
Semantic Network Organization Based on Distributed Intelligent Managed

Elements

Improving efficiency and resiliency of computational processes

Mark Burgin

UCLA

Los Angeles, USA

mburgin@math.ucla.edu

Rao Mikkilineni

C
3
 DNA Inc.

Santa Clara, USA

rao@c3dna.com

Abstract — A new network architecture based on increasing

intelligence of the computing nodes is suggested for building

the semantic grid. In its simplest form, the distributed

intelligent managed element (DIME) network architecture

extends the conventional computational model of information

processing networks, allowing improvement of the efficiency

and resiliency of computational processes. This approach is

based on organizing the process dynamics under the

supervision of intelligent agents. The DIME network

architecture utilizes the DIME computing model with non-von

Neumann parallel implementation of a managed Turing

machine with a signaling network overlay and adds cognitive

elements to evolve super recursive information processing, for

which it is proved that they improve efficiency and power of

computational processes. The main aim of this paper is

modeling the DIME network architecture with grid automata.

A grid automaton provides a universal model for computer

networks, sensor networks and many kinds of other networks.

Keywords - semantic network; DIME network architecture;

grid automaton; structural operation; connectivity; modularity;

Turing O-Machine; cloud computing.

I. INTRODUCTION

Information processing networks play more and more
important role in society. For instance, close to a billion
hosts are connected to the Internet. The rapid rise in
popularity of the Internet is due to the World Wide Web
(WWW), search engines, e-mail, social networking and
instant communication systems, which enable high-speed
and resourceful exchanges and transformation of
information, as well as provide unlimited access to a huge
amount of information [1].

Recently, cloud and grid computing have been regarded
as the most promising paradigms to interconnect
heterogeneous commodity computing environments. To
make it more efficient, the concept of the semantic web or
semantic grid was introduced as a new level of the Internet
and the World Wide Web. This new level is based on
establishing a new form of Web content that is meaningful to
computers. The Semantic Web proposes to help computers in
obtaining information from the Web and using it for
achieving various goals. The first step is to add metadata to
Web pages making the existing World Wide Web machine
comprehensible and providing machine tools to find,
exchange, and to a limited extent, interpret information.

Being an extension of, but not a replacement for, the World
Wide Web, this approach will unleash a revolution of new
possibilities.

In this paper, the distributed intelligent managed element
(DIME) network architecture [2, 3, 4, 5, 6] previously
discussed at the Turing Centenary Conference [7] in
Manchester, is aimed at the development of semantic
networks extending the conventional computational model of
the network architecture. It is aimed at improving efficiency
and resiliency of computational processes by organizing their
evolution to model process dynamics under the supervision
of intelligent agents. The computing hardware resources are
combined with software functions to arrange processes and
their dynamics using a network of DIMEs where each end
node can be either a DIME unit or a sub-network of DIME
units executing a workflow. The hardware resources are
characterized by their parameters such as the required CPU,
memory, network bandwidth, latency, storage throughput,
IOPs and capacity. The efficiency of computation is
determined by the required resources, while the
expressiveness of the computational process dynamics is
established by the structure of the DIME units and
connecting hardware units, such as servers or routers, along
with its interactions within and with the external world.

The suggested approach to the semantic web lies in
provisioning of resource descriptions and ontologies to
DIME agents. The agent would search through metadata that
clearly identify and define what the agent needs to know.
Metadata are machine-readable data that describe other data.
In the Semantic Web, metadata are invisible as people read
the page, but they are clearly visible to DIME agents.
Metadata can also allow more complex, focused Web
searches with more accurate results and interpreting these
data for controlling DIME basic processors.

To achieve all these goals, it is necessary to base the
entire design of the whole network of applications, as well as
of the components that build the network, on a system
technology with flexibility to interconnect different
applications and devices from different vendors. Rigid
standards may be suitable to meet a short term requirement,
but in the long run, they will limit choices as it will inhibit
innovation. System technology, in turn, provides efficient
design methods and results in creation of better networks,
which satisfy necessary requirements. All these requirements
demand a new approach to application and device network
design, upgrading, and maintenance.

