
Open API for M2M Applications: What is Next?
Current state and development proposals

Manfred Schneps-Schneppe

Ventspils University College

Ventspils International Radio Astronomy Centre

Ventspils, Latvia

manfreds.sneps@gmail.com

Dmitry Namiot

 Lomonosov Moscow State University

Faculty of Computational Mathematics and Cybernetics

Moscow, Russia

dnamiot@gmail.com

Abstract—This paper relates to telecommunication standards and

describes the current status of open Application Programming

Interface for M2M applications as well as proposes some changes

and extensions. The European Telecommunications Standards

Institute is going to provide open standards for the rapidly

growing M2M market. An open specification, presented as an

Open API, provides applications with a rich framework of core

network capabilities upon which to build services while

encapsulating the underlying communication protocols. Services

may be replicated and ported between different execution

environments and hardware platforms. We would like to discuss

the possible extensions for ETSI proposals and describe the add-

ons that, by our opinion, let keep telecom development inline

with the modern approaches in the web development domain.

Keywords-m2m; open api; rest; web intents.

I. INTRODUCTION

Machine-to-Machine (M2M) refers to technologies that
allow both wireless and wired systems to communicate with
other devices of the same ability. M2M uses a device (such as a
sensor or meter) to capture an event (such as temperature,
inventory level, etc.), which is relayed through a network
(wireless, wired or hybrid) to an application (software
program), translates the captured event into meaningful

information [1].

Considering M2M communications as a central point of
Future Internet, European commission creates standardization
mandate M/441 [2]. The general objective of the mandate is to
ensure European standards that will enable interoperability of
utility meters (water, gas, electricity, heat), which can then
improve the means by which customers’ awareness of actual
consumption can be raised in order to allow timely adaptation
to their demands.

Our goal is here to propose some new additions for M2M
communications, namely, web intents, as add-on for the more
traditional REST approach to simplify the development phases
for M2M applications. The key advantages are JSON versus
XML, asynchronous communications and integrated calls.

Right now, market players are offering own standards for
M2M architecture [17].

Figure 1 illustrates the basics of M2M infrastructure (as
per Cisco) [3].

The M2M infrastructure includes three primary domains:
cloud, network, and edge devices. Each of these domains
contains a specific anchor point which conducts the M2M
signaling across the infrastructure. The M2M traffic has its
own specific characteristics, such as low mobility and offline
and online data transmission, which create new challenges for
dimensioning the network. Service providers that are trying to
customize their networks face the additional challenge of
supporting traffic generated from residential and enterprise
customer premises equipment (CPE).

Of course, there are several attempts to provide the standard
set of software tools for M2M applications. These attempts are
well explainable. Because M2M applications are directly
linked to hardware devices than the portability of applications,
the ability to bring new devices in system etc. become the key
factors.

Figure 1. M2M infrastructure (as per Cisco)

Current customized M2M solutions and platforms tend to
assume direct connectivity between the M2M core and devices,
with no aggregators. However, linking residential and
enterprise M2M gateways to an M2M-ready core opens new
business models for service providers. M2M gateways can be
bypassed when necessary.

In other words, what we can see now it is a growing interest
to the M2M middleware.

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Also, M2M middleware helps us with heterogeneity of
M2M applications. Heterogeneity of service protocols inhibits
the interoperation among smart objects using different service
protocols and/or API’s. We assume that service protocols and
API’s are known in advance. This assumption prevents existing
works from being applied to situations where a user wants to
spontaneously configure her smart objects to interoperate with
smart objects found nearby [4].

Alcatel [5], for example, proposes the following conceptual
view of M2M server (Fig. 2).

Figure 2. M2M server architecture

The gateway element should be located on the boundary
between a wireless network and the Internet network used by
application servers to communicate to a device. So, the M2M
server can maintain sessions to application servers on one side,
and to devices on the other side. In other words, it acts as a
bridge, passing information from the application server to
appropriate devices.

Web based architecture (or similar to web based) is about
the common trend as we see. Many systems are offering for
M2M developers the tools that developers are familiar with
(e.g., from the previous projects, from the enterprise
development, etc.), but the common denominators here are the
standard protocols (REST, SOAP over HTTP) and nothing
more. In other words, we can see the REST support in many
(almost all) M2M frameworks, but the semantic for calls could
be (almost always) different.

