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Abstract—OpenFlow is expected to be an enabler that solves 
the problems of today’s network. Thanks to the centralized 
management with OpenFlow, agile network operation can be 
achieved with flexible programmability; however, the 
centralized management implies a significant impact of any 
outages of the OpenFlow controller. Hence, a high availability 
technology is indispensable for building the OpenFlow 
controller, and the high availability system should consider 
extraordinary events (e.g., power outage) affecting the entire 
data center as well as anticipated server failures within a local 
system. In this paper, the high-availability of the OpenFlow 
controller is investigated, and a redundant method considering 
both local and global (i.e., inter data-center) recoveries is 
proposed by using the multiple-controllers functionality that is 
defined in OpenFlow switch specification version 1.2 and later. 
The proposed redundant scheme eliminates frontend server 
causing limitation of performance scalability, while it achieves 
competitive role change and failover times. 

Keywords-OpenFlow; controller; redundancy. 

I.  INTRODUCTION 

Towards future telecom services, programmability of the 
network is expected to shorten the service delivery time and 
to enhance flexibility of service deployment meeting 
diversified and complex user requirements on various 
applications (e.g., real-time and non real-time applications). 
OpenFlow [1] is an enabler of the centralized management 
solution meeting the aforementioned expectations, and 
many researches have addressed the scalability issue of the 
OpenFlow-based solution.  

In [1], several OpenFlow controllers are evaluated from 
the viewpoint of scalability in centralized management and 
control. Message processing performances of two operation 
modes (i.e., proactive and reactive) of the OpenFlow 
controller are evaluated using several existent 
implementations (e.g., Floodlight, NOX, Trema). In [2], the 
scalability of the OpenFlow solution for a data center 
environment is analyzed to show an implementation 
guideline. The paper concludes that, to achieve lossless and 
low delay performance in the data center application, the 
number of OpenFlow switches managed by one controller 
should be limited to eight. To leverage an advantage of the 
centralized management, the OpenFlow controller should 
not be a simple flow switching policy server. In [3], 
OpenQoS architecture delivers end-to-end quality of service 
(QoS) with OpenFlow-based traffic control. The OpenFlow 

controller with OpenQoS has the role of collecting the 
network state to perform dynamic QoS routing, i.e., the 
controller has the route calculation function just like the 
Path Computation Element (PCE). Indeed, in IETF, PCE 
architecture is growing as a stateful operation supporting the 
enforcement of path provisioning in addition to its original 
path computation role. Hence, the importance of the 
OpenFlow controller is growing with the broader concept of  
Software Defined Networking (SDN), and thus the high 
availability of the controller system must be discussed. 
However, there is little research on the high availability of 
the OpenFlow controller that must play the important role 
on SDN.  

In this paper, the high availability of the OpenFlow 
controller is investigated, and a high availability method 
applicable to multiple OpenFlow controllers is proposed. In 
the proposed redundant method, “global” repair (i.e., inter 
data-center redundancy) as well as local repair (i.e., 
redundancy within a local network) are considered. The 
proposal achieves a competitive failover time compared 
with existent redundant schemes (e.g., server clustering), 
while the proposal does not require any frontend server 
limiting performance scalability of the OpenFlow controller. 

The organization of this paper is as follows: In Section 
II, we explain the function of multiple controllers defined in 
OpenFlow switch specification 1.2 [5] and also explain its 
applicability to achieving redundancy of the OpenFlow 
controller. We investigate existent approaches of redundant 
schemes as well. In Sections III-A and B, we evaluate the 
performance of the redundant method for multiple 
controllers placed on a single domain. In Sections III-C and 
D, we propose the redundant method for multiple controllers 
placed on multiple domains and evaluate the performance. 
Finally, concluding remarks are given in Section IV. 

 

II. BACKGROUND 

Typical implementation of OpenFlow allocates a 
controller separating the control plane from the data plane, 
and an OpenFlow switch playing the role of data plane 
communicates with an OpenFlow controller using the 
OpenFlow protocol over a Transport Layer Security (TLS) 
[12] or a TCP connection [13] defined as a “secure channel”. 
The switch tries to forward a packet by looking up flow 
entries populated in-advance by the controller. If the packet 
does not match the current flow entries, the switch sends a 
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packet-in message over the secure channel to the controller 
in order to retrieve a direction on how to treat the packet.  

