to multiple OpenFlow controllers is proposed. In
the proposed redundant method, “global” repair (i.e., inter
data-center redundancy) as well as local repair (i.e.,
redundancy within a local network) are considered. The
proposal achieves a competitive failover time compared
with existent redundant schemes (e.g., server clustering),
while the proposal does not require any frontend server
limiting performance scalability of the OpenFlow controller.

The organization of this paper is as follows: In Section
II, we explain the function of multiple controllers defined in
OpenFlow switch specification 1.2 [5] and also explain its
applicability to achieving redundancy of the OpenFlow
controller. We investigate existent approaches of redundant
schemes as well. In Sections III-A and B, we evaluate the
performance of the redundant method for multiple
controllers placed on a single domain. In Sections III-C and
D, we propose the redundant method for multiple controllers
placed on multiple domains and evaluate the performance.
Finally, concluding remarks are given in Section IV.

II. BACKGROUND

Typical implementation of OpenFlow allocates a
controller separating the control plane from the data plane,
and an OpenFlow switch playing the role of data plane
communicates with an OpenFlow controller using the
OpenFlow protocol over a Transport Layer Security (TLS)
[12] or a TCP connection [13] defined as a “secure channel”.
The switch tries to forward a packet by looking up flow
entries populated in-advance by the controller. If the packet
does not match the current flow entries, the switch sends a

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

packet-in message over the secure channel to the controller
in order to retrieve a direction on how to treat the packet.

One method handling data plane failure is implementing
a monitoring function on OpenFlow switch [11]; however,
only the monitoring function in a data plane is not sufficient
to achieve high availability of the control plane. In contrust,
achieving controller redundancy also contributes to
protection of the data plane.In the case of the controller
outages, the secure channel connection is lost accordingly,
and then the packet-in message cannot be successfully
processed by the controller. Hence, new packets that are not
matched with the flow entry are simply dropped or allowed
to fall in a default operation (e.g., forwarding to a neighbor
anyway) that never provides desirable services until the
ultimate recovery of the controller.

OpenFlow specification 1.2 introduced the capability of
multiple controllers by defining three states (i.e., MASTER,
SLAVE, and EQUAL) of a controller. A controller has its
own role by using the function of multiple controllers, and
the state itself is owned by the switch. In the three states,
MASTER and EQUAL have full access to the switch and
can receive all asynchronous messages (e.g., packet-in)
from the switch. A switch can make secure channel
connections to multiple EQUAL controllers, but the switch
is allowed to access only one MASTER controller. In the
SLAVE state, a controller has read-only access to switches
and cannot receive asynchronous messages apart from a
port-status message from the switches. A controller can
change its own state by sending an
OFPT_ROLE_REQUEST message to switches. On receipt
of the message, the switch sends back an
OFPT_ROLE_REPLY message to the controller. If the
switch receives a message indicating the controller’s intent
to change its state to MASTER, all the other controllers’
states owned by the switch are changed to SLAVE. This
function enables a switch to have multiple secure channels,
and thus the switch is not required to re-establish new
secure channels in the event of controller outages. In the
multiple-controllers capability, the role-change mechanism
is entirely driven by the controllers, while the switches act
passively only to retain the role. Therefore, investigating the
implementation of the controller side is important to achieve
the redundancy; however, that has not been proposed yet.
We use the capability of multiple controllers to achieve high
availability of the control plane. In the following section, we
propose how to use it and explain the effect.

III. PROPOSAL AND DEMONSTRATION

In this section, a proposed architecture for local and
global recoveries is described, and recovery operation in the
two scenarios (i.e., local and global) is demonstrated. To
avoid the secure channel re-establishment that is inevitable
in conventional virtual IP-based redundancy, the proposal
commonly applies the multiple-controllers functionality [10]
to both local and global scenarios. Through the
demonstration for the two scenarios, we implemented the
controller prototype based on NOX-C++ for OpenFlow 1.2
available in [10].

A. Proposed Design of Local Recovery

First, we explain the redundant method in a single
domain, which is typically a data-center hosting OpenFlow
controllers.