Of course, ETSI [2] is not the only source for the
standardization in M2M area. The 3rd Generation Partnership
Project maintains and develops technical specifications and
reports for mobile communication systems [15]. The
International Telecommunication Union as a specialized
agency of the United Nations is responsible for IT and
communication technologies. The Telecommunications
Standardization Sector (ITU-T), covers the issue of M2M
communication via the special Ubiquitous Sensor Networks-
related groups [16]. ITU address the area of networked
intelligent sensors.

Also, we can see a growing interest to the cloud based
M2M systems. For example, Axeda [14] offers cloud for
M2M devices, including many traditional elements from the

enterprise development world like business rules in
orchestrations. [Fig. 3]

Figure 3. Axeda platform

Note that this system is actually very far from the European
standards, despite the fact that it is also based on REST and
SOAP as the ETSI standards. But in the same time AT&T has
selected it as default M2M platform.

The rest of the paper is organized as follows. Section II
contains an analysis of Open API for M2M, submitted to ETSI.
In Section III, we offer the never web tool, Web Intents for
enhancement of M2M middleware. Sections IV and V are
devoted to discussion.

II. OPEN API FROM ETSI

This section describes an Open API for M2M, submitted to
ETSI. It is probably the most valuable achievement at this
moment.

The OpenAPI for M2M applications developed jointly in
Eurescom study P1957 [6] and the EU FP7 SENSEI project [7]
makes. The OpenAPI has been submitted as a contribution to
ETSI TC M2M [8] for standardization.

Actually, in this Open API, we can see the big influence of
Parlay specification. Parlay Group leads the standard, so called
Parlay/OSA API, to open up the networks by defining,
establishing, and supporting a common industry-standard APIs.
Parlay Group also specifies the Parlay Web services API, also
known as Parlay X API, which is much simpler than
Parlay/OSA API to enable IT developers to use it without
network expertise [9].

The goals are obvious, and they are probably the same as
for any unified API. One of the main challenges in order to
support easy development of M2M services and applications
will be to make M2M network protocols “transparent” to
applications. Providing standard interfaces to service and
application providers in a network independent way will allow
service portability [10].

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

At the same time, an application could provide services via
different M2M networks using different technologies as long as
the same API is supported and used. This way an API shields
applications from the underlying technologies, and reduces
efforts involved in service development. Services may be
replicated and ported between different execution
environments and hardware platforms [11].

This approach also lets services and technology platforms
to evolve independently. A standard open M2M API with
network support will ensure service interoperability and allow
ubiquitous end-to-end service provisioning.

The Open API provides service capabilities that are to be
shared by different applications. Service Capabilities may be
M2M specific or generic, i.e., providing support to more than
one M2M application.

Key points for Open API:

- it supports interoperability across heterogeneous
transports

- ETSI describes high-level flow and does not dictate
implementation technology

- it is message-based solution

- it combines P2P with client-server model

- and it supports routing via intermediaries

At this moment all point are probably not discussable
except the message-based decision. Nowadays, publish-
subscribe method is definitely not among the favorites
approaches in the web development, especially for heavy-
loading projects.

Let us name the main Open API categories and make some
remarks.

ETSI Open API
categories

API contents Comments

Grouping

A group here is defined as a common set of attributes
(data elements) shared between member elements.
On practice it is about the definition of addressable
and exchangeable data sets.

Just note, as it is important for our future suggestions,
there are no persistence mechanisms for groups.

Transactions

Service capability features and their service
primitives optionally include a transaction ID in
order to allow relevant service capabilities to be part
of a transaction. Just for the deploying transactions
and presenting some sequences of operations as
atomic.

In the terms of transactions management Open API
presents the classical 2-phase commit model. By the
way, we should note here that this model practically
does not work in the large-scale web applications. We
think it is very important because without scalability
we cannot think about “billions of connected devices”.

Application
Interaction

The application interaction part is added in order to
support development of simple M2M applications
with only minor application specific data definitions:
readings, observations and commands.

Application interactions build on the generic
messaging and transaction functionality and offer
capabilities considered sufficient for most simple
application domains.

Messaging The Message service capability feature offers
message delivery with no message duplication.
Messages may be unconfirmed, confirmed or
transaction controlled.

