AICT 2012 : The Eighth Advanced International Conference on Telecommunications

A Didactic Platform for Testing and Developing Routing Protocols

Adam Kaliszan Mariusz Gtabowski Stawomir Hanczewski
Chair of Communication Chair of Communication Chair of Communication
and Computer Networks and Computer Networks and Computer Networks
Poznan University of Technology Poznan University of Technology Poznan University of Technology

ul. Polanka 3, 60-965 Poznan, Polandul. Polanka 3, 60-965 Poznah, Polandul. Polanka 3, 60-965 Poznan, Poland
Email: adam.kaliszan@gmail.com Email: mariusz.glabowski@put.poznan.pl Email: slawomir@hanczewski.pl

Abstract—This paper presents a platform for testing and ~ are being held/lectured (the need to manage connections
the devglopment of new routing prqtocols. The platform is an of different network topologies). Depending on the type
alternative to already existing solutions of the type basedn of equipment used, the costs of building such a network

physical devices or on virtualization. In the proposed soltion, - - .
the testbed nodes are simple routers, i.e., the devices ofssgm can be large and, as previously indicated, the possibility

on Chip type, with embedded Linux system. These routers Of modifying the protocols in case of proprietary solutions
perform only packet switching functions, i.e., the functim of can be significantly reduced or even impossible. Therefore,
the Data Plane. The functions related to supporting routing the testbed of this type is generally built on the basis of
protocals, i.e., the funct|ons_ of the Control Plane, for allnodes PCs running under Linux. For the implementation of new
have been moved to a dedicated computer. The Control Plane L

functions are provided by the Quagga software router, modifed protocals, it is necessary tolupda.te the sqftware on _each
for the purposes of the platform. With low cost and small size ~ node. An update procedure itself is sometimes very time-
of single nodes, the platform can also be used in teaching. consuming.

In the other existing solution used for testing routing
protocols, testbeds are using topology virtualizatiorhtec
|. INTRODUCTION niques, i.e., they are made of virtual machines (that are

network’s nodes), embedded on a single physical server
working under the Linux system). The virtual testbed alow
or setting up any connection topology for an indefinite

eriod of time, a quick network’s reconfiguration and easy
hanges in the number of nodes (their number depends on
he server performance).

The main cost of building a testbed in the mentioned
solution is a purchase of the server. Despite the undoubted
%dvantages of this solution, the obtained test result$) aac
routing protocols output, might not be reliable, because an
overload of a single node may have a negative impact on
f)erformance of other nodes, which results from task dinisio

Keywords-Routing protocols; Software Router.

The computer networks classes, conducted in Chair o
Communication and Computer Network at Poznan Uni-
versity of Technology, among others, are usually carrie
out using proprietary devices such as Cisco, Juniper o
Allied Telesis. The advantage of lab classes with the use
professional routers and switches is to enable studentstto g
familiarized with a configuration of devices that they might
meet in practice — in corporate and providers’ networks. Th
disadvantage of this solution that was reported by students
the operating systems proprietary code for these devioés, a
hence no chance of modifications and testing of network
protocols, i.a. routing protocols. of the servers processors.

The following two solutions that _allow for testing of In order to find the best way of how to eliminate the
routing protocols have been used in the hitherto knowrHrawbacks of hardware and virtualization solutions, a new
platforms: concept of the routers’ architecture has been developed

« Hardware, i.e., the one where each testing network'sy the Chair of Communications and Computer Networks

node is an independent, totally functional router (eitherat poznan University of Technology. It allows students to
a router or a PC computer with an appropriate soft-conduct advanced tests (along with possible modifications)

ware),_ _ _ _ for existing routing protocols, as well as to start and test
. \ﬁrtual_lzatlon, which enables_ to build a_test network of newly developed routing protocols within class hours (in-
a particular typology on a single physical server. cluding thesis). The proposed solution combines both the

The solutions based on physical nodes are characterizeatlvantages of platforms that use physical devices only with
by high stability — each node is independent and its loadhose offered by virtualization. The nodes in a proposed
does not decrease performance of other nodes. Such tastbed are built from very simple devices, responsiblg onl
network is, however, difficult to maintain, especially asda for switching of the packets (Data Plane). This is the System
teaching laboratories are concerned where various sgbjeadf the Chip devices, running under Linux. As a result of

