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Abstract—The realisation of cost-efficient Optical Burst
Switching (OBS) networks can be greatly facilitated from
minimising the number of contention resolution resources
required at congested network nodes. In this paper we present
a Fibre Delay Line (FDL) optimal allocation scheme where
the total cost associated to the employment of FDLs is
minimised subject to performance requirements defined in
terms of maximum tolerable end-to-end blocking probability.
The optimal buffer configuration is achieved by means of a
constraint-handling genetic algorithm. We additionally increase
the accuracy of our analysis by considering the non-Poissonian
traffic characteristics of the OBS network under study. Results
show that our method permits to identify an optimal FDL
configuration that minimises the total buffer installation cost
and simultaneously satisfies the network blocking probability
requirements.

Keywords-Optical Burst Switching; Fibre Delay Lines; Ge-
netic Algorithms; Optimisation;

I. INTRODUCTION

In recent years substantial research effort has been de-

voted to the performance evaluation of network architectures

employing Optical Burst Switching [1], one of the most

promising switching strategies for the deployment of next

generation optical networks. A major drawback in OBS is

due to burst loss which occurs when two packets (bursts) are

contending for the same wavelength channel on a common

output fibre link. This issue can be addressed with the

employment of Fibre Delay Lines (FDLs) [1], [2]. An FDL

can be considered as a buffer in the time domain and is

capable of preventing burst loss by delaying the transmission

of one of the contending bursts. It has been demonstrated

that FDLs can be very effective in reducing burst loss of

several orders of magnitude as shown in works such as [2],

[3] and [4], where performance evaluations of buffered OBS

architectures have been conducted. The overall performance

of an FDL-buffered OBS network might vary considerably

depending on how many FDLs are employed and their allo-

cation in the network. In non-uniform network topologies

some links of the network may be congested more than

others even under uniform end-to-end traffic demands. This

means that some links may require more buffering resources

than others resulting in a non-uniform allocation of FDLs

in the network, however, the problem can not be solved by

simply adding FDL buffers to bottleneck links. In fact, the

employment of an FDL might shift the traffic load from

a congested link to the next link over the same path, thus

potentially shifting the “congestion problem”.

In this paper we address this issue by proposing a method

to find an optimal FDL allocation that minimises the cost

associated to the buffers employment and, at the same time,

satisfies a maximum tolerable end-to-end blocking probabil-

ity. We solve this problem by means of genetic algorithms

[5], a branch of evolutionary algorithms that have been

already successfully used to solve different optimisation

problems for photonic switched networks. For example, in

[6] the authors develop a genetic algorithm to jointly solve

a Routing and Wavelength Assignment (RWA) problem for

optical networks. A similar method has been derived in

[7], where the authors solve an RWA problem for Optical

Packet Switching (OPS) networks with load balancing. Yang

et al. propose in [8] a multi-objective genetic algorithm to

simultaneously minimise the delay while maximising the

throughput for metro optical networks. Differently from

these works, our main contribution is in applying a genetic

algorithm to solve a cost minimisation problem where the

decision variables define the allocation of the FDL wave-

length channels. Castro et al. focus on a similar problem in

[9] where they derive a method to find an optimal placement

of the FDLs in OBS networks with Tabu Search, however,

differently from [9], we decide to use a different OBS node

buffered architecture [3] and a more realistic and accurate

network model as proposed in [10]. The rest of the paper

is organised as follows: in Section II, we briefly describe

the architecture and the analytic model of the OBS network

under study. In Section III, we define a cost minimisation

problem for the OBS network in question and in Section IV

we describe the genetic algorithm used to solve it. Results

and conclusions are respectively given in Section V and VI.

II. THE OBS NETWORK UNDER STUDY

We consider the Tune And Select with Shared feedback

FDL (TAS-shFDL) OBS node architecture analysed in [3]

and illustrated in Figure 1(a). The switch is equipped with
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(a) (b)

Figure 1. The architecture of the buffered OBS node (a) and the OBS
European Optical Network (EON) topology under study (b).

P input/output ports, each one connected to an optical fibre

link comprising W wavelength channels. We assume full

wavelength conversion, that is each channel is supported by

a Tunable Wavelength Converter (TWC) for burst contention

resolution. Additionally, an extra input/output port is dedi-

cated to an FDL comprising K wavelength channels. We

refer to these channels as virtual buffers as described in [2].

