
A Didactic Platform for Testing and Developing Routing Protocols

Adam Kaliszan
Chair of Communication
and Computer Networks

Poznan University of Technology
ul. Polanka 3, 60-965 Poznań, Poland

Email: adam.kaliszan@gmail.com

Mariusz Głąbowski
Chair of Communication
and Computer Networks

Poznan University of Technology
ul. Polanka 3, 60-965 Poznań, Poland

Email: mariusz.glabowski@put.poznan.pl

Sławomir Hanczewski
Chair of Communication
and Computer Networks

Poznan University of Technology
ul. Polanka 3, 60-965 Poznań, Poland

Email: slawomir@hanczewski.pl

Abstract—This paper presents a platform for testing and
the development of new routing protocols. The platform is an
alternative to already existing solutions of the type basedon
physical devices or on virtualization. In the proposed solution,
the testbed nodes are simple routers, i.e., the devices of System
on Chip type, with embedded Linux system. These routers
perform only packet switching functions, i.e., the function of
the Data Plane. The functions related to supporting routing
protocols, i.e., the functions of the Control Plane, for allnodes
have been moved to a dedicated computer. The Control Plane
functions are provided by the Quagga software router, modified
for the purposes of the platform. With low cost and small size
of single nodes, the platform can also be used in teaching.

Keywords-Routing protocols; Software Router.

I. I NTRODUCTION

The computer networks classes, conducted in Chair of
Communication and Computer Network at Poznan Uni-
versity of Technology, among others, are usually carried
out using proprietary devices such as Cisco, Juniper or
Allied Telesis. The advantage of lab classes with the use of
professional routers and switches is to enable students to get
familiarized with a configuration of devices that they might
meet in practice – in corporate and providers’ networks. The
disadvantage of this solution that was reported by students, is
the operating systems proprietary code for these devices, and
hence no chance of modifications and testing of networks
protocols, i.a. routing protocols.

The following two solutions that allow for testing of
routing protocols have been used in the hitherto known
platforms:

• Hardware, i.e., the one where each testing network’s
node is an independent, totally functional router (either
a router or a PC computer with an appropriate soft-
ware),

• Virtualization, which enables to build a test network of
a particular typology on a single physical server.

The solutions based on physical nodes are characterized
by high stability — each node is independent and its load
does not decrease performance of other nodes. Such a
network is, however, difficult to maintain, especially as far as
teaching laboratories are concerned where various subjects

are being held/lectured (the need to manage connections
of different network topologies). Depending on the type
of equipment used, the costs of building such a network
can be large and, as previously indicated, the possibility
of modifying the protocols in case of proprietary solutions,
can be significantly reduced or even impossible. Therefore,
the testbed of this type is generally built on the basis of
PCs running under Linux. For the implementation of new
protocols, it is necessary to update the software on each
node. An update procedure itself is sometimes very time-
consuming.

In the other existing solution used for testing routing
protocols, testbeds are using topology virtualization tech-
niques, i.e., they are made of virtual machines (that are
a network’s nodes), embedded on a single physical server
(working under the Linux system). The virtual testbed allows
for setting up any connection topology for an indefinite
period of time, a quick network’s reconfiguration and easy
changes in the number of nodes (their number depends on
the server performance).

The main cost of building a testbed in the mentioned
solution is a purchase of the server. Despite the undoubted
advantages of this solution, the obtained test results, such as
routing protocols output, might not be reliable, because an
overload of a single node may have a negative impact on
performance of other nodes, which results from task division
of the server’s processors.

In order to find the best way of how to eliminate the
drawbacks of hardware and virtualization solutions, a new
concept of the routers’ architecture has been developed
in the Chair of Communications and Computer Networks
at Poznan University of Technology. It allows students to
conduct advanced tests (along with possible modifications)
for existing routing protocols, as well as to start and test
newly developed routing protocols within class hours (in-
cluding thesis). The proposed solution combines both the
advantages of platforms that use physical devices only with
those offered by virtualization. The nodes in a proposed
testbed are built from very simple devices, responsible only
for switching of the packets (Data Plane). This is the System
of the Chip devices, running under Linux. As a result of

197Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Figure 1. A general architecture of the software router

such an approach, each individual network node is physically
independent, and the cost per unit does not exceed 20 euros.
The functions responsible for routing (Control Plane) have
been transferred in the suggested architecture to a dedicated
computer that is running the Quagga software router. The
handling of the Control Plane functions of all nodes is
implemented by Quagga, after its appropriate modification.
The independence of routing function for given nodes is
obtained by activating a separate routing protocol process
for each of them. The architecture obtained in this way is
characterized by high simplicity and low building cost. With
full access to the existing routing protocols and the ability
to run new protocols, the proposed solution perfectly fits in
the teaching of computer networks.