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1 197

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

| VTY | Management Layer Management layer

IPC
finder

Router
manager

| RIP | | OSPF | | BGP | Aplication
Layer
— _ = _ — = ®_ ______ Aplication layer

05 and hardware specyfic part Hardware Layer 'MM;/ PIM—SM”BGP4+|| OSPF || RIP || 15-1S |

Kernel

H_ar Ware layer
Figure 1. A general architecture of the software router |

RIB |

| FEA |

such an approach, each individual network node is phygicall
independent, and the cost per unit does not exceed 20 euros.
The functions responsible for routing (Control Plane) have
been transferred in the suggested architecture to a dedicat ¢ application layer communicates with the hardware
computer that is running the Quagga software router. They er (kerel sublayer) via a special interface. This faiee
handling of the Control Plane functions of all nodes ispq\ides a hardware abstraction, which makes the applica-
implemented by Quagga, after its appropriate modificationgjo, ayer independent of the hardware platform and the
The independence of routing function for given nodes isyperating system. Information on routing paths is sentéo th
obtained by activating a separate routing protocol procesgarqware layer using the defined interface (between the ap-

for each of them. The architecture obtained in this way is,jication layer and the hardware layer). The applied sofuti
characterized by high simplicity and low building cost. Wit - 5)16\s simultaneous functioning of multiple processeshia t

full access to the existing routing protocols and the apilit 55qjication layer that are associated with various routing

to run new protocols, the proposed solution perfectly fits Norotocols. At the same time, the support of many routing

the teaching of computer networks. _ ~ processes does not reduce the system stability, since each
The further part of the article is structured in the follogyin (fnrocess runs independently of the others. This solution als

way. Section Il presents the idea of software routing angyakes an easy addition of a new process with new routing
gives an overview of popular solutions of this kind. SeC'protocoI possible.

tion Il describes the concept of teaching networks, prepos — The management layer simplifies the configuration of
in the article. Section IV includes a description of impleme he routing protocols. It provides access to a configuration
tation procedures. Section V ;hows the usage scenarios gf g protocols by CLI (Command Line Interpreter) or
thg elaborated platform. Section VI is a summary of theyiher protocols, e.g., WWW (World Wide Web), SNMP
article. (Simple Network Management Protocol), TL1 (Transaction
Language 1), etc.

The applied layered router architecture makes it easier

At present, the most popular router projects with an operio transfer the software of a router onto another operating
source are: Quagga [1] [2] and Xorp [3]. Figure 1 presentsystem/platform, since the required modifications are ain
the general architecture of the software router. It coagiét related to the hardware layer. This vastly simplifies the
three layers: the hardware, application and the managemerduting protocols migration between the devices and esable
layer. an easy and fast starting of software routers on many

The hardware layer uses the API operating system, ohardware platforms running on different operating systems
it refers directly to the hardware resources. This leads to The XORP project opts for the convenience of implemen-
its dependence on the operating system and on the harthtion, obtained thanks to C++ language. The whole code
ware platform. The hardware layer is responsible for thehas been very well documented [4]. Figure 2 presents the
preparation of the routing table based on the informatiorarchitecture and the functional division of XORP routepint
received from the application layer. The selection of theparticular modules. A possibility of multicast support has
route for a packet and its switching to the certain outputeen additionally provided in the project. An implemerdati
port is possible owing to the entries in the routing table.of the XORP project in the C++ programming language is
The packet switching process takes place in the Data Plaress efficient; hence producers of network devices, such as
(DP). Packet switching can be implemented via hardwarsoftware routers, choose the Quagga project.
or software. The hardware layer collects information on The Quagga project is a fork of the Zebra software router
the status of the interfaces and on their Data Link layemproject. A particular emphasis in Quagga project was put
addresses and Network layer addresses. The information am the productivity and, therefore, the whole Quagga code
the status of the interfaces and their addresses is theagpassvas written in the C programming language. Rather than
on to the application layer, i.e., to the process suppoming using the standard libraries, new ones have been written
given routing protocol. specially for the project's needs in order to achieve the