The FDL is shared between the output links connected to

the node in a feedback configuration [3]. This means that a

contention between two bursts will be resolved by directing

one of the bursts to a free virtual buffer of the FDL and

then re-offering it to a free wavelength channel of the output

port. If this is not possible, the burst will be dropped and

consequently lost from the system.

We consider an OBS network of such switches described

by a graph G(N,L,R), where N is the number of nodes, L
is the number of links and R is the number of paths of the

network. All links comprise the same number of wavelength

channels W . Each path r is offered with burst traffic of load

ρr (in Erlang). We further define ρ= [ρ1, ρ2, . . . , ρR] as the

vector comprising the burst traffic loads offered to each path.

We characterise the burst traffic as a non-Poisson process by

assuming generally distributed burst interarrival times and

exponentially distributed burst lengths. We attempt to model

the traffic characteristics with the BPP two-moment match-

ing technique [11] by considering the additional contribution

of the traffic peakedness Z. The peakedness quantifies the

deviation of the burst traffic from being Poisson and is

defined as the ratio between the variance and the load of

the burst traffic. The traffic is said to be peaked or smooth

whether Z is greater or less than one. If Z = 1 the

traffic is Poisson. This analysis allows us to approximately

match the expected OBS traffic characteristics, which are

largely determined by the burst aggregation process [12].

Further results on the impact of traffic burstiness in optical

packet switching networks can be found in [13]. Under these

premises, we model the OBS network with the approximate

method proposed by the present authors in [10]. The model

is used to evaluate end-to-end burst blocking probabilities

and can generally be summarised as a non linear function

whose output is the vector P= [P1, . . .PR], where Pr is

the end-to-end blocking probability of path r. Namely,

P = P(N,L,R,W,K,ρ,Z), (1)

where we have indicated with Z = [Z1, . . . ZR] the vector

of the burst traffic peakednesses offered to each path and

with K = [K1, . . . ,KN ] the vector comprising the number

of virtual buffers allocated to each node in the network.

For space constraints we can not provide a description of

the method in this paper. The reader will find a detailed

mathematical analysis and the validation of our method in

[10], however we show here some additional new results

in Figures 2 and 3. Particularly, the average end-to-end

burst blocking probability obtained with our analytic model

is compared with the one obtained from a discrete-event

simulation of the OBS European Optical Network (EON)

topology depicted in Figure 1(b). The network comprises

N = 15 nodes, L = 25 bidirectional links and R = 18
source-destination pairs whose shortest paths are indicated

in Table I. The FDL allocation is uniform, thus all nodes are

equipped with the same number of virtual buffers. The traffic

demands are uniform as well, that is each path is offered

with the same traffic load and peakedness. As we can see

from the graphs the accuracy of the analytic model compares

favourably with the simulation data for a broad range of

end-to-end blocking probability, a feature that convinces us

to adopt our model for the definition and the solution of the

cost minimisation problem.

III. DEFINITION OF THE OPTIMISATION PROBLEM

We first start by introducing the cost function that will

be used to define the objective of the optimisation problem.

Our goal is to determine an estimate of the cost introduced

by the employment of a shared FDL in a node of the

network. Following the analysis presented in [3] on the
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Figure 2. Average end-to-end blocking probability vs. number of FDL
channels for the EON topology. The number of wavelength channels per
link is W = 16 and the normalised load per path is ρr = 0.25 Erlang.
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Figure 3. Average end-to-end blocking probability vs. number of FDL
channels for the EON topology. The number of wavelength channels per
link is W = 32 and the normalised load per path is ρr = 0.3 Erlang.

TAS-shFDL architecture, we note that the installation of an

extra input/output port dedicated to the FDL requires one

additional Erbium Doped Fibre Amplifier (EDFA). Further-

more, since we are assuming full wavelength conversion,

each wavelength channel of the FDL must employ a TWC,

for a total of Kn TWCs. Finally, in order to allow the

transmission of burst packets to the FDL, each wavelength

channel on each output port must be equipped with an

additional Semiconductor Optical Amplifier (SOA), for a

total of Pn · W SOAs, where we have indicated with Pn

the number of output ports of node n. Similarly, in order to

send packets to the output ports, each wavelength channel

of the FDL requires Pn SOAs for a total of Pn ·Kn SOAs.

Under these premises, we define the total cost associated

with an FDL to node n as follows,

Cn = hE + hTKn + hSPn(W +Kn), (2)

where we have denoted with hE , hT and hS respectively

the unit cost of an EDFA, of a TWC and of a SOA. Finally,

the total cost arising from the employment of FDLs in the

network can be expressed as

C(K) =
N
∑

n=1

Cn =
N
∑

n=1

[hE + hTKn + hSPn(W +Kn)] ,

(3)

Table I
PATHS OF THE EUROPEAN OPTICAL NETWORK TOPOLOGY.