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

Figure 1: A Distributed Intelligent Managed Element is a managed

Turing Oracle Machine endowed with a signaling network overlay for policy
based DIME network management

Here, we develop tools for such a systemic network

design, upgrading, and maintenance based on three
principles: 1) modularity; 2) system representation of each
module by grid automata; and 3) utilization of modular
operations with networks, which are introduced in this paper.
Modular approach means division of a complex system into
smaller, manageable ones, making implementation much
easier to handle.

Section II, reviews the DIME network architecture and
current state of the art. Section III presents a review of the
theory of Grid Automata and Grid Arrays. Section IV
describes modeling DIME networks with Grid Automata,
while in Section V, some conclusions are considered and
directions for future work are suggested.

II. DIME NETWORK ARCHITECTURE

The DIME network architecture introduces three key
functional constructs to enable process design, execution and
management to improve both resiliency and efficiency of
computer networks [2, 3, 5].

1) Machines with an Oracle
Executing an algorithm, the DIME basic processor P

performs the {read -> compute -> write} instruction cycle or
its modified version the {interact with a network agent ->
read -> compute -> interact with a network agent -> write}
instruction cycle. This allows the different network agents to
influence the further evolution of computation, while the

computation is still in progress. We consider three types of
network agents:

(a) A DIME agent.
(b) A human agent.
(c) An external computing agent.

It is assumed that a DIME agent knows the goal and

intent of the algorithm (along with the context, constraints,
communications and control of the algorithm) the DIME
basic processor is executing and has the visibility of
available resources and the needs of the basic processor as it
executes its tasks. In addition, the DIME agent also has the
knowledge about alternate courses of action available to
facilitate the evolution of the computation to achieve its goal
and realize its intent. Thus, every algorithm is associated
with a blueprint (analogous to a genetic specification in
biology), which provides the knowledge required by the
DIME agent to manage the process evolution. An external
computing agent is any computing node in the network with
which the DIME unit interacts.

2) Blue-print or policy managed fault, configuration,

accounting, performance and security monitoring and

control
The DIME agent, which uses the blueprint to configure,

instantiate, and manage the DIME basic processor executing
the algorithm uses concurrent DIME basic processors with
their own blueprints specifying their evolution to monitor the
vital signs of the DIME basic processor and implements
various policies to assure non-functional requirements such
as availability, performance, security and cost management
while the managed DIME basic processor is executing its
intent. Figure 1 shows the DIME basic processor and its
DIME agent, which manages it using the knowledge
provided by the blueprint [3, 7].

3) DIME network management control overlay over the

managed Turing oracle machines
In addition to read/write communication of the DIME

basic processor (the data channel), other DIME basic
processors communicate with each other using a parallel
signaling channel. This allows the external DIME agents to
influence the computation of any managed DIME basic
processor in progress based on the context and constraints.
The external DIME agents are DIMEs themselves. As a
result, changes in one computing element could influence the
evolution of another computing element at run time without
halting its Turing machine executing the algorithm. The
signaling channel and the network of DIME agents can be
programmed to execute a process, the intent of which can be
specified in a blueprint. Each DIME basic processor can
have its own oracle managing its intent, and groups of
managed DIME basic processors can have their own domain
managers implementing the domain’s intent to execute a
process. The management DIME agents specify, configure,
and manage the sub-network of DIME units by monitoring
and executing policies to optimize the resources while
delivering the intent.

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

Figure 2: Implementation architecture of a Web application workflow using a physical server network and a cloud using Virtual Machines

Figure 2 shows the DIME network implementation

architecture for a process with different hardware, functions
and an evolving structure used to attaining the intent of the
process.

This architecture has following benefits from current
architectures deploying virtual machines to provide cloud
services such as self-provisioning, self-repair, auto-scaling
and live-migration:

1. Using DNA, same cloud services can be provided at
application and workflow group level across physical or
virtual servers. The mobility of applications comes from
utilization of the policies implemented to manage the intent
through the signaling network overlay over the managed
computer network. Applications are moved into static
Virtual Machines with given service levels provisioned.