One method handling data plane failure is implementing 
a monitoring function on OpenFlow switch [11]; however, 
only the monitoring function in a data plane is not sufficient 
to achieve high availability of the control plane. In contrust, 
achieving controller redundancy also contributes to 
protection of the data plane.In the case of the controller 
outages, the secure channel connection is lost accordingly, 
and then the packet-in message cannot be successfully 
processed by the controller. Hence, new packets that are not 
matched with the flow entry are simply dropped or allowed 
to fall in a default operation (e.g., forwarding to a neighbor 
anyway) that never provides desirable services until the 
ultimate recovery of the controller. 

OpenFlow specification 1.2 introduced the capability of 
multiple controllers by defining three states (i.e., MASTER, 
SLAVE, and EQUAL) of a controller. A controller has its 
own role by using the function of multiple controllers, and 
the state itself is owned by the switch. In the three states, 
MASTER and EQUAL have full access to the switch and 
can receive all asynchronous messages (e.g., packet-in) 
from the switch. A switch can make secure channel 
connections to multiple EQUAL controllers, but the switch 
is allowed to access only one MASTER controller. In the 
SLAVE state, a controller has read-only access to switches 
and cannot receive asynchronous messages apart from a 
port-status message from the switches. A controller can 
change its own state by sending an 
OFPT_ROLE_REQUEST message to switches. On receipt 
of the message, the switch sends back an 
OFPT_ROLE_REPLY message to the controller. If the 
switch receives a message indicating the controller’s intent 
to change its state to MASTER, all the other controllers’ 
states owned by the switch are changed to SLAVE. This 
function enables a switch to have multiple secure channels, 
and thus the switch is not required to re-establish new 
secure channels in the event of controller outages. In the 
multiple-controllers capability, the role-change mechanism 
is entirely driven by the controllers, while the switches act 
passively only to retain the role. Therefore, investigating the 
implementation of the controller side is important to achieve 
the redundancy; however, that has not been proposed yet. 
We use the capability of multiple controllers to achieve high 
availability of the control plane. In the following section, we 
propose how to use it and explain the effect. 
 

III.  PROPOSAL AND DEMONSTRATION 

In this section, a proposed architecture for local and 
global recoveries is described, and recovery operation in the 
two scenarios (i.e., local and global) is demonstrated. To 
avoid the secure channel re-establishment that is inevitable 
in conventional virtual IP-based redundancy, the proposal 
commonly applies the multiple-controllers functionality [10] 
to both local and global scenarios. Through the 
demonstration for the two scenarios, we implemented the 
controller prototype based on NOX-C++ for OpenFlow 1.2 
available in [10]. 

 

A. Proposed Design of Local Recovery 

First, we explain the redundant method in a single 
domain, which is typically a data-center hosting OpenFlow 
controllers. 

Figure 1 shows a reference model to describe and 
demonstrate the proposed scheme designed for the local 
recovery. An OpenFlow Switch (OFS) is connected to two 
controllers through two secure channels. In a normal 
operation, the role of the OpenFlow Controller (OFC) 01 is 
set to MASTER and that of OFC02 is set to SLAVE. 
OFC01 and 02 have the same flow entry information 
mirrored between the two OFCs. OFSs are operated under 
the reactive mode, and send a packet-in message to the 
controller when it receives a new packet undefined in the 
flow entry. To evaluate the performance influence in the 
data plane, a traffic generator continuously generates data 
packets with 100 packets per second (pps) where every 
packet has unique flow identifiers for stressing the reactive 
operation of the controller.  

Figure 2 shows an operational sequence of the proposed 
redundant scheme utilizing the multiple-controller capability. 
In the proposed scheme, controllers send keep-alive 
messages (e.g., ICMP echo) to each other every 50 
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Figure 2. Design of a control procedure for the local recovery. 
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Figure 1. Testbed configuration for the local recovery. 
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milliseconds. In a normal operation, OFS sends an 
asynchronous message such as packet-in to OFC01, since 
the switch recognizes the role of OFC01 as MASTER and 
that of OFC02 as SLAVE. OFC01 sends a flow-
modification message and packet-out message to respond to 
the packet-in message from the switch. If the keep-alive 
message is lost, a controller (i.e., OFC01) is assumed to 
have failed. Due to the failure of OFC01, OFS cannot send 
any packet-in messages, and then the data plane cannot 
continue successful packet forwarding for any new 
incoming flows. Upon detecting the failure of OFC01, 
OFC02 sends an OFPT_ROLE_REQUEST message to OFS 
for changing its own role to MASTER. Then, OFS replies 
the OFPT_ROLE_REPLY message, and starts sending 
asynchronous messages to OFC02 after the completion of 
the role-change process.  To respond to the asynchronous 
messages, OFC02 starts sending flow-modification and 
packet-out messages, and finally, the packet forwarding in 
the data plane is restored. As represented in Figure 2, 
failover time is defined as the duration time from the failure 
event of OFC01 to the first packet-out message sent by 
OFC02. Failover time is measured using a traffic generator 
to obtain the data plane outage time. A role-change time is 
defined as the duration time from the detection of OFC01 
failure to the receipt of OFPT_ROLE_REPLY by OFC02. 
Role-change time is measured by retrieving the event log of 
each controller to observe the control message process. 