Path Path hops Path Path Hops
1 1 → 2 → 4 → 6 → 7 → 10 10 11 → 7 → 12

2 3 → 4 → 6 11 12 → 10 → 15 → 14

3 13 → 15 → 10 → 12 12 10 → 7 → 11

4 12 → 7 → 6 → 4 → 2 13 13 → 9 → 6 → 4 → 11

5 2 → 4 → 11 14 8 → 5 → 2 → 3

6 11 → 7 → 6 → 5 → 8 15 4 → 2 → 1

7 12 → 10 → 9 → 13 16 7 → 10 → 15

8 5 → 8 → 13 → 14 17 13 → 8 → 5 → 1

9 1 → 5 → 6 → 7 18 14 → 15 → 10 → 7 → 11

where K = [K1, . . . KN ] is a vector representing the FDLs

allocation in the network. We are now ready to define the

following problem:
Given an OBS network defined by graph G(N,L,R)

where each link comprises the same number of channels W
and where the traffic demands for each path are quantified

by vectors ρ and Z, we want to minimise the cost function

C as follows,

minimise
K

C(K)

subject to Pr(K) ≤ Pmax, r = 1, . . . , R,

Kn ≤ Kmax, Kn ∈ N, n = 1, . . . , N,
(4)

where we have indicated with Pmax the maximum tolerable

end-to-end blocking probability and with Kmax the maxi-

mum number of virtual buffers that can be allocated in a

node of the network. Furthermore, we force the number of

virtual buffers to be positive integers. We solve the above

defined problem with the use of a genetic algorithm as

described in the next section.

IV. GENETIC ALGORITHM

Genetic algorithms (GAs) [5] are a branch of evolution-

ary algorithms, a family of search heuristics that mimics

the process of evolution to find near-optimal solutions for

optimisation problems. In a GA, each potential solution cor-

responds to a string of decision variables called an individual

(or chromosome) where each decision variable represents a

gene. The algorithm starts by generating an initial random

population of individuals. A set of individuals is selected

from the population to form a new generation on the basis

on “how suitable” they are as solutions of the optimisation

problem. The “goodness” of the selected individuals is

evaluated by a specific fitness function which is typically

defined as a combination of the objective functions of the

optimisation problem in question. In this way, the better

individuals have more chances to “reproduce” and transfer

their “good” genes to their children (offspring) that will form

a better new generation, mimicking the evolution process.

The algorithm normally ends when a user-defined maximum

number of generations is reached or when some conditions

on the improvement achieved by the best individuals are

met.

A. Initial Population and Encoding

In our problem, each individual corresponds to a specific

allocation of FDLs K. Each element of K is the number

of wavelength channels of an FDL at a given node and

represents a gene of the individual. All the individuals are

encoded directly into strings of integer numbers with values

in the range [0,Kmax]. Note that the encoding process

forces the potential solutions to be integrals and within the

interval [0,Kmax]. Therefore, the constraints Kn ≤ Kmax

and Kn ∈ N for n = 1, . . . , N are already satisfied by the

process of encoding of the individuals.
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B. Fitness function and Selection

The fitness function evaluates the “goodness” of an indi-

vidual. The greater is the fitness value of an individual, the

higher is the probability that the individual will be selected

for “reproduction”. Generally, in constrained optimisation

problems, the fitness function of each individual is modified

by introducing a non-zero penalty function for the solutions

that are unfeasible, that is the solutions that do not satisfy the

constraints of the optimisation problem. We adopt a simple

yet very efficient method inspired by the work of Deb in

[14]. Particularly, the fitness function f of an individual K

can be written as

f(K) =

{

−C(K) if K is feasible,

−C(K−)− |Pr(K)− Pmax| if K is unfeasible,

(5)

where we have indicated with K− the feasible FDL allo-

cation with the lowest fitness in the population and with

|Pr(K)− Pmax| the constraint violation of individual K

representing the penalty function for r = 1, . . . , R. At

each generation, the fitness of all individuals is evaluated

and a set of “good” candidate solutions are selected to

“reproduce”. The selection process is a key operation in

genetic algorithms and there are several mechanisms to

perform it. We decide to select individuals with the roulette

wheel technique [5] where the fittest individuals have more

chances to be chosen for reproduction. Particularly we first

normalise the fitness value of all the individuals of the

population as

f∗

i = fi/

I
∑

i=1

fi i = 1, . . . , I, (6)