2. Scheduling, monitoring, and managing distributed
components and groups with policies at various levels de-
couple the application/workflow management from
underlying distributed infrastructure management systems.
The vital signs (cpu, memory, bandwidth, latency, storage
IOPs, throughput and capacity) are monitored and managed
by DIMEs, which are functioning similar to the Turing o-
machines.

While implementing the monitoring and management of
the DIME agent, the DIME network monitors and manages
its own vital signs and executing various policies to assure
availability, performance and security. At each level in the
hierarchy, a domain specific task or workflow is executed to
implement a distributed process with a specific intent. In
figure 2, each web component has its own policies and the
group has the service level policies that define its
availability, performance and security. Based on policies, the
elements are replicated or reconfigured to meet the resource
requirements based on monitored behavior.

In essence, the DIME computing model infuses sensors
and actuators connecting the DIME basic processor with the
DIME agent to manage the DIME basic processor and its

resources based on the intent, interactions and available
resources. Policy managers are used to configure, monitor
and manage the basic processor’s intent. The DIME network
architecture has been successfully implemented using 1) a
Linux operating system and 2) a new native operating system
called parallax [2, 3]. More recently, a product based on
DIME network architecture was used to implement auto-
failover, auto-scaling, and live-migration of a web based
application deployed on distributed servers with or without
virtualization [8]. In this paper we model the DIME network
architecture with grid automata. A grid automaton [9] is
shown to be more efficient and expressive than the von
Neumann implementation of the Turing Machine. In the next
section, we review the Grid Automata and Grid Arrays.

III. GRID AUTOMATA AND GRID ARRAYS

All computer and embedded system networks, as well as
their software, are grid arrays in the sense of [9, 10, 11]. The
Internet is a grid array. The Grid [12, 13] is also a grid array.
Computing grid arrays consist of computing devices
connected by some ties, e.g., channels. Grid automata
provide theoretical models for grid arrays and thus, for
computer software, hardware, networks and many other
systems. At first, we give an informal definition.

Definition 1. A grid automaton is a system of abstract
automata and their networks, which are situated in a grid, are
called nodes, are optionally connected and interact with one
another.

The difference is that a grid array consists of real
(physical) information processing systems and connections
between them, while a grid automaton consists of abstract
automata as its nodes. Nodes in a grid automaton can be
finite automata, Turing machines, vector machines, array
machines, random access machines, inductive Turing
machines, and so on. Even more, some of the nodes can be
also grid automata.

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

Translating this definition into the mathematical
language, two types of grid automata - basic grid automata
and grid automata with ports – are considered.

The basic idea of interacting processes is for a
transmitting process to send a message using a port and for
the receiving process to get the message from another port.
To formalize this structure, we assume, as it is often true in
reality, that connections are attached to automata by means
of ports. Ports are specific automaton elements through
which data come into (input ports or inlets) and send outside
the automaton (output ports or outlets). Thus, any system P
of ports is the union of its two (possibly) disjoint subsets P =

Pin  Pout where Pin consists of all inlets from P and Pout
consists of all outlets from P. If in the real system, there are
ports that are both inlets and outlets, in the model, we split
them, i.e., represented such ports as pairs consisting of an
input port and an output port. There are different other types
of ports. For instance, contemporary computers have parallel
and serial ports. Ports can have inner structure, but in the
first approximation, it is possible to consider them as
elementary units.

We also assume that each connection is directed, i.e., it
has the beginning and end. It is possible to build
bidirectional connections from directed connections.

Let us consider a class of automata B with ports of types
T and a class of connections/links L that can be connected to
automata from B.