Figure 2. The architecture of XORP router

Il. SOFTWARE ROUTER

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1 198

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Management layer Table |
[telnet server] ZEBRA PROTOCOL MESSAGES
| VTYsh |
_ _ T _ _ — code | command dir
ﬁ Aplication layer ﬁ ﬁ ﬁ 1 | ZEBRA_INTERFACE_ADD C+< S
toner | [mer | [lemer | [ner] [ene 2 | ZEBRA INTERFACE DELETE Ce S
3 ZEBRA_INTERFACE_ADDRESS_ADD C+ S
ol |y N B il i 4 | ZEBRA INTERFACE ADDRESS DELETE | C <+« S
A AN 4 R S o 5 ZEBRA_INTERFACE_UP C«+ S
g"a’dwarf ’f’ye’ 6 ZEBRA_INTERFACE_DOWN C+ S
[: Zebra serva 7 | ZEBRA_IPV4_ROUTE_ADD C+ S
8 ZEBRA_IPV4_ROUTE_DELETE C«+ S
9 ZEBRA_IPV6_ROUTE_ADD C+ S
10 ZEBRA_IPV6_ROUTE_DELETE C«+ S
11 ZEBRA_REDISTRIBUTE_ADD C—S
12 ZEBRA_REDISTRIBUTE_DELETE C—S
Figure 3. The architecture of Quagga router 13 | ZEBRA_REDISTRIBUTE_DEFAULT_ADD C—S
14 ZEBRA_REDISTRIBUTE_DEFAULT_DELETE| C — S
Bits 0-15 Bits 16-23|Bits 24-31 Bits 32-47 Bits 48 - ... 15 ZEBRA_IPV4_NEXTHOP_LOOKUP C—3
Message size Marker [Version Command Message data 16 ZEBRA_'PVG—NEXTHOP—LOOKUP C—S
17 ZEBRA_IPV4_IMPORT_LOOKUP C—S
) 18 | ZEBRA_IPV6_IMPORT_LOOKUP N/A
Figure 4. The message format of the Zebra protocol 19 ZEBRA INTERFACE RENAME N/A
20 ZEBRA_ROUTER_ID_ADD C—S
21 ZEBRA_ROUTER_ID_DELETE C—S
ZEBRA_ROUTER_ID_UPDATE C«S

highest performance. Figure 3 presents the architectuae of
Quagga router. The Zebra module is responsible for the API
operating system support. It reads status of the interfaces
and their addresses. It also modifies the system routing.tablof the protocol. The value of this field should equal 255. In
The Zebra module supports the following operating systemghe older version of the protocol this field was interpreted
Linux, Solaris, FreeBSD. as a command. The following 8-bit fielkrsion specifies

The modules of the application layer (ospféd, ospfd,the version of the Zebra protocol. The present version of the
rip6d, pipd, bgpd) connect with the Zebra module via aprotocolis 1. The last field of the header field is a 16-bit field
local or TCP connection. The managing of modules in thecommand that specifies the command. Command code is
application layer is possible by using CLI. Each module hagvritten in network order. Content of the fiefdessage data
a telnet server and supports multiple CLI sessions simuldepends on the command. In the Zebra protocol there are
taneously. The VTYsh management layer module connectd2 messages provided, listed in Table I. The first column
to all modules of the application layer. At the same time,specifies the value of the message code that is placed in
it provides a telnet protocol server to which users carthe fieldcommand The second column contains the name
connect as well. Owing to the VTYsh module, the user ha®f the message, and the third one the direction in which
access to all modules of the application layer from a singldt is sent. The letter C stands for a process running in the
console that supports the connection with VTYsh. It should@pplication layer, and the letter S means a module running
be noted that the management layer in the Quagga projeét the layer within the Zebra equipment. These messages
is not indispensable. Its addition is to make the commangan be sent to the Zebra module (direction-€ S), to
interpreter similar to the one used on Cisco routers. a module with routing process (direction & S), or in