Figure 1 shows a reference model to describe and
demonstrate the proposed scheme designed for the local
recovery. An OpenFlow Switch (OFS) is connected to two
controllers through two secure channels. In a normal
operation, the role of the OpenFlow Controller (OFC) 01 is
set to MASTER and that of OFC02 is set to SLAVE.
OFC01 and 02 have the same flow entry information
mirrored between the two OFCs. OFSs are operated under
the reactive mode, and send a packet-in message to the
controller when it receives a new packet undefined in the
flow entry. To evaluate the performance influence in the
data plane, a traffic generator continuously generates data
packets with 100 packets per second (pps) where every
packet has unique flow identifiers for stressing the reactive
operation of the controller.

Figure 2 shows an operational sequence of the proposed
redundant scheme utilizing the multiple-controller capability.
In the proposed scheme, controllers send keep-alive
messages (e.g., ICMP echo) to each other every 50

OpenFlow
Controller02

Keep-alive

50ms

OFPT_ROLE_REQUEST

Packet-in

Failover time

Role-change time

Flow modification

Keep-alive

Interface down

OpenFlow
Controller01

OpenFlow
Switch

OFPT_ROLE_REPLY

Packet-out

Fail Detection

Packet-out

Flow modification

Packet-in

Failure detection time

Figure 2. Design of a control procedure for the local recovery.

OpenFlow
Switch

OpenFlow
Controller 01

OpenFlow
Controller 02

Layer 2 Switch

Traffic
Generator

Data plane

Control plane

: Secure channel

: Physical connection

: Data traffic

Role: MASTER Role: SLAVE

: Asynchronous message

Figure 1. Testbed configuration for the local recovery.

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

milliseconds. In a normal operation, OFS sends an
asynchronous message such as packet-in to OFC01, since
the switch recognizes the role of OFC01 as MASTER and
that of OFC02 as SLAVE. OFC01 sends a flow-
modification message and packet-out message to respond to
the packet-in message from the switch. If the keep-alive
message is lost, a controller (i.e., OFC01) is assumed to
have failed. Due to the failure of OFC01, OFS cannot send
any packet-in messages, and then the data plane cannot
continue successful packet forwarding for any new
incoming flows. Upon detecting the failure of OFC01,
OFC02 sends an OFPT_ROLE_REQUEST message to OFS
for changing its own role to MASTER. Then, OFS replies
the OFPT_ROLE_REPLY message, and starts sending
asynchronous messages to OFC02 after the completion of
the role-change process. To respond to the asynchronous
messages, OFC02 starts sending flow-modification and
packet-out messages, and finally, the packet forwarding in
the data plane is restored. As represented in Figure 2,
failover time is defined as the duration time from the failure
event of OFC01 to the first packet-out message sent by
OFC02. Failover time is measured using a traffic generator
to obtain the data plane outage time. A role-change time is
defined as the duration time from the detection of OFC01
failure to the receipt of OFPT_ROLE_REPLY by OFC02.
Role-change time is measured by retrieving the event log of
each controller to observe the control message process.

B. Demonstration of Local Recovery

The failover time and role-change time are evaluated
with increasing flow entries in order to investigate the
influence of the entry size. Figure 3 shows the failover time
and role-change time averaged with 10 times measurements.
Failover time is around 60-90 milliseconds and role-change
time is about 15 milliseconds. Since the failure detection
included in the failover time has a timing offset within the
keep-alive interval, observed failover time has some
fluctuation range. Although the role-change time of the
proposal is comparable with that of the virtual address-
based redundancy, the failover time of the proposal shows a
significant advantage thanks to the seamless handover
between multiple secure channels. Figure 3 also shows that

entry size on OFCs does not affect the local recovery
operation both for role-change time and failover time.