The message modes supported are single Object
messaging, Object group messaging, and any object
messaging; (it can also be Selective object
messaging). Think about this as Message Broker.

Event notification
and presence

The notification service capability feature is more
generic than handling only presence. It could give
notifications on an object entering or leaving a
specific group, reaching a certain location area,
sensor readings outside a predefined band, an alarm,
etc.

It is a generic form. So, for example, geo fencing
should fall into this category too. The subscriber
subscribes for events happening at the Target at a
Registrar. The Registrar and the Target might be the
same object. This configuration offers a
publish/subscribe mechanism with no central point of
failure.

Compensation Fair and flexible compensation schemes between
cooperating and competing parties are required to
correlate resource consumption and cost, e.g. in order
to avoid anomalous resource consumption and
blocking of incentives for investments. The defined
capability feature for micro-payment additionally
allows charging for consumed network resources.

It is very similar, by the way, to Parlay’s offering for
Charging API.

Sessions In the context of OpenAPI a session shall be
understood to represent the state of active
communication between Connected Objects.

OpenAPI is REST based, so, the endpoints should be
presented as some URI’s capable to accept (in this
implementation) the basic commands GET, POST,
PUT, DELETE (See an example below).

TABLE I. ETSI OPEN API CATEGORIES

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

A session example: requests execution of some function.

URI: http://{nodeId}/a/do

Method: POST

Request

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?>

<appint-do-request
xmlns="http://eurescom.eu/p1957/openm2m">

<requestor>9378f697-773e-4c8b-8c89-
27d45ecc70c7</requestor>

<commands>

<command>command1</command>

<command>command2</command>

</commands>

<responders>9870f7b6-bc47-47df-b670-
2227ac5aaa2d</responders>

<transaction-
id>AEDF7D2C67BB4C7DB7615856868057C3</transaction-
id>

</appint-do-request>

Response

<?xml version="1.0" encoding="UTF-8"
standalone="yes"?><appint-do-response
xmlns="http://eurescom.eu/p1957/openm2m">

<requestor>9378f697-773e-4c8b-8c89-
27d45ecc70c7</requestor>

<timestamp>2010-04-
30T14:12:34.796+02:00</timestamp>

<responders>9870f7b6-bc47-47df-b670-
2227ac5aaa2d</responders>

<result>200</result>

</appint-do-response>

Note that because we are talking about server-side solution,
there is no problem with so called sandbox restrictions. But it
means of course, that such kind of request could not be
provided right from the client side as many modern web
applications do.

III. WEB INTENTS VS. OPEN API FROM ETSI

Let us start from the basic. Users use many different
services on the web to handle their day to day tasks, developers
use different services for various tasks. In other words, our
environment consists of connected applications. And of course,
all they expect their applications to be connected and to work
together seamlessly.

It is almost impossible for developers to anticipate every
new service and to integrate with every existing external
service that their users prefer, and thus, they must choose to
integrate with a few select APIs at great expense to the
developer.

As per telecom experience, we can mention here the
various attempts for unified API that started, probably, with
Parlay. Despite a lot of efforts, Parlay API’s actually increase
the time for development. It is, by our opinion, the main reason
for the Parlay’s failure [9].

Web Intents solves this problem. Web Intents is a
framework for client-side service discovery and inter-
application communication. Services register their intention to
be able to handle an action on the user's behalf. Applications
request to start an action of a certain verb (for example share,
edit, view, pick etc.) and the system will find the appropriate
services for the user to use based on the user's preference. It is
the basic [12].

Going to M2M applications it means that our potential
devices will be able to present more integrated for the
measurement visualization for example. The final goal of any
M2M based application is to get (collect) measurements and
perform some calculations (make some decisions) on the
collected dataset. We can go either via low level API’s or use
(at least for majority of use cases) some integrated solutions.
The advantages are obvious. We can seriously decrease the
time for development.

Web Intents puts the user in control of service integrations
and makes the developers life simple.