 

B.  Demonstration of Local Recovery 

The failover time and role-change time are evaluated 
with increasing flow entries in order to investigate the 
influence of the entry size. Figure 3 shows the failover time 
and role-change time averaged with 10 times measurements. 
Failover time is around 60-90 milliseconds and role-change 
time is about 15 milliseconds. Since the failure detection 
included in the failover time has a timing offset within the 
keep-alive interval, observed failover time has some 
fluctuation range. Although the role-change time of the 
proposal is comparable with that of the virtual address-
based redundancy, the failover time of the proposal shows a 
significant advantage thanks to the seamless handover 
between multiple secure channels. Figure 3 also shows that 

entry size on OFCs does not affect the local recovery 
operation both for role-change time and failover time. 
 

C. Proposed Design of Global Recovery  
In this section, we explain the redundant method of 

multiple domains. Figure 4 shows a reference model of the 
controller redundancy for the global recovery scenario. The 
global repair should consider tackling extraordinary events 
affecting, for example, the entire data center. We assume 
that a controller is installed in each domain to retain its 
scalability and performance. The controller manages OFSs 
belonging to the same domain as the MASTER, and the 
controller manages the other OFSs in the other domains as 
the SLAVE. The respective roles of the controllers are 
depicted in the upper side of Figure 4. For example, OFS-A 
(i.e., some switches belonging to domain-A) recognize the 
role of OFC-A (i.e., the controller belonging to domain-A) 
is MASTER and the role of the other controllers is SLAVE. 
Similarly, OFS-B and OFS-C also recognize the role of the 
controller that belongs to its same domain is MASTER and 
the roles of the other controllers are SLAVE. The controller 
has flow entry information for only OFSs recognizing the 
controller as MASTER. Thus the controller does not need to 
have an excessive configuration or receive an excessive 
message. Additionally, one characteristic of our proposal is 
the existence of a Role Management Server (RMS). RMS 
monitors all controllers to manage their role, and RMS has 
some data such as CPU utilization, role information, 
configuration of all controllers and domain information of 
all switches. RMS determines which controller should take 
over the role of MASTER and relevant configuration data, if 
a controller has failed. In this regard, we have to be careful 
to prevent second failures. If OFC-B takes over the role of 
MASTER for broken OFC-A and places OFS-A under 
management besides OFS-B, there is the possibility of CPU 
utilization overload of OFC-B and then OFC-B may fail 
consequently. Thus we should consider that one failure will 
induce subsequent failures. That is why RMS monitors CPU 
utilization and judges multiple controllers should take over 
the role of MASTER from one controller, if RMS judges 
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that taking over with single controller raises overload of 
CPU utilization. 

Figure 5 shows the role-change transition for the global 
controller recovery. Figure 5 (a) shows the initial state, and 
two switches are connected to three controllers through 
three secure channels. In the normal operation, both 
switches recognize that the role of OFC-A is MASTER and 
the other controllers are SLAVE. So only OFC-A receives 
some asynchronous messages such as packet-in messages. 
In this case, the three controllers have different 
configurations respectively and the information is reflected 
in the database of RMS. Also RMS has CPU utilization, role 
information of each controller and the cognition haven by 
switch regarding the role of the controller in its database.  
The traffic generator connects OFS01 and OFS02 
respectively and the data transfer rate is 100 pps. The two 
switches receive a new packet and send a packet-in message 
to the controller at all times as well as the measurement of a 
single domain. 

If OFC-A fails and RMS judges there is no problem to 
take over the MASTER role by a single controller, the initial 
state (i.e., Fig. 5 (a)) is changed to Figure 5 (b) where only 
OFC-B takes over the role of MASTER. The database of 
RMS is updated accordingly, and both switches start sending 
asynchronous messages to OFC-B. 