C. Proposed Design of Global Recovery
In this section, we explain the redundant method of

multiple domains. Figure 4 shows a reference model of the
controller redundancy for the global recovery scenario. The
global repair should consider tackling extraordinary events
affecting, for example, the entire data center. We assume
that a controller is installed in each domain to retain its
scalability and performance. The controller manages OFSs
belonging to the same domain as the MASTER, and the
controller manages the other OFSs in the other domains as
the SLAVE. The respective roles of the controllers are
depicted in the upper side of Figure 4. For example, OFS-A
(i.e., some switches belonging to domain-A) recognize the
role of OFC-A (i.e., the controller belonging to domain-A)
is MASTER and the role of the other controllers is SLAVE.
Similarly, OFS-B and OFS-C also recognize the role of the
controller that belongs to its same domain is MASTER and
the roles of the other controllers are SLAVE. The controller
has flow entry information for only OFSs recognizing the
controller as MASTER. Thus the controller does not need to
have an excessive configuration or receive an excessive
message. Additionally, one characteristic of our proposal is
the existence of a Role Management Server (RMS). RMS
monitors all controllers to manage their role, and RMS has
some data such as CPU utilization, role information,
configuration of all controllers and domain information of
all switches. RMS determines which controller should take
over the role of MASTER and relevant configuration data, if
a controller has failed. In this regard, we have to be careful
to prevent second failures. If OFC-B takes over the role of
MASTER for broken OFC-A and places OFS-A under
management besides OFS-B, there is the possibility of CPU
utilization overload of OFC-B and then OFC-B may fail
consequently. Thus we should consider that one failure will
induce subsequent failures. That is why RMS monitors CPU
utilization and judges multiple controllers should take over
the role of MASTER from one controller, if RMS judges

5000 10000
0

50

100

Number of Flow Entries

T
im

e
[m

s]

Failover time
Role−change time

Figure 3. Result of failover and role-change time in a single
domain.

OFS A Master
Master

Master
Slave
Slave Slave

Slave Slave
Slave

Role of controller

OFS B
OFS C

OFC A OFC B OFC C

Role-Management
Server(RMS)

Domain A Domain B Domain C

OFS A OFS B OFS C

: Physical connection : Asynchronous message

Figure 4. A network model for global recovery.

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

that taking over with single controller raises overload of
CPU utilization.

Figure 5 shows the role-change transition for the global
controller recovery. Figure 5 (a) shows the initial state, and
two switches are connected to three controllers through
three secure channels. In the normal operation, both
switches recognize that the role of OFC-A is MASTER and
the other controllers are SLAVE. So only OFC-A receives
some asynchronous messages such as packet-in messages.
In this case, the three controllers have different
configurations respectively and the information is reflected
in the database of RMS. Also RMS has CPU utilization, role
information of each controller and the cognition haven by
switch regarding the role of the controller in its database.
The traffic generator connects OFS01 and OFS02
respectively and the data transfer rate is 100 pps. The two
switches receive a new packet and send a packet-in message
to the controller at all times as well as the measurement of a
single domain.

If OFC-A fails and RMS judges there is no problem to
take over the MASTER role by a single controller, the initial
state (i.e., Fig. 5 (a)) is changed to Figure 5 (b) where only
OFC-B takes over the role of MASTER. The database of
RMS is updated accordingly, and both switches start sending
asynchronous messages to OFC-B.

In contrast, if OFC-A is failed and RMS judges that a
single controller cannot take over the Master role but two
controllers can, the initial state is changed to Figure 5 (c)
where two controllers take over the role of MASTER. The
database of RMS is updated accordingly, and then OFS01
starts sending asynchronous messages to OFC-B. OFS02
sends asynchronous messages to OFC-C.