The further part of the article is structured in the following
way. Section II presents the idea of software routing and
gives an overview of popular solutions of this kind. Sec-
tion III describes the concept of teaching networks, proposed
in the article. Section IV includes a description of implemen-
tation procedures. Section V shows the usage scenarios of
the elaborated platform. Section VI is a summary of the
article.

II. SOFTWARE ROUTER

At present, the most popular router projects with an open
source are: Quagga [1] [2] and Xorp [3]. Figure 1 presents
the general architecture of the software router. It consists of
three layers: the hardware, application and the management
layer.

The hardware layer uses the API operating system, or
it refers directly to the hardware resources. This leads to
its dependence on the operating system and on the hard-
ware platform. The hardware layer is responsible for the
preparation of the routing table based on the information
received from the application layer. The selection of the
route for a packet and its switching to the certain output
port is possible owing to the entries in the routing table.
The packet switching process takes place in the Data Plane
(DP). Packet switching can be implemented via hardware
or software. The hardware layer collects information on
the status of the interfaces and on their Data Link layer
addresses and Network layer addresses. The information on
the status of the interfaces and their addresses is then passed
on to the application layer, i.e., to the process supportinga
given routing protocol.

Figure 2. The architecture of XORP router

The application layer communicates with the hardware
layer (kernel sublayer) via a special interface. This interface
provides a hardware abstraction, which makes the applica-
tion layer independent of the hardware platform and the
operating system. Information on routing paths is sent to the
hardware layer using the defined interface (between the ap-
plication layer and the hardware layer). The applied solution
allows simultaneous functioning of multiple processes in the
application layer that are associated with various routing
protocols. At the same time, the support of many routing
processes does not reduce the system stability, since each
process runs independently of the others. This solution also
makes an easy addition of a new process with new routing
protocol possible.

The management layer simplifies the configuration of
the routing protocols. It provides access to a configuration
of all protocols by CLI (Command Line Interpreter) or
other protocols, e.g., WWW (World Wide Web), SNMP
(Simple Network Management Protocol), TL1 (Transaction
Language 1), etc.

The applied layered router architecture makes it easier
to transfer the software of a router onto another operating
system/platform, since the required modifications are mainly
related to the hardware layer. This vastly simplifies the
routing protocols migration between the devices and enables
an easy and fast starting of software routers on many
hardware platforms running on different operating systems.

The XORP project opts for the convenience of implemen-
tation, obtained thanks to C++ language. The whole code
has been very well documented [4]. Figure 2 presents the
architecture and the functional division of XORP router into
particular modules. A possibility of multicast support has
been additionally provided in the project. An implementation
of the XORP project in the C++ programming language is
less efficient; hence producers of network devices, such as
software routers, choose the Quagga project.

The Quagga project is a fork of the Zebra software router
project. A particular emphasis in Quagga project was put
on the productivity and, therefore, the whole Quagga code
was written in the C programming language. Rather than
using the standard libraries, new ones have been written
specially for the project’s needs in order to achieve the

198Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Figure 3. The architecture of Quagga router

Figure 4. The message format of the Zebra protocol

highest performance. Figure 3 presents the architecture ofa
Quagga router. The Zebra module is responsible for the API
operating system support. It reads status of the interfaces
and their addresses. It also modifies the system routing table.
The Zebra module supports the following operating systems:
Linux, Solaris, FreeBSD.