Here is the modified example for web intents integration
for the hypothetical web intents example:

1. Register some intent upon loading our HTML document

document.addEventListener("DOMContentLoaded",
function() {

 var regBtn = document.getElementById("register");

 regBtn.addEventListener("click", function() {

 window.navigator.register("http://webintents.org/m2m",
undefined);

 }, false);

2. Start intent’s activity

 var startButton =
document.getElementById("startActivity");

 startButton.addEventListener("click", function() {

 var intent = new Intent();

 intent.action = "http://webintents.org/m2m";

 window.navigator.startActivity(intent);

 }, false);

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

3. Get measurements (note – in JSON rather than XML)
and display them in our application

 window.navigator.onActivity = function(data) {

 var output = document.getElementById("output");

 output.textContent = JSON.stringify(data);

 };

 }, false);

Obviously, that it is much shorter than the long sequence of
individual calls as per M2M Open API.

The key point here is onActivity callback that returns JSON
(not XML!) formatted data. As per suggested M2M API we
should perform several individual requests, parse XML
responses for the each of them and only after that make some
visualization. Additionally, web intents based approach is
asynchronous by its nature, so, we don need to organize
asynchronous calls by our own.

Also, Web Intents approach lets us bypass sandbox
restrictions. In other words, developers can raise requests right
from the end-user devices, rather than always call the server.
The server-side only solution becomes bottleneck very fast.
And vice-versa, client side based request let developers deploy
new services very quickly. Why do not use the powerful
browsers in the modern smart-phones? At the end of the day
Parlay spec were born in the time of WAP and weak phones.
Why do we ignore HTML5 browsers and JavaScript support in
the modern phones?

IV. DATA PERSISTENCE

The next question we would like to discuss relating to the

M2M API’s is probably more discussion able. Shall we add

some persistence API (at least on the form of generic

interface)?

The reasons are obvious – save the development time.

Again, we should keep in mind that we are talking about the

particular domain – M2M. In the most cases, our business

applications will deal with some metering data. As soon as we

admit, that we are dealing with the measurements in the

various forms we should make, as seems to us a natural

conclusion – we need to save the data somewhere. It is very

simple – we need to save data for the future processing.

So, the question is very easy – can we talk about M2M

applications without talking about data persistence? Again, the

key question is M2M. It is not abstract web API. We are

talking about the well-defined domain.

As seems to us, even right now, before the putting some

unified API in place, the term M2M almost always coexists

with the term “cloud”. And as we can see, almost always has

been accompanied by the terms like automatic database

logging, backup capabilities, etc.

So, maybe this question is more for the discussions or it

even could be provocative in the some forms, but it is: why

there is no reference API for persistence layer in the unified

M2M API? It is possible in general to create data gathering

API without even mentioning data persistence?

V. NEW SIGNALING DEMAND

Eventually, billions of devices — such as sensors,

consumer electronic devices, smart phones, PDAs and

computers — will generate billions of M2M transactions. For

example: Price information will be pushed to smart meters in a

demand-response system. Push notifications will be sent to

connected devices, letting a client application know about new

information available in the network. The scale of these

transactions will go beyond anything today’s largest network

operators have experienced. Signaling traffic will be the

primary bottleneck as M2M communications increase.

Alcatel-Lucent Bell Labs traffic modeling studies support this

by comparing network capacity against projected traffic

demand across multiple dimensions (such as signaling

processing load on the radio network controller, air-interface

access channel capacity, data volume and memory

requirement for maintaining session contexts). The limiting

factor is likely to be the number of session set-ups and tear-

downs. For the specific traffic model and network deployment

considered in the study, it is seen that up to 67 percent of

computing resources in the radio network controller is

consumed by M2M applications [5].

How much of the traffic sent is network overhead? As an

analysis carried on by A. Sorrevad [13] shows for ZigBee

solution, a node is sending at least 40 Mbytes per year with the

purpose of maintaining the network and polling for new data.

The trigger data traffic for a year is much less - around1-10

Mbytes. Thus, we see that the relationship between network

and trigger traffic can range between 40:1 to 4:1 in a ZigBee

solution that is following the home automation specification.

The traffic sent when maintaining a 6LoWPAN network is

application specific. The relationship between network and

trigger traffic can then be in the range 2:1 to 5:1.

Why do we think it is a place for traffic talk? Because

again, it is not clear completely how can we support

transactional API’s (as per ETSI draft [8]), without the dealing

with the increased traffic. Simply – in our transactions we

need the confirmation that device is alive, that operation has

been performed, etc. All this is signaling traffic. Actually, this

may lead to next provocative questions: do we really need

transactional calls for all use cases? For example, the modern

large-scale web applications (e.g., social networks) are not

transactional internally.