In contrast, if OFC-A is failed and RMS judges that a 
single controller cannot take over the Master role but two 
controllers can, the initial state is changed to Figure 5 (c) 
where two controllers take over the role of MASTER. The 
database of RMS is updated accordingly, and then OFS01 
starts sending asynchronous messages to OFC-B. OFS02 
sends asynchronous messages to OFC-C. 

Figure 6 shows a global recovery scheme in the case of 
Figure 5 (b). RMS monitors the CPU utilization of all 
controllers every 50 milliseconds. Since Figure 5 (b) has 
three controllers, each controller is monitored every 150 
milliseconds. The proposed recovery process consists of a 
judge-phase and a takeover-phase. If RMS is unable to 

retrieve the information about CPU utilization from OFC-A, 
RMS does not immediately assume that OFC-A has failed to 
avoid false positive. To ensure the failure detection, RMS 
requests that the ICMP echo be sent from the other 
controllers (OFC-B and OFC-C) to OFC-A. If more than half 
of the results indicate the failure of OFC-A, RMS determines 
that OFC-A has failed and starts calculating a new MASTER 
controller migrating OFC-A’s configuration and OFSs under 
OFC-A. The process from failure detection to the 
determination of a failed controller is defined as the judge-
phase as indicated in Figure 6. After the judge-phase, RMS 
moves to the takeover-phase. In the takeover-phase, RMS 
firstly calculates whether it is no problem for a single 
controller to take over all switches connected to OFC-A by 
considering CPU utilization of OFC-A as well as OFC-B and 
C. If two or more controllers are required to take over all 
switches of OFC-A, RMS separates the switches based on 
the ratio of the available CPU resources of new MASTER 
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controllers. If RMS decides that OFC-B is sufficiently 
adequate to become a new single MASTER as shown in 
Figure 5 (b), RMS integrates OFC-A’s configuration into 
OFC-B’s and registers the integrated configuration into 
OFC-B. Upon receiving the integrated configuration, OFC-B 
updates its own configuration and then reports the 
completion of the integration process. Then, RMS requests 
OFC-B to send OFPT_ROLE_REQUEST to the switches for 
updating the role of OFC-A to SLAVE and OFC-B as 
MASTER. The switches send OFPT_ROLE_REPLY after 
updating the role change process. Then, OFC-B reports the 
completion of the role-change process to RMS. The process 
from completion of the judge-phase to completion of the 
role-change is defined as the takeover-phase. After the take–
over phase, the switches OFC01 and 02 start sending 
asynchronous messages to OFC-B. 
 

D. Demonstration of Global Recovery  
Figure 7 shows the role-change time and failover time 

averaged with 10 times measurements in both cases of 
Figure 5 (b) and (c). Role-change time and failover time 
increase with the growth of flow entry size. This result 
shows the difference in behavior compared with the result of 
a local recovery shown in Figure 3.  The major reason for 
this increase of failover time is that RMS needs integration 
of multiple configurations of failed OFC and registration of 
the configuration during the takeover-phase. As different 
scenarios of the global recovery, RMS selects multiple 
controllers as the new MASTER as shown in Figure 5 (c), 
and the scenario takes longer role-change time and failover 
time as shown in Figure 7. This reason is analyzed using the 
result of Figure 8 that shows a breakdown of role-change 
time under 1000 entries in both cases (i.e., Figure 5 (b) and 
(c)). The characters (“a” to “ f”) placed on the x-axis of 

Figure 8 correspond to the marker shown in Figure 6. As 
shown in Figure 8, the major performance difference comes 
from c that is the time to integrate configuration in RMS and 
register it to OFC. Current implementation suffers from the 
serial processing of the registration of integrated data. This 
means introducing parallel processing of the registration 
resolves the delay of role-change for the scenario shown in 
Figure 5 (c). 

According to Figure 7, role-change time is about 300 
milliseconds and failover time is 420 milliseconds in 10000 
flow entries, in the case of the scenario in Figure 5 (b). In the 
case of the Figure 5 (c) scenario, the role-change time is 
about 500 milliseconds and failover time is about 620 
milliseconds. These results indicate that, for both scenarios, 
our proposal achieves competitive role-change time and 
faster failover time compared with existent redundant 
mechanisms [8, 9]. We consider the proposed 
implementation of multiple controllers achieves high 
availability controllers for both intra and inter data-center 
recoveries. 