The modules of the application layer (ospf6d, ospfd,
rip6d, pipd, bgpd) connect with the Zebra module via a
local or TCP connection. The managing of modules in the
application layer is possible by using CLI. Each module has
a telnet server and supports multiple CLI sessions simul-
taneously. The VTYsh management layer module connects
to all modules of the application layer. At the same time,
it provides a telnet protocol server to which users can
connect as well. Owing to the VTYsh module, the user has
access to all modules of the application layer from a single
console that supports the connection with VTYsh. It should
be noted that the management layer in the Quagga project
is not indispensable. Its addition is to make the command
interpreter similar to the one used on Cisco routers.

The following section presents the idea of the modification
of the Quagga project. It will consist of adding some
functionality to the interface between the hardware layer and
the application layer. The interface between the hardware
layer and the application layer is described further in this
section. The Zebra module operates as a server to which
clients are connected – the application layer modules. The
communication between the modules is provided by the Ze-
bra protocol. This protocol does not have any documentation
and was changing with the evolution of the project. Figure 4
shows the message format of the Zebra protocol. The first
field message sizespecifies in bytes the whole message size
(along with the header). It is a 16-bit field and the bytes
are written in network order. Next 8-bit fieldmarker is
introduced to keep the compatibility with an older version

Table I
ZEBRA PROTOCOL MESSAGES

code command dir
1 ZEBRA_INTERFACE_ADD C↔ S
2 ZEBRA_INTERFACE_DELETE C↔ S
3 ZEBRA_INTERFACE_ADDRESS_ADD C← S
4 ZEBRA_INTERFACE_ADDRESS_DELETE C← S
5 ZEBRA_INTERFACE_UP C↔ S
6 ZEBRA_INTERFACE_DOWN C↔ S
7 ZEBRA_IPV4_ROUTE_ADD C↔ S
8 ZEBRA_IPV4_ROUTE_DELETE C↔ S
9 ZEBRA_IPV6_ROUTE_ADD C↔ S
10 ZEBRA_IPV6_ROUTE_DELETE C↔ S
11 ZEBRA_REDISTRIBUTE_ADD C→ S
12 ZEBRA_REDISTRIBUTE_DELETE C→ S
13 ZEBRA_REDISTRIBUTE_DEFAULT_ADD C→ S
14 ZEBRA_REDISTRIBUTE_DEFAULT_DELETE C→ S
15 ZEBRA_IPV4_NEXTHOP_LOOKUP C→ S
16 ZEBRA_IPV6_NEXTHOP_LOOKUP C→ S
17 ZEBRA_IPV4_IMPORT_LOOKUP C→ S
18 ZEBRA_IPV6_IMPORT_LOOKUP N/A
19 ZEBRA_INTERFACE_RENAME N/A
20 ZEBRA_ROUTER_ID_ADD C→ S
21 ZEBRA_ROUTER_ID_DELETE C→ S
22 ZEBRA_ROUTER_ID_UPDATE C← S

of the protocol. The value of this field should equal 255. In
the older version of the protocol this field was interpreted
as a command. The following 8-bit fieldversion specifies
the version of the Zebra protocol. The present version of the
protocol is 1. The last field of the header field is a 16-bit field
command that specifies the command. Command code is
written in network order. Content of the fieldmessage data
depends on the command. In the Zebra protocol there are
22 messages provided, listed in Table I. The first column
specifies the value of the message code that is placed in
the field command. The second column contains the name
of the message, and the third one the direction in which
it is sent. The letter C stands for a process running in the
application layer, and the letter S means a module running
in the layer within the Zebra equipment. These messages
can be sent to the Zebra module (direction C→ S), to
a module with routing process (direction C← S), or in
both directions (C↔ S). Messages sent in both directions
often have asymmetric forms. Therefore, it is necessary to
use the right tool for an analysis of sent messages. In this
case, it may be the Wireshark program. Unfortunately, the
implemented module in the above mentioned program is
for the analysis of the older, now outdated, version of the
protocol. Therefore, a Wireshark modification, that includes
the new version of the Zebra protocol, needs to be prepared
for the construction of the test platform.

The process supporting the routing connects to the Zebra
module. Zebra server, running in the Zebra module, may
support many connections simultaneously. It should be noted
that not all messages included in the Zebra protocol have
been implemented. Those not implemented are marked in
the column specifying the direction as N/A.

199Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

The module supporting the routing protocol is running
on an abstract hardware and, in this way, it is partially
independent from the operating system. The module is not
fully independent because in order to send or receive a
signal, such as Ospf Hello message for OSPFv3 protocol,
direct use of the socket API is required. By sending a signal
message via the API operating system, the routing protocol
specifies an interface through which the message is to be
sent. Similarly, it also uses the API operating system to
read messages. The system returns the received message, the
source and destination address, as well as the information
on the interface that received the message. This requires an
application of a particular function from the API operating
system. Some differences in functioning of the socket API
may occur, depending on the operating system. This forces
the adjustment of a program, running at the application layer,
to a specific operating system.

The architecture of the Quagga project, optimized with re-
gards to its performance, has some disadvantages: no process
can be moved on another machine and the implementation of
routing protocols is dependent on the API operating system.
In order to make the mentioned platform applicable for the
analysis and testing of existing routing protocols and to
design new routing protocols (also for teaching purposes),
a modification that enables a physical division of the Data
Plane (DP) and the Control Plane (CP) functions is proposed
in the next section.

III. A CONCEPT OF A PLATFORM FOR TESTING AND

DEVELOPING ROUTING ALGORITHMS

The main idea of the proposed platform is to move the
application layer to a dedicated computer. In the proposed
solution, the application layer meets the CP functionality,
and the hardware layer implements the functionality of
the DP. A similar approach was applied to the GMPLS
system [5], introducing a distinction between CP and DP.
In comparison to the GMLS system, the difference is that
CP in the proposed solution does not have its own signaling
network. The routing protocol messages (supported by CP)
are sent via network, supported by DP. Owing to this
division, the application layer does not use the hardware
resources directly. In this way, one machine (virtual or
physical) can support many application layers concurrently,
each for a separate node.

Figure 5 presents a network consisting ofN nodes.
Their CP is moved to a separate machine, shared by all
nodes. Each router shown in Figure 5 has a dedicated
router implementing the DP functions, while the machine
supporting CP has many CP instatnces running. Each such
instance is shown as a rectangle drawn with a dotted line.
The proposed network may have one central computer that
is running numerous CP instances for all nodes (as shown in
Figure 5), or CP can be distributed across different machines.

Figure 5. The proposed platform for testing and developing routing
algorithms

In the extreme case, each node has a separate computer
implementing the CP functions1.

In order to connect CP with DP, a separate network
was dedicated for this purpose. In Figure 5 all devices
implementing DP functions are connected to this network
via eth0 interface. This interface is unavailable for the DP
network and invisible for the routing protocols. The routing
protocols specify the path for the DP networks that consist of
the nodes, using the eth1–eth4 interfaces. The computer with
CP instances is connected to the network that supports an
interface between CP and DP (in Figure 5 via eth0 interface).

Each CP instance must be properly configured. The con-
figuration specifies the eth0 interface address of the DP
device that is supported by a corresponding instance of CP.
A single CP instance is composed of multiple processes,
each supporting a different routing protocol. The routing
protocol can be configured using the CLI. Access to the
console is controlled using the telnet protocol. Any process
that supports routing process listens for TCP connections
on the specified port. This port must be configured so as to
be unique within a given machine. This requires additional
settings.

The Quagga software router processes running save their
IDs in file /var/run/quagga. The file name depends on the
routing protocol, supported by a given process. It allows for
a simple stops/starts of the processes. Supporting of multiple
processes for the same routing protocol requires a unique
name of the file stored in the folder /var/run/quagga for
each of the processes. A unique file name should depend
on the routing protocol and the node on which the protocol
operates. The last parameter that must be set is the name of
the file where the configuration of routing protocol, designed
for a given node, is stored.

In summary, the computer supporting multiple CP in-
stances have multiple processes with the same name running,
which are serving the same routing protocols. For each
process, the following items have to be set:

• IP address of DP device,
• Unique port number at which a telnet server is listening,
• Unique filename of file, where process ID is stored,
• Unique filename of file that stores configuration of

1An idea of a central CP was proposed in an OpenFlow project [6]

200Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Figure 6. The node architecture in the proposed platform

routing protocol.