where I is the number of individuals in the population and

fi is the fitness of individual i. Then, we sort the fitness

values in ascending order (denoting them with t∗i ) and we

generate a random number ǫ uniformly distributed within the

interval [0,1]. If ǫ < t∗
1
, we select individual 1 as a parent

for reproduction. If ǫ > t∗
1
, we calculate the cumulative

sum s1 = t∗
1
+ t∗

2
and we compare again ǫ with s1. At

this point, if ǫ < s1, we select individual 2 otherwise we

recursively re-calculate the cumulative sum s2 = s1+t∗
3

and

proceed with the next comparison in a similar manner until

two individuals will be selected as parents.

C. Crossover, Mutation and Elitism

Once the individuals have been selected, they reproduce to

generate a new offspring. This step of the algorithm is called

crossover and is performed with a user-defined probability

Probc. We choose to perform a two-point crossover where

the new offspring inherits genes from the parents on the basis

of two random crossover points as illustrated in Figure 4.

Once the new children are generated, we mutate them

by randomly changing one of their genes with a predefined

3 1 10 3 2 81

4 8 25 7 3 00

4 1 10 3 2 00

3 8 25 7 3 81

Crossover points

Parent 1

Parent 2

Offspring 1

Offspring 2

Figure 4. Example of crossover. In this case each individual is encoded
as a string of 8 integers.

mutation probability Probm. The mutation is an essential

step in GAs that helps preserving the diversity in the

population and prevents the GA to get stuck in a local

minimum.

In the final step of the algorithm, once the new generation

is obtained, we select a specific number of individuals E
with the highest values of fitness and we include them in the

new generation. This final step is known as elitism and the

set of chosen individuals is called the elite. This procedure

permits us to keep the best E individuals in the population

as the algorithm continues its search for fitter solutions.

V. RESULTS

We test our method on the same network topology of

Figure 1(b). The configuration settings for the genetic algo-

rithm are shown in Table II. The values of Probc and Probm
are proved to generally work well for different optimisation

problems. The estimation of the hardware unit costs hS , hE

and hT is quite difficult as real costs for these devices

vary considerably on the basis of their manufacturer and

their specifications. Based on the study proposed in papers

such as [15] and [16] we decided that it may be reasonable

to relate all unit costs to the one of a SOA, being the

SOA a device less expensive than an EDFA and a TWC.

Thus, we set the unit cost of a SOA as hS = 1 and we

decide to fix the unit cost of an EDFA at 3hS and the

unit cost of a TWC at 15hS . We stop the genetic algorithm

after 300 generations. Table III and Table IV illustrate the

benefits introduced by the optimisation in terms of cost

savings subject to different values of Pmax for different

values of traffic load and peakedness. We first note how

Table II
GENETIC ALGORITHM PARAMETERS CONFIGURATION

Population Size 80
Elite Size (E) 16

Selection Roulette Wheel
Crossover Two-point
Probc 0.9
Probm 0.05
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Table III
COST COMPARISON BETWEEN OPTIMAL (OPT) AND UNIFORM (UNI)
VIRTUAL BUFFER ALLOCATION FOR Kmax = 8 BUFFERS, W = 16,

ρ = 0.3 ERLANG FOR EACH PATH. ’NF’ STANDS FOR ’NOT FEASIBLE’.

Pmax 10
−1

10
−2

10
−3

10
−4

10
−5

Z = 0.8 COPT 0 601 1209 1620 NF

CUNI 0 1179 1968 2757 NF

Z = 1 COPT 0 1020 1620 NF NF

CUNI 0 1705 2757 NF NF

Z = 1.4 COPT 87 1540 NF NF NF

CUNI 1179 2757 NF NF NF

Table IV
COST COMPARISON BETWEEN OPTIMAL (OPT) AND UNIFORM (UNI)
VIRTUAL BUFFER ALLOCATION FOR Kmax = 16 BUFFERS, W = 32,

ρ = 0.35 ERLANG FOR EACH PATH. ’NF’ STANDS FOR ’NOT FEASIBLE’.