Definition 2. A (port) grid automaton G over the
collection (B, P, L), which is called accessible hardware, is
the system

G = (AG , PG , CG , pIG , cG , pEG)
that consists of three sets and three mappings:

 AG is the set of all automata from G, assuming AG 
B;

 CG is the set of all links from G, assuming CG  L;

 PG = PIG  PEG (with PIG  PEG = ) is the set of all

ports of G, assuming PG  P, where PIG is the set of
all ports (called internal ports) of the automata from
AG , and PEG is the set of external ports of G, which
are used for interaction of G with different external
systems;

 pIG : PIG  AG is a total function, called the internal
port assignment function, that assigns ports to
automata;

 cG : CG  (PIGout  PIGin)  P’IGin  P’’IGout is a
(eventually, partial) function, called the port-link
adjacency function, that assigns connections to ports
where P’IGin and P’’IGout are disjunctive copies of
PIGin ;

 pEG : PEG  AG  PIG  CG is a function, called the
external port assignment function, that assigns ports
to different elements from G.

To have meaningful assignments of ports, the port
assignment functions pIG and pEG have to satisfy some
additional conditions.

Examples:

1. The screen of a computer monitor is an output port.
Such a screen can be also treated as a system of output ports
(pixels).

2. The mouse of a computer is an input port. It can be
also treated as a system of input ports.

3. The touch screen of a computer is an input port. Such a
screen can be also treated as a system of input ports.

Definition 3. A basic grid automaton A over the

collection (B, L), which is called accessible hardware, is a
system A = (AA , CA , cA) that consists of two sets and one
mapping:

 the set AA is the set of all automata from A, assuming

AA  B;

 the set CA is the set of all connections/links from A,

assuming CA  L;

 the mapping cA: CA  AA  AA  A’A  A’’A , which
is a (variable) function, called the node-link
adjacency function, which assigns connections to
nodes where A’A and A’’A are disjunctive copies of
AA .

There are different types of connections. For instance,
computer networks links or connections are implemented on
a variety of different physical media, including twisted pairs,
coaxial cable, optical fiber, and space.

It is possible to group connections in grid arrays and grid
automata into three main types:
1. Simple connections that are not changing deliberately

transmitted data and themselves when the automaton or
array is functioning.

2. Transformable connections that may be changed when
the automaton or array is functioning.

3. Processing connections that can transform transmitted
data.

A grid automaton G is described by three grid
characteristics and three node characteristics.

The grid characteristics are:
1. The space organization or structure of the grid

automaton G.
This space structure may be in the physical space,

reflecting where the corresponding information processing
systems (nodes) are situated, it may be the system structure
defined by physical connections between the nodes, or it
may be a mathematical structure defined by the geometry of
node relations. System structure is so important in grid arrays
that in contemporary computers connections between the
main components are organized as a specific device, which
is called the computer bus. In a computer or on a network, a
bus is a transmission path in form of a device or system of
devices on which signals are dropped off or picked up at
every device attached to the line.

There are three kinds of space organization of a grid
automaton: static structure that is always, the same;
persistent dynamic structure that eventually changes
between different cycles of computation; and flexible
dynamic structure that eventually changes at any time of
computation. Persistent Turing machines [14] have persistent
dynamic structure, while reflexive Turing machines [15]

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

have flexible dynamic structure and perform emergent
computations [16].
2. The topology of G is determined by the type of the node

neighborhood and is usually dependent on the system
structure of G.

A natural way to define a neighborhood of a node is to
take the set of those nodes with which this node directly
interacts. In a grid, these are often, but not always, the nodes
that are physically the closest to the node in question.

For example, if each node has only two neighbors (right
and left), it defines linear topology in G. When there are four
nodes (upper, below, right, and left), the G has two-
dimensional rectangular topology.

However, it is possible to have other neighborhoods. For
instance, consider linear cellular automata in which the
neighborhood of each cell has the radius r > 1 [9]. It means
that r cells from each side of a given cell directly influence
functioning of this cell.
3. The dynamics of G determines by what rules its nodes

exchange information with each other and with the
environment of G.

For example, when the interaction of Turing machines in
a grid automaton G is determined by a Turing machine, then
G is equivalent to a Turing machine. At the same time, when
the interaction of Turing machines in a grid automaton G is
random, then G is much more powerful than any Turing
machine.

The node characteristics are:
1. The structure of the node. For example, one structure

determines a finite automaton, while another structure is
a Turing machine.