The following section presents the idea of the modificationPoth directions (C+ S). Messages sent in both directions
of the Quagga project. It will consist of adding some often have asymmetric forms. Therefore, it is necessary to
functionality to the interface between the hardware layer a Use the right tool for an analysis of sent messages. In this
the application layer. The interface between the hardwar€ase, it may be the Wireshark program. Unfortunately, the
layer and the application layer is described further in thismplemented module in the above mentioned program is
section. The Zebra module operates as a server to whidier the analysis of the older, now outdated, version of the
C”ents are Connected — the application |ayer modu'eS. Th@FOtOCOl. Therefore, a Wireshark modiﬁcation, that indﬂd
communication between the modules is provided by the zethe new version of the Zebra protocol, needs to be prepared
bra protocol. This protocol does not have any documentatiofP! the construction of the test platform.
and was changing with the evolution of the project. Figure 4 The process supporting the routing connects to the Zebra
shows the message format of the Zebra protocol. The firasnodule. Zebra server, running in the Zebra module, may
field message sizepecifies in bytes the whole message sizesupport many connections simultaneously. It should bechote
(along with the header). It is a 16-bit field and the bytesthat not all messages included in the Zebra protocol have
are written in network order. Next 8-bit fieltharker is been implemented. Those not implemented are marked in
introduced to keep the compatibility with an older versionthe column specifying the direction as N/A.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1 199

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

——~, Router1

The module supporting the routing protocol is running O
on an abstract hardware and, in this way, it is partially o ‘: .
independent from the operating system. The module is not v\JL—
fully independent because in order to send or receive a ;- Rout
signal, such as Ospf Hello message for OSPFv3 protocol, N %
direct use of the socket API is required. By sending a signal ,Ig

message via the API operating system, the routing protocol

specifies an interface through which the message is to bEigure 5. The proposed platform for testing and developiogting

sent. Similarly, it also uses the API operating system toalgorithms

read messages. The system returns the received message, the

source and destination address, as well as the information

on the interface that received the message. This requires af the extreme case, each node has a separate computer

application of a particular function from the API operating implementing the CP functiohs

system. Some differences in functioning of the socket APl In order to connect CP with DP, a separate network

may occur, depending on the operating system. This forcedas dedicated for this purpose. In Figure 5 all devices

the adjustment ofa program, running at the app”cationrlaye implementing DP functions are connected to this network

to a specific operating system. via ethOQ interface. This interface is unavailable for the DP
The architecture of the Quagga project, optimized with renetwork and inyisible for the routing protocols. The roqin

gards to its performance, has some disadvantages: no procd¥otocols specify the path for the DP networks that condist o

can be moved on another machine and the implementation &€ nodes, using the ethl-eth4 interfaces. The computer wit

routing protocols is dependent on the API operating system_C.:P instances is connected to _the_ network_ that sgpports an

In order to make the mentioned platform applicable for thenterface between CP and DP (in Figure 5 via eth0Q interface).

analysis and testing of existing routing protocols and to Each CP instance must be properly configured. The con-

design new routing protocols (also for teaching purposes)f,iguration specifies the ethO interface address of the DP

a modification that enables a physical division of the Datadevice that is supported by a corresponding instance of CP.

Plane (DP) and the Control Plane (CP) functions is proposef Single CP instance is composed of multiple processes,
in the next section. each supporting a different routing protocol. The routing

protocol can be configured using the CLI. Access to the
console is controlled using the telnet protocol. Any praces
that supports routing process listens for TCP connections
on the specified port. This port must be configured so as to
The main idea of the proposed platform is to move thebe unique within a given machine. This requires additional
application layer to a dedicated computer. In the proposedettings.
solution, the application layer meets the CP functionality The Quagga software router processes running save their
and the hardware layer implements the functionality oflDs in file /var/run/quagga. The file name depends on the
the DP. A similar approach was applied to the GMPLSrouting protocol, supported by a given process. It allows fo
system [5], introducing a distinction between CP and DPa simple stops/starts of the processes. Supporting of pieulti
In comparison to the GMLS system, the difference is thafprocesses for the same routing protocol requires a unique
CP in the proposed solution does not have its own signalinggame of the file stored in the folder /var/run/quagga for
network. The routing protocol messages (supported by CPgach of the processes. A unique file name should depend
are sent via network, supported by DP. Owing to thison the routing protocol and the node on which the protocol
division, the application layer does not use the hardwar®perates. The last parameter that must be set is the name of
resources directly. In this way, one machine (virtual orthe file where the configuration of routing protocol, desine
physical) can support many application layers concuryentl for a given node, is stored.
each for a separate node. In summary, the computer supporting multiple CP in-
Figure 5 presents a network consisting 8f nodes. Stances have multiple processes with the same name running,
Their CP is moved to a separate machine, shared by aWhich are serving the same routing protocols. For each
nodes. Each router shown in Figure 5 has a dedicategrocess, the following items have to be set:
router implementing the DP functions, while the machine . |P address of DP device,
supporting CP has many CP instatnces running. Each such, Unique port number at which a telnet server is listening,
instance is shown as a rectangle drawn with a dotted line. , Unique filename of file, where process ID is stored,
The proposed network may have one central computer that , Unique filename of file that stores configuration of
is running numerous CP instances for all nodes (as shown in
Figure 5), or CP can be distributed across different mashine *An idea of a central CP was proposed in an OpenFlow project [6]