Figure 6 shows a global recovery scheme in the case of
Figure 5 (b). RMS monitors the CPU utilization of all
controllers every 50 milliseconds. Since Figure 5 (b) has
three controllers, each controller is monitored every 150
milliseconds. The proposed recovery process consists of a
judge-phase and a takeover-phase. If RMS is unable to

retrieve the information about CPU utilization from OFC-A,
RMS does not immediately assume that OFC-A has failed to
avoid false positive. To ensure the failure detection, RMS
requests that the ICMP echo be sent from the other
controllers (OFC-B and OFC-C) to OFC-A. If more than half
of the results indicate the failure of OFC-A, RMS determines
that OFC-A has failed and starts calculating a new MASTER
controller migrating OFC-A’s configuration and OFSs under
OFC-A. The process from failure detection to the
determination of a failed controller is defined as the judge-
phase as indicated in Figure 6. After the judge-phase, RMS
moves to the takeover-phase. In the takeover-phase, RMS
firstly calculates whether it is no problem for a single
controller to take over all switches connected to OFC-A by
considering CPU utilization of OFC-A as well as OFC-B and
C. If two or more controllers are required to take over all
switches of OFC-A, RMS separates the switches based on
the ratio of the available CPU resources of new MASTER

Interface down

Packet-out

RMS OFC-A OFC-B

Keep-alive message

Send result of keep-alive

snmp

OFS01

OFTP_ROLE_REPLY

Send updated configuration

Completion notice about updated configuration

Fail detection

Request to change role

OFPT_ROLE_REQUEST

Completion notice about role-change

Packet-in

Flow modification

Packet-out

Role-change time

judge

Judge-phase

Takeover-phase

OFC-C OFS02

Keep-alive message

Send result of keep-alive

Packet-in

Failover time

snmp

snmp

50ms

Request sending a keep-alive

Request sending a keep-alive

OFPT_ROLE_REQUEST

OFTP_ROLE_REPLY

Flow modification

a

b

c

d

e

f

Failure detection time

Figure 6. Proposed operational sequence for Figure 5 (b) scenario.

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

MASTER MASTER
SLAVE

SLAVE SLAVE

SLAVE

x%

y%

z%

A

B

C

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

SLAVE SLAVE
MASTER

SLAVE SLAVE

MASTER

x%

y+a%

z%

A

A+B

C

OFS01

OFC A

RMS

Layer 3 Switch

Traffic
Generator

Traffic
Generator

OFC B OFC C

Layer 3 Switch Layer 3 Switch

OFS02

CPU OFS 01 OFS 02Config

OFC A

OFC B

OFC C

SLAVE SLAVE
MASTER

SLAVE MASTER

SLAVE

x%

y+b%

Z+c%

A

A+B

A+C

: Secure channel : Physical connection : Asynchronous message : Data traffic

(a) Normal state. (b) Two switches are migrated to
a single controller.

(c) Two switches are migrated to
two controllers.

Figure 5. Role-change transition in the global controller recovery.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

controllers. If RMS decides that OFC-B is sufficiently
adequate to become a new single MASTER as shown in
Figure 5 (b), RMS integrates OFC-A’s configuration into
OFC-B’s and registers the integrated configuration into
OFC-B. Upon receiving the integrated configuration, OFC-B
updates its own configuration and then reports the
completion of the integration process. Then, RMS requests
OFC-B to send OFPT_ROLE_REQUEST to the switches for
updating the role of OFC-A to SLAVE and OFC-B as
MASTER. The switches send OFPT_ROLE_REPLY after
updating the role change process. Then, OFC-B reports the
completion of the role-change process to RMS. The process
from completion of the judge-phase to completion of the
role-change is defined as the takeover-phase. After the take–
over phase, the switches OFC01 and 02 start sending
asynchronous messages to OFC-B.

D. Demonstration of Global Recovery
Figure 7 shows the role-change time and failover time

averaged with 10 times measurements in both cases of
Figure 5 (b) and (c). Role-change time and failover time
increase with the growth of flow entry size. This result
shows the difference in behavior compared with the result of
a local recovery shown in Figure 3. The major reason for
this increase of failover time is that RMS needs integration
of multiple configurations of failed OFC and registration of
the configuration during the takeover-phase. As different
scenarios of the global recovery, RMS selects multiple
controllers as the new MASTER as shown in Figure 5 (c),
and the scenario takes longer role-change time and failover
time as shown in Figure 7. This reason is analyzed using the
result of Figure 8 that shows a breakdown of role-change
time under 1000 entries in both cases (i.e., Figure 5 (b) and
(c)). The characters (“a” to “ f”) placed on the x-axis of

Figure 8 correspond to the marker shown in Figure 6. As
shown in Figure 8, the major performance difference comes
from c that is the time to integrate configuration in RMS and
register it to OFC. Current implementation suffers from the
serial processing of the registration of integrated data. This
means introducing parallel processing of the registration
resolves the delay of role-change for the scenario shown in
Figure 5 (c).