2. The external dynamics of the node determines
interactions of this node.

According to this characteristic there are three types of
nodes: accepting nodes that only accept or reject their input;
generating nodes that only produce some input; and
transducing nodes that both accept some input and produce
some input. Note that nodes with the same external dynamics
can work in grids with various dynamics.
3. The internal dynamics of the node determines what

processes go inside this node.
For example, the internal dynamics of a finite automaton

is defined by its transition function, while the internal
dynamics of a Turing machine is defined by its rules.
Differences in internal dynamics of nodes are very important
because a change in producing the output allows us to go
from conventional Turing machines to much more powerful
inductive Turing machines of the first order [17].

Representation of grid automata without ports called
basic grid automata is the first approximation to a general
network model [9, 1], while representation of grid automata
with ports is the second (more exact) approximation. In some
cases, it is sufficient to use grid automata without ports,
while in other situations, to build an adequate, flexible and
efficient model of a network, we need automata with ports.
Usually, basic grid automata are used when the modeling
scale is big, i.e., at the coarse-grain level, while port grid
automata are used when the modeling scale is small and we
need a fine-grain model.

 Neural networks, cellular automata, systolic arrays, and
Petri nets are special kinds of grid automata [9]. However,
grid automata provide computer science with much more
flexibility, expressive power and correlation with real
computational and communication systems than any of these
models. In comparison with cellular automata, a grid
automaton can contain different kinds of automata as its
nodes. For example, finite automata, Turing machines and
inductive Turing machines can belong to one and the same
grid. In comparison with systolic arrays, connections
between different nodes in a grid automaton can be arbitrary
like connections in neural networks. In comparison with
neural networks and Petri nets, a grid automaton contains, as
its nodes, more powerful machines than finite automata. An
important property of grid automata is a possibility to realize
hierarchical structures, that is, a node can be also a grid
automaton. In grid automata, interaction and communication
becomes as important as computation. This peculiarity
results in a variety of types of automata, their functioning
modes, and space organization.

 Internal ports of a port grid automaton B to which no
links are attached are called open. External ports of a port
grid automaton B to which no links or automata are attached
are called free. External ports of a port grid automaton B,
being always open, are used for connecting B to some
external systems.

 All ports of a grid automaton are divided into three
classes: input ports, which can only accept information;
output ports, which can only transmit information; and mixed
ports, which can accept and transmit information (in the
form of signals or symbols).

 This typology of ports, as is used in the general case of
information processing systems [9], induces the following
classification of grid automata:

1. Grid automata without input and output (called
closed grid automata).

2. Grid automata with input (called closed from the
right or open from the left grid automata).

3. Grid automata with output (called closed from the
left or open from the right grid automata).

Grid automata with both input and output (called open
grid automata).

IV. MODELING DIME NETWORKS WITH GRID

AUTOMATA

In the context of grid automata, a DIME network is
represented by a grid automaton with such nodes as DIME
units, servers, routers, etc.

Each DIME unit is modeled by a basic automaton A with
an Oracle O. The automaton A models the DIME basic
processor P, while the Oracle O models the DIME agent DA.
Turing machines with Oracles, inductive Turing machines
with Oracles, limit Turing machines with Oracles [15], and
evolutionary Turing machines with Oracles [19] are
examples of such an automaton A with an Oracle O.

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

Figure 3: A Web Service Workflow Deployed in a physical server and providing mobility a Virtual server

The Oracle O in a DIME unit knows the intent of the

algorithm (along with the context, constraints,
communications and control of the algorithm) the basic
automaton A is executing under its influence and has the
visibility of available resources and the needs of the
automaton A as it executes its function. In addition, the
Oracle also has the knowledge about alternate courses of
action available to facilitate the evolution of the computation
to achieve its intent. Thus, every algorithm is associated with
a blueprint (analogous to a genetic specification in biology),
which can provide the knowledge required by an Oracle to
manage its evolution.

In addition to read/write communication of the basic
automaton (the data channel), the Oracles manage different
basic automata communicating with each other using a
parallel signaling channel. This allows the external Oracles
to influence the computation of any managed basic
automaton in progress based on the context and constraints
just as a Turing Oracle is expected to do.