Pmax 10
−1

10
−2

10
−3

10
−4

10
−5

Z = 0.8 COPT 0 731 1937 2617 3065

CUNI 0 2313 3365 4154 4680

Z = 1 COPT 0 1536 2477 3210 NF

CUNI 0 3102 3891 4943 NF

Z = 1.4 COPT 0 2178 3479 NF NF

CUNI 0 3891 5469 NF NF

the cost varies considerably with Z, an occurence that, we

believe, justifies the choice of modelling the OBS network

with the analytic method proposed in [10]. We compare

the total FDL cost resulting from our optimisation method

(COPT ) with the total cost resulting from the minimum

uniform allocation of the virtual buffers that satisfies the

requirements in terms of Pmax (CUNI ). For example, in

Table IV, to reach a maximum target blocking probability

Pmax of 10−2 on all paths for Z = 1.4, the optimal numbers

of FDLs are found to be Kopt=[0 8 0 10 4 6 10 4 0 10

10 4 0 0 4], resulting in a total cost of COPT = 2178.

The same performance requirements can be satisfied with a

uniform allocation of no less than 10 buffers in each node,

for a total cost of CUNI = 3891. Thus, for this particular

scenario, the optimisation process yields a 44% reduction

in cost of the extra hardware added by the employment of

FDLs compared to a uniform FDL allocation. Furthermore,

following [3], we can also estimate the achieved reduction in

the total hardware cost of the network with the same optimal

buffer allocation. In fact, in the bufferless TAS OBS node

architecture (that is, without considering the extra hardware

added by the FDL), a node n is equipped with 2Pn EDFAs,

W · Pn TWCs and W · P 2

n SOAs. If we consider the cost

of this additional hardware in the OBS network under study

for all nodes of the same scenario above mentioned, we

obtain a total hardware network cost of COPT = 24294
for the optimal allocation Kopt and CUNI = 26007 for the

uniform allocation of 10 buffers per node, resulting in an

approximate total hardware cost saving percentage of 6.6%.

We also note that for some scenarios it is not possible

to find an optimal (and uniform) allocation of the FDLs

(e.g., Table III for Z = 1.4 and Pmax = 10−3). This

is because all the solutions found are unfeasible, that is

there is no FDL allocation that can satisfy the performance

requirements given by Pr(K) ≤ Pmax for r = 1, . . . , R
with Kn ≤ Kmax for all nodes of the network.

Figure 5 illustrates an example of the distribution of the

FDL virtual buffers in the OBS network. We observe that

the FDL distribution changes considerably with Z, since

congestion at nodes increases when traffic becomes peaked.

Note that some nodes are not assigned with FDLs, regardless

of the peakedness of their offered traffic demands. Thus, the

genetic algorithm is able to identify the nodes of the network

for which adding an FDL does not add any contribution

in lowering the end-to-end blocking probability value. In

this regard we want to remark that, although the offered

load may be generally considered low in all the cases of

study (0.3-0.35 Erlang), this is not the case for congested

links in the core network, where it can reach normalised

values of 0.6 Erlang. The algorithm allows to determine

the optimal number of FDL buffers required for nodes with

such congested links, a number that is higher than the one

determined for the less congested links at the edges of the

network. This feature may consent to considerably decrease

the FDL cost compared to an uniform allocation as shown

in the example of Figure 6. In this particular case, to satisfy

the performance requirements, at least 4 FDL buffers must

be employed to node 7. This means that, in an uniform

allocation, we must employ at least 4 FDL buffers for each

node of the network, resulting in an increased FDL cost per

network node compared to the optimal scenario.

Finally, end-to-end blocking probabilities for each path

are shown in Figure 7. We observe that the analytic method

provides a quite accurate estimate of the blocking probability

at the optimal point compared to simulation data. The graph
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Figure 5. Allocation of the FDLs in the network for W = 32,ρ =

0.35 Erlang and Pmax = 10
−2. Note that nodes 1,3,9,13 and 14 do not

contribute in lowering the blocking if equipped with FDLs, thus they are
not assigned with FDLs.
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−3. The optimal FDL allocation for this particular scenario is
found to be K=[0 6 0 7 6 7 8 6 0 6 6 6 0 0 6].

additionally shows that each path blocking is below the

maximum tolerable value given by Pmax, thus satisfying

the performance constraint of our optimisation problem.

VI. CONCLUSIONS

We have proposed a method to find an optimal allocation

of FDLs in an OBS network that minimises the cost as-

sociated with the employment of FDL-buffers and satisfies

performance requirements in terms of maximum tolerable

end-to-end blocking probability. Our results illustrate the

potential equipment cost savings achieved when FDL al-

location is optimised as opposed to uniformly distributing

the number of buffers in the network. Future works will

deal with the definition of multi-objective optimisation prob-

lems for OBS networks where conflicting objectives such

as throughput maximisation and cost minimisation will be

taken into consideration.
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