VI. CONCLUSION

This article describes the current state for the open unified

M2M API. Article proposes some new additions – web intents

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

as add-on for the more traditional REST approach. The main
goal for our suggestions is the simplifying the development
phases for M2M applications. The key advantages are JSON
versus XML, asynchronous communications and integrated
calls. Also we would like to point attention to the couple of
important questions that are not covered yet: data persistence
and signaling traffic.

 VII. ACKNOWLEDGEMENT

The paper is financed from ERDF's project SATTEH (No.
2010/0189/2DP/2.1.1.2.0/10/APIA/VIAA/019) being
implemented in Engineering Research Institute «Ventspils
International Radio Astronomy Centre» of Ventspils University
College (VIRAC).

VIII. REFERENCES

[1] M. Chen, J. Wan, and F. Li Machine-to-machine communications:
architectures, standards, and applications. KSII T Internet Inf 6(2): pp.
471–489, 2012

[2] Standartisation mandate to CEN, CENELEC and ETSI in the field of
measuring instruments for the developing of an open architecture for
utility meters involving communication protocols enabling
interoperability, European Commission, M/441, 2009.

[3] Managed and Cloud Services Insight Group Machine-to-Machine and
Cloud Services:
http://www.cisco.com/en/US/solutions/collateral/ns341/ns849/ns1098/w
hite_paper_c11-663879.html. Retrieved: Mar, 2012

[4] H. Park, B. Kim, Y. Ko, and D. Lee “InterX: A service interoperability
gateway for heterogeneous smart objects” in Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2011 IEEE
International Conference, 21-25 March 2011, pp. 233 – 238.

[5] H. Viswanathan,, “Getting Ready for M2M Traffic Growth”
http://www2.alcatel-lucent.com/blogs/techzine/2011/getting-ready-for-
m2m-traffic-growth/ Retrieved: Mar, 2012

[6] EURESCOM project P1957, Open API for M2M applications,
http://www.eurescom.de/public/projects/P1900-series/P1957/.
Retrieved: Mar, 2012

[7] Sensei project http://www.sensei-project.eu/. Retrieved: Feb, 2012

[8] Draft ETSI TS 102 690 V0.13.3 (2011-07) Technical Specification.

[9] J. Yim, Y. Choi, and B. Lee “Third Party Call Control in IMS using
Parlay Web Service Gateway Advanced Communication Technology”,
2006. ICACT 2006. The 8th International Conference Issue Date,: 20-22
Feb. 2006, pp. 221 – 224.

[10] I. Grønbæk., “Architecture for the Internet of Things (IoT): API and
interconnect”, The Second International Conference on Sensor
Technologies and Applications, IEEE August 2008, DOI
10.1109/SENSORCOMM.2008.20, 809.

[11] I. Grønbæk and K. Ostendorf “Open API for M2M applications” In:
ETSI M2M Workshop Oct. 2010.

[12] Web Intents http://webintents.org/ Retrieved: Mar, 2012

[13] A. Sorrevad “M2M Traffic Characteristics”, KTH Information and
Communication Technology, Master of Science Thesis, Stockholm,
Sweden, 2009 TRITA-ICT-EX-2009:212
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/091201-
Anders_Orrevad-with-cover.pdf Retrieved: Mar, 2012

[14] Axeda platform http://developer.axeda.com Retrieved: Feb, 2012

[15] 3GPP TS 22.368 V11.0.1, 3rd Generation Partnership Project; Technical
Specification Group Services and System Aspects; Service requirements
for Machine-Type Communications (MTC); Stage 1, (Release 11)

[16] J. Han, A. Vu, J. Kim, J. Jeon, S. Lee, and Y. Kim; “The fundamental
functions and interfaces for the ITU-T USN middleware components”,
Information and Communication Technology Convergence (ICTC),
2010 International Conference, 17-19 Nov. 2010, pp.: 226 – 231. Print
ISBN: 978-1-4244-9806-2.

[17] K. Chang, A. Soong, M. Tseng, and X.Zhixian Global Wireless
Machine-to-Machine Standardization. Internet Computing, IEEE,
March-April 2011, Vol.: 15, Issue: 2, pp. 64 - 69

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