According to Figure 7, role-change time is about 300
milliseconds and failover time is 420 milliseconds in 10000
flow entries, in the case of the scenario in Figure 5 (b). In the
case of the Figure 5 (c) scenario, the role-change time is
about 500 milliseconds and failover time is about 620
milliseconds. These results indicate that, for both scenarios,
our proposal achieves competitive role-change time and
faster failover time compared with existent redundant
mechanisms [8, 9]. We consider the proposed
implementation of multiple controllers achieves high
availability controllers for both intra and inter data-center
recoveries.

In this paper, we did not explicitly show the redundancy
of RMS itself. Although conventional server redundancy
mechanisms accompanying relatively longer failover time
may be applied to RMS redundancy, single failure of the
RMS itself does not directly affect packet forwarding.

IV. RELATED WORK

In [6], the HyperFlow approach improves the
performance of the OpenFlow control plane and achieves
redundancy of the controllers. HyperFlow introduces a
distributed inter-controller synchronization protocol forming
a distributed file system. HyperFlow is implemented as a
NOX-C++ application and synchronizes all events between
controllers by messaging advertisements. In the case of
controller failures, HyperFlow requires overwriting of the
controller registry in all relevant switches or simply forming
hot-standby using servers in the vicinity of the failed
controller. Thus, this approach assumes re-establishment of
the secure channel, and does not assume the multiple-
controllers capability defined in OpenFlow 1.2. Therefore,
time duration of the failover operation may increase with the
growth of the number of switches managed by the failed

5000 10000
0

200

400

600

Number of Flow Entries

T
im

e
[m

s]

(b) Role−change time
(b) Failover time
(c) Role−change time
(c) Failover time

Figure 7. Result of failover time and role-change time in global
recovery.

0

100

200

300

(b) Role−change time
(c) Role−change time

a b c d e f

Figure 8. Breakdown of role-change time observed for scenario
Figure 5 (b) and (c).

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

controller. Since the failover process of HyperFlow does not
consider any server resource, overload of CPU utilization is
a potential risk in the event of migrating switches to a new
controller especially in the global recovery scenario.

There are several methods of general server redundancy,
and such methods may also be effective for OpenFlow
controllers. For example, one possible server redundancy
can use one virtual IP address aggregating hot-standby or
several servers. In [7], failover time is evaluated using the
virtual address-based implementation with Common
Address Redundancy Protocol (CARP), which is like
Virtual Router Redundancy Protocol (VRRP) [8].
According to the analysis, the average time of changing the
role between master and backup is 15.7 milliseconds.
However there is a concern that the virtual IP-based
approach takes a longer fail-over time than our approach,
since the virtual IP-based approach fundamentally involves
the re-establishment process of the secure channels.
Although the virtual IP-based scheme is straightforward if it
is applied within single LAN, it cannot simply be applied to
multiple locations (e.g., data centers) managed under
different addressing schemes. This means that the virtual IP-
based scheme alone is not sufficient to tackle global repair.
In [9], a server clustering with a mechanism of seamless
handover of TCP connection between backend servers was
proposed. While each TCP connection is visible to only one
back-end server in a normal clustering scheme, the proposal
[9] makes the connection visible to at least two back-ends
using proprietary backup TCP (BTCP) protocol within a
backend network. The connection migrates to a backup, and
then the backup is able to resume the connection
transparently before the client TCP connection is lost. Using
this scheme, the connections are recovered by the backup
server within 0.9 seconds including a failure detecting time
of 0.5 seconds. This approach is expected to be applicable
also for global repair involving multiple locations. However,
from the viewpoint of performance scalability of the
OpenFlow controller as analyzed in [1, 2], a common
frontend server required in the clustering system can be a
serious bottleneck of message processing in the control
plane (e.g., if the frontend server is broken, all TCP
connections are lost). The high availability scheme should
avoid such single frontend server to ensure the performance
scalability of OpenFlow controllers. In our proposed
solution, RMS cannot be a serious bottleneck of processing
asynchronous messages because RMS failure itself does not
affect any secure channel sessions and thus the data plane is
not affected, accordingly. In addition, to tackle global
repairs, server utilization should also be considered in the
process of migrating many switches. However, conventional
approaches do not consider utilization of the server
resources (e.g., CPU).