The Oracle uses the blueprint to configure, instantiate,
and manage the automaton A executing the algorithm.
Utilization of concurrent automata in the network with their
own blueprints specifying their evolution to monitor the vital
signs of the DIME basic automaton and to implement
various policies allows the Oracle to assure non-functional
requirements such as availability, performance, security and
cost management, while the managed DIME basic
automaton is executing its task to achieve its goal and realize
its intent.

The external Oracles represent DIME agents, allowing
changes in one computing element influence the evolution of
another computing element at run time without stopping its
basic automaton executing the algorithm. The signaling
channel and the network of the Oracles can be programmed

to execute a process whose intent itself can be specified in a
blueprint. Each basic automaton can have its own Oracle
managing its intent, and groups of managed basic automata
can have their own domain managers implementing the
domain’s intent to execute a process. The management
Oracles specify, configure and manage the sub-network of
DIMEs by monitoring and executing policies to optimize the
resources while delivering the intent. The DIME network
implementing the Oracles is itself managed by monitoring its
own vital signs and executing various FCAPS policies to
assure availability, performance and security.

An Oracle is modeled by an abstract automaton that has
higher computational power and/or lower computational
complexity than the basic automaton it manages. For
instance, the Oracle can be an inductive Turing machine,
while the basic automaton is a conventional Turing machine.
It is proved that inductive Turing machines have much
higher computational power and lower complexity than
conventional Turing machine [9].

DIME agents possess a possibility to infer new data and
knowledge from the given information. Inference is one of
the driving principles of the Semantic Web, because it will
allow us to create software applications quite easily. For the
Semantic Web applications, DIME agents need high
expressive power to help users in a wide range of situations.
To achieve this, they employ powerful logical tools for
making inferences. Inference abilities of DIME agents are
developed based on mathematical models of these agents in
the form of inductive Turing machines, limit Turing
machines [9] and evolutionary Turing machines [18, 19].

Figure 3 shows a workflow DNA of a web application
running on a physical infrastructure that has policies to
manage auto-failover by moving the components when the
vital signs being monitored at various levels are affected. For

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

example if the virtual machine in the middle server fails, the
service manager at higher level detects it and replicates the
components in another server on the right and synchronizes
the states of the components based on consistency policies.

V. CONCLUSION

Three innovations are introduced, namely, the parallel
monitoring of vital signs (cpu, memory, bandwidth, latency,
storage IOPs, throughput and capacity) in the DIME,
signaling network overlay to provide run-time service
management and machines with Oracles in the form of
DIME agents. This allows interruption for policy
management at read/write in a file/device allow self-repair,
auto-scaling, live-migration and end-to-end service
transaction security with private key mechanism independent
of infrastructure management systems controlling the
resources and thus, provide freedom from infrastructure and
architecture lock-in. The DIME network architecture puts the
safety and survival of applications and groups of applications
delivering a service transaction first using secure mobility
across physical or virtual servers. It provides information for
sectionalizing, isolating, diagnosing and fixing the
infrastructure at leisure. The DIME network architecture
therefore makes possible reliable services to be delivered on
even not-so-reliable infrastructure. Modeling this
architecture by grid automata allows researchers to study
properties and critical parameters of semantic networks and
provides means for optimizing these parameters. Future
work will investigate specific predictions that can be made
from the theory for a specific DIME network execution and
compare the resiliency and efficiency using both recursive
and super-recursive implementations.

ACKNOWLEDGMENT

Rao Mikkilineni thanks Giovanni Morana and Ian Seylor
for implementing the DIME network architecture and Vijay
Sarathy, Nishan Sathyanarayan and Paul Camacho from C

3

DNA Inc., for making it an enterprise-class product.

REFERENCES

[1] N. Olifer and V. Olifer, Computer networks: Principles,

technologies and protocols for network design, New
York:Wiley, 2006.

[2] R. Mikkilineni, Designing a new class of distributed systems.
New York: Springer, 2011.