The presented approach has many advantages, despite the
need to provide additional parameters for each of the pro-
cesses. The entire network configuration is stored on one
machine. All consoles to configure the routing protocols are
available from the same machine, so there is no need for
the management layer. There is also no need to output the
console cables for all nodes. The modification of the process
supporting the routing protocol is easier -– it only needs to
be compiled once and then restart a modified process for all
nodes. All of these steps can be implemented with access to
a single computer.

The processes take the mentioned parameters from the
arguments with which the process was started. This allows
to write a simple script that starts, restarts, or turns off the
processes for a single or all nodes. The following is a sample
script that runs routing protocol OSPFv3 for node 1 with an
IP address eth0 10.0.1.1.

./ospf6d --demonize \
--dpaddr 10.0.1.1 --cliport 2701 \
--pid /var/run/quagga/n1_ospf6d.pid \
--conf /etc/quagga/n1_ospf6d.conf

To stop the OSPFv3 process for node 1, the following
script needs to be started.

kill ’cat /var/run/n1_ospf6d.pid’

Figure 6 presents the node architecture (software router)
in the proposed platform for testing and developing the
routing protocols. The top rectangle drawn with a dotted line
includes the processes responsible for the CP functions, and
the bottom one includes the processes responsible for the
DP. Each CP process communicates via the Zebra protocol
with a Zebra module. The Zebra module supports API that
controls the work of DP. The Zebra server is responsible for
communication with a higher layer. In the proposed node,
the modification the Zebra module additionally supports
sending and receiving of signaling messages of routing

Table II
THE NEW MESSAGES OFZEBRA PROTOCOL

code command dir
23 ZEBRA_CONFIGURE_RECEIVER C –> S
24 ZEBRA_TRANSMIT C <–> S

Figure 7. The format of ZEBRA_TRANSMIT message

protocol. The implementation of these steps required a Zebra
protocol to be modified. For this purpose, two new messages
were added. They are presented in Table II. Sending and
receiving of a Zebra protocol message follows via ZE-
BRA_TRANSMIT command. Figure 7 presents a format
of such message. A message length depends on the length
of a packet (IPv4 / IPv6) with the signaling message that
we want to send. The first parameterinterface idx in the
data field is a 32-bit value with an index of the interface
through which a message is to be sent. The index of the
interface is the same as the one in the message, adding
a new interface. Interface index was saved as 32-bit value
intentionally, since all the interface indexes in API of the
Linux system [7] are written in the form of 32-bit numbers.
The final element of the message is a IPv4 or IPv6 packet
(including the header). In the header of the transmitted
packet a destination IP address is stored. In the case of
IPv6, the packet being sent should include the calculated
checksum before sending it, although it is possible that
DP counts the sum. Receiving a signaling messages from
the network by CP requires DP mediation. DP needs to
know the destination address of the packet that CP wants
to receive. To do so, the right filter must be set, where
unicast or multicast address is specified. The command
ZEBRA_CONFIGURE_RECEIVER helps to configure DP.
After an appropriate configuration, the DP transmits the re-
ceived messages to CP via ZEBRA_TRANSMIT command.
The format of this message is symmetric and remains the
same regardless of the direction.

IV. I MPLEMENTATION

The implementation is in progress. The aim of the DP
implementation is to build a firmware image which is then
flashed into the router. Linux is frequently chosen as an
embedded system. The firmware image of embedded Linux
consists of a kernel and a file system. Open Embedded [8]
is a toolset and sources for embedding Linux. The set offers
many possibilities, ranging from a kernel with a basic toolkit
up to a system with a graphic interface. With regards to
the network devices, Open WRT [9] distributions have been
developed. It includes a toolset for an oblique compilation,

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

the addresses of repositories with a system and programs
kernel sources, and a set of patches that allow kernel or
programs adjustment to the given hardware platform. The
software set has been narrowed. An Open WRT is simpler
in implementation, as compared to Open Embedded, and a
software developer with a little experience can easily build a
firmware image, using a creator. The configurator attached to
the project can be run, using themenu config command.
It enables a choice of hardware platform, a device and a set
of programs. Moreover, it makes an addition of one’s own
programs possible. In order to build a firmware image for
DP, the code with a Zebra module from Quagga project
needs to be added and then modified. The modifications
consist in adding the commands and functions to send and
receive the messages or routing protocols described in the
previous section.