In this paper, we did not explicitly show the redundancy 
of RMS itself. Although conventional server redundancy 
mechanisms accompanying relatively longer failover time 
may be applied to RMS redundancy, single failure of the 
RMS itself does not directly affect packet forwarding. 

IV. RELATED WORK 

In [6], the HyperFlow approach improves the 
performance of the OpenFlow control plane and achieves 
redundancy of the controllers. HyperFlow introduces a 
distributed inter-controller synchronization protocol forming 
a distributed file system. HyperFlow is implemented as a 
NOX-C++ application and synchronizes all events between 
controllers by messaging advertisements. In the case of 
controller failures, HyperFlow requires overwriting of the 
controller registry in all relevant switches or simply forming 
hot-standby using servers in the vicinity of the failed 
controller. Thus, this approach assumes re-establishment of 
the secure channel, and does not assume the multiple-
controllers capability defined in OpenFlow 1.2. Therefore, 
time duration of the failover operation may increase with the 
growth of the number of switches managed by the failed 
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controller. Since the failover process of HyperFlow does not 
consider any server resource, overload of CPU utilization is 
a potential risk in the event of migrating switches to a new 
controller especially in the global recovery scenario. 

There are several methods of general server redundancy, 
and such methods may also be effective for OpenFlow 
controllers. For example, one possible server redundancy 
can use one virtual IP address aggregating hot-standby or 
several servers. In [7], failover time is evaluated using the 
virtual address-based implementation with Common 
Address Redundancy Protocol (CARP), which is like 
Virtual Router Redundancy Protocol (VRRP) [8]. 
According to the analysis, the average time of changing the 
role between master and backup is 15.7 milliseconds. 
However there is a concern that the virtual IP-based 
approach takes a longer fail-over time than our approach, 
since the virtual IP-based approach fundamentally involves 
the re-establishment process of the secure channels. 
Although the virtual IP-based scheme is straightforward if it 
is applied within single LAN, it cannot simply be applied to 
multiple locations (e.g., data centers) managed under 
different addressing schemes. This means that the virtual IP-
based scheme alone is not sufficient to tackle global repair. 
In [9], a server clustering with a mechanism of seamless 
handover of TCP connection between backend servers was 
proposed. While each TCP connection is visible to only one 
back-end server in a normal clustering scheme, the proposal 
[9] makes the connection visible to at least two back-ends 
using proprietary backup TCP (BTCP) protocol within a 
backend network. The connection migrates to a backup, and 
then the backup is able to resume the connection 
transparently before the client TCP connection is lost. Using 
this scheme, the connections are recovered by the backup 
server within 0.9 seconds including a failure detecting time 
of 0.5 seconds. This approach is expected to be applicable 
also for global repair involving multiple locations. However, 
from the viewpoint of performance scalability of the 
OpenFlow controller as analyzed in [1, 2], a common 
frontend server required in the clustering system can be a 
serious bottleneck of message processing in the control 
plane (e.g., if the frontend server is broken, all TCP 
connections are lost). The high availability scheme should 
avoid such single frontend server to ensure the performance 
scalability of OpenFlow controllers. In our proposed 
solution, RMS cannot be a serious bottleneck of processing 
asynchronous messages because RMS failure itself does not 
affect any secure channel sessions and thus the data plane is 
not affected, accordingly. In addition, to tackle global 
repairs, server utilization should also be considered in the 
process of migrating many switches. However, conventional 
approaches do not consider utilization of the server 
resources (e.g., CPU). 

 

V. CONCLUSION AND FUTURE WORK 

In OpenFlow architecture, the controller is an important 
element to achieve reliable SDN. In this paper, we proposed 
a redundant scheme to tackle both a single domain (“local”) 
and multiple domain (“global”) recovery scenarios, which 

cannot be resolved with conventional redundant schemes. To 
avoid performance scale-limit due to conventional clustering 
schemes, our scheme eliminates any frontend server from the 
redundant system. The demonstration shows that the 
proposal performs competitive role change and failover 
times compared with conventional schemes. The role change 
time observed in a local recovery scenario is about 15 
milliseconds regardless of entry size, and that in a global 
scenario ranges from 200 to 400 milliseconds. CPU 
resource-aware migration of managed OpenFlow switches in 
the failover process is successfully achieved by our scheme. 
The proposal is expected to be an effective high availability 
scheme necessary for deploying reliable and scalable SDN.  

In future work, we will establish CPU-based controller 
resource modeling to accurately handover many OpenFlow 
switches in the event of, especially, global recovery where 
massive nodes may need to be protected. 
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