V. CONCLUSION AND FUTURE WORK

In OpenFlow architecture, the controller is an important
element to achieve reliable SDN. In this paper, we proposed
a redundant scheme to tackle both a single domain (“local”)
and multiple domain (“global”) recovery scenarios, which

cannot be resolved with conventional redundant schemes. To
avoid performance scale-limit due to conventional clustering
schemes, our scheme eliminates any frontend server from the
redundant system. The demonstration shows that the
proposal performs competitive role change and failover
times compared with conventional schemes. The role change
time observed in a local recovery scenario is about 15
milliseconds regardless of entry size, and that in a global
scenario ranges from 200 to 400 milliseconds. CPU
resource-aware migration of managed OpenFlow switches in
the failover process is successfully achieved by our scheme.
The proposal is expected to be an effective high availability
scheme necessary for deploying reliable and scalable SDN.

In future work, we will establish CPU-based controller
resource modeling to accurately handover many OpenFlow
switches in the event of, especially, global recovery where
massive nodes may need to be protected.

REFERENCES
[1] N. McKeown et al., “OpenFlow: Enabling innovation in

campus networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, i 2, April 2008, pp. 69-74.

[2] M. P. Fernandez, “Evaluating OpenFlow controller
paradigms,” Proc. International Conference on Networks
(ICN2013), January 2013, pp. 151-157.

[3] R. Pries, M. Jarschel, and S. Goll, “On the usability of
OpenFlow in data center environments,” Proc. IEEE
International Conference on Communications (ICC2012),
June 2012, pp. 5533-5537.

[4] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp,
“OpenQoS: an OpenFlow controller design for multimedia
delivery with end-to-end Quality of Service over Software-
Defined Networks,” Proc. Signal & Information Processing
Association Annual Summit and Conference (APSIPA ASC
2012), Dec. 2012, pp. 1-8.

[5] “OpenFlow switch specification version 1.2,” Open
Networking Foundation, Dec. 2011.

[6] A. Tootoonchian and Y. Ganjali, “HyperFlow: a distributed
control plane for OpenFlow,” Proc. the 2010 internet network
management conference on research on enterprise networking
(INM/WREN’10), 2010.

[7] F. Koch and K. T. Hansen, “Redundancy performance of
virtual network solutions,” Proc. IEEE Conference on
Emerging Technologies and Factory Automation (ETFA’06),
Sept. 2006, pp. 328-332.

[8] “Virtual Router Redundancy Protocol (VRRP),” IETF
RFC3768, April 2004.

[9] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic, “Efficient
TCP connection failover in web server clusters,” Proc. IEEE
International Conference on Computer Communications
(INFOCOM’04), vol. 2, March 2004, pp. 1219-1228.

[10] OpenFlow 1.2 Tutorial,
https://github.com/CPqD/OpenFlow-1.2-Tutorial
[retreived: April, 2013].

[11] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and
P. Skoldstrom, “Scalable fault management for OpenFlow,”
Proc. IEEE International Conference on Communications
(ICC2012), June 2012, pp. 6606-6610.

[12] “The Transport Layer Security (TLS) Protocol Version 1.2,”
IETF RFC5246, August 2008.

[13] “TRANSMISSION CONTROL PROTOCOL,” IETF
RFC793, September 1981.

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