The implementation of CP software consists in down-
loading of a Quagga project source code and its further
modifications. The modification is based on adding the new
commands to the Zebra protocol. It is necessary to modify
the way of sending and receiving of messages for each
routing algorithm. These operations are executed via the
Zebra module. Thus, in order to send the packet via a
given interface, its number and packet need to be placed
in a message data field compatible with Zebra protocol.
Similarly, packet reception is activated after Zebra module
message is received. This message includes in its data field
an interface number and the packet that has been received
by this interface. The functions for sending and receiving
packets are stored in file x_network.c, where x stands for a
process name, e.g., ospf6d for the OSPFv3 protocol.

It needs to be noted that the system will run in the same
way as the Quagga software router, if both softwares, DP
(Zebra module) and CP (the modules with routing algo-
rithms) are installed on the same machine. That means that
the proposed code modification, after being implemented,
may be added to the Quagga project. As a result, it will
be possible to disperse one node onto more machines, to
place all the processes supporting the routing protocol on
one machine and to port very easily a project onto the new
operating systems (all that needs to be done is to modify the
Zebra module).

V. USAGE SCENARIOUS

The proposed platform enables fulfilling the labs with
routing protocols like RIP or OSPF. Regardless of the
routing algorithm, the labs include the following tasks:

• Preparing physical connections between DP devices;
• Connecting the CP device to the network, and checking

the communication between CP and DP devices;
• Launching the routing protocol, e.g. RIP;
• Watching the entries in forward (routing) table;
• Checking if the network is working correctly (ping

command);

• The analysis of exchanged routing protocols’ messages;
• The analysis of messages exchanged between CP and

DP;
• Checking if the network is able to establish a new

path afer physical breaking the link (disconnecting the
cable);

• Making the changes in routing protocols configuration,
e.g. changing the timers in the RIP protocol.

VI. CONCLUSION

This article presents a new concept of a network platform
that enables both an analysis of existing network protocols
and the implementation, plus testing, of new protocols. The
proposed platform, based on the Quagga software router
concept, combines the advantages of solutions relying on
the network node vitualization with the testing networks
implemented with the help of hardware routers. The plat-
form enables a simple addition and modification of routing
protocols in a testing network without a need for cross-
compilation and uploading the firmware to each of the
routers. Simultaneously, the complexity of a routing protocol
does not affect the functioning of a hardware node. This
allows to implement the platform using much simpler and
cheaper hardware nodes. In further works, related to the
proposed platform for testing the routing protocols, an anal-
ysis module for the Wireshark program will be developed.
This should allow to pick up an information exchange with
hardware nodes on the CP interface.

REFERENCES

[1] “Quagga homepage.” [Online]. Available: www.quagga.net/
<retrieved: May, 2012>

[2] A. Bianco, R. Birke, J. Finochietto, L. Giraudo, F. Marenco,
M. Mellia, A. Khan, D. Manjunath, “Control and management
plane in a multi-stage software router architecture,” inHigh
Performance Switching and Routing, May 2008, pp. 235–240.

[3] “Xorp homepage.” [Online]. Available: www.xorp.org/
<retrieved: May, 2012>

[4] “Xorp architecture.” [Online]. Available: http://xorp.run.
montefiore.ulg.ac.be/latex2wiki/design_overview <retrieved:
May, 2012>

[5] E. Mannie, “Generalized Multi-Protocol Label Switching
(GMPLS) Architecture,” RFC 3945 (Proposed Standard),
Internet Engineering Task Force, Oct. 2004.

[6] “Openflow switch specyfication,” Feb. 2011. [Online]. Avail-
able: http://www.openflow.org/documents/openflow-spec-v1.1.
0.pdf <retrieved: May, 2012>

[7] The Linux Kernel. [Online]. Available: http://kernelbook.
sourceforge.net/ <retrieved: May, 2012>

[8] “OpenEmbedded.” [Online]. Available: http://www.
openembedded.org <retrieved: May, 2012>

[9] “OpenWRT.” [Online]. Available: https://openwrt.org/
<retrieved: May, 2012>

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