[3] R. Mikkilineni, G. Morana and I. Seyler, "Implementing
distributed, self-Managing computing services infrastructure
using a scalable, parallel and network-centric computing
model." In Achieving Federated and Self-Manageable Cloud
Infrastructures: Theory and Practice, ed. M. Villari, I. Brandic
and F. Tusa, 57-78, 2012.

Accessed September 05, 2014. doi:10.4018/978-1-4666-1631-
8.ch004.

[4] R. Mikkilineni, "Architectural resiliency in distributed
computing," International Journal of Grid and High
Performance Computing (IJGHPC) 4, 2012.

Accessed (September 05, 2014),
doi:10.4018/jghpc.2012100103.

[5] R. Mikkilineni, G. Morana, D. Zito, and M. Di Sano, “Service
virtualization using a non-von Neumann parallel, distributed,
and scalable computing model,” Journal of Computer
Networks and Communications, vol. 2012, Article ID
604018, 10 pages, 2012. doi:10.1155/2012/604018.

[6] R. Mikkilineni, "Going beyond computation and its limits:
Injecting cognition into computing." Applied Mathematics 3,
pp. 1826-1835, 2012.

[7] R. Mikkilineni, A. Comparini and G. Morana, “The Turing O-
Machine and the DIME network architecture: Injecting the
architectural resiliency into distributed computing, In Turing-
100. The Alan Turing Centenary, (Ed.) Andrei Voronkov,
EasyChair Proceedings in Computing, Volume 10, pp. 239-
251, 2012.

http://dx.doi.org/10.1155/2012/604018

[8] R. Mikkilineni and G. Morana, "Infusing cognition into
distributed computing: A new approach to distributed
datacenters with self-managing services" Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE), 2014 23rd IEEE International Conference, June
2011.

[9] M. Burgin, Super-recursive Algorithms, New York: Springer,
2005.

[10] M. Burgin, From Neural networks to Grid automata, in
Proceedings of the IASTED International Conference
”Modeling and Simulation”, Palm Springs, California, 2003

[11] M. Burgin, Cluster computers and Grid automata, in
Proceedings of the ISCA 17th International Conference
“Computers and their applications”, International Society for
Computers and their Applications, Honolulu, Hawaii, pp.
106-109, 2003.

[12] I. Foster, “Computational Grids,” in The Grid: Blueprint for a
future computing infrastructure, San Francisco, CA,: Morgan
Kauffman, pp. 15-52, 1998.

[13] M. L. Bote-Lorenzo, Y.A.Dimitriadis and E. Gómez-Sánchez,
Grid characteristics and uses: a grid definition, in First
European Across Grids conference, LNCS 2970, pp. 291–
298, 2004.

[14] D. Goldin and P. Wegner, Persistent Turing Machines, Brown
University Technical Report, 1988.

[15] M. Burgin, “Reflexive Calculi and Logic of Expert Systems”,
in Creative processes modeling by means of knowledge bases,
Sofia, pp. 139-160, 1992.

[16] J. P. Crutchfield and M. Mitchell, "Evolution of Emergent
Computation" Computer Science Faculty Publications and
Presentations. Paper 3, 1995.

http://pdxscholar.library.pdx.edu/compsci_fac/3

[17] M. Burgin, "Inductive Turing machines," Notices of the
Academy of Sciences of the USSR, 270 N6 pp. 1289-1293,
1983. (translated from Russian).

[18] M. Burgin and E. Eberbach, “On foundations of evolutionary
computation: an evolutionary automata approach,” in
Handbook of Research on Artificial Immune Systems and
Natural Computing: Applying Complex Adaptive
Technologies (Hongwei Mo, Ed.), IGI Global, Hershey,
Pennsylvania, pp. 342-360, 2009.

[19] M. Burgin and E. Eberbach, “Evolutionary Automata:
Expressiveness and Convergence of Evolutionary
Computation,” Computer Journal, v. 55, No. 9 pp. 1023-1029,
2012.

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

http://dx.doi.org/10.1155/2012/604018
http://pdxscholar.library.pdx.edu/compsci_fac/3