IIl. A CONCEPT OF A PLATFORM FOR TESTING AND
DEVELOPING ROUTING ALGORITHMS

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1 200

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

Management layer Table Il
[telnet server] THE NEW MESSAGES ORZEBRA PROTOCOL
VTYsh
X A code | command | dir

Control Plane : 23 | ZEBRA_CONFIGURE_RECEIVER] C —> S
| 7A5/%a7tf5n7a;e7¢ 777777777777777 T 24 ZEBRA_TRANSMIT C<—>S
! telnet telnet telnet telnet telnet :
! server server server server server |
! [ecpd RIPG riped | | oserd | lospred| + | Bits0-7 [Bits8-15 [Bits 16-23 | Bits 24-31
! Zclient Zclient Zclient Zclient Zclient : 9 Message size 255 | 1
L B 7,& — 7,; 77777777777777) 32 24 Interface Idx
Data §P|ane 64 Interface ldx

R T e I - = 96 IPv4 / IPv6 packet with header

Figure 7. The format of ZEBRA_TRANSMIT message

protocol. The implementation of these steps required aaZebr
Figure 6. The node architecture in the proposed platform protocol to be modified. For this purpose, two new messages
were added. They are presented in Table Il. Sending and
receiving of a Zebra protocol message follows via ZE-
routing protocol. BRA_TRANSMIT command. Figure 7 presents a format
The presented approach has many advantages, despite thfesuch message. A message length depends on the length
need to provide additional parameters for each of the proef a packet (IPv4 / IPv6) with the signaling message that
cesses. The entire network configuration is stored on onwe want to send. The first parameiaterface idx in the
machine. All consoles to configure the routing protocols aredata field is a 32-bit value with an index of the interface
available from the same machine, so there is no need fahrough which a message is to be sent. The index of the
the management layer. There is also no need to output thieterface is the same as the one in the message, adding
console cables for all nodes. The modification of the procesa new interface. Interface index was saved as 32-bit value
supporting the routing protocol is easier -— it only needs tdantentionally, since all the interface indexes in API of the
be compiled once and then restart a modified process for allinux system [7] are written in the form of 32-bit numbers.
nodes. All of these steps can be implemented with access tbhe final element of the message is a IPv4 or IPv6 packet
a single computer. (including the header). In the header of the transmitted
The processes take the mentioned parameters from thEacket a destination IP address is stored. In the case of
arguments with which the process was started. This allow§Vv6, the packet being sent should include the calculated
to write a simple script that starts, restarts, or turns loéf t checksum before sending it, although it is possible that
processes for a single or all nodes. The following is a sampl®P counts the sum. Receiving a signaling messages from
script that runs routing protocol OSPFv3 for node 1 with anthe network by CP requires DP mediation. DP needs to
IP address eth0 10.0.1.1. know the destination address of the packet that CP wants
. to receive. To do so, the right filter must be set, where
./ ospf6d --denoni ze \ . . . o
--dpaddr 10.0.1.1 --cliport 2701 \ unicast or multicast address is specified. The_ command
--pid /var/run/ quagga/ n1_ospf 6d. pi d \ ZEBRA_CONFIGURE_RECEIVER helps to configure DP.
--conf /etc/quaggal/ n1_ospf6d. conf After an appropriate configuration, the DP transmits the re-
To stop the OSPFv3 process for node 1, the foIIowingf:l_e'Ved messages to CP via ZEBRA_TRANSMIT command.
he format of this message is symmetric and remains the

script needs to be started. ge |
]) same regardless of the direction.
kill ’cat /var/run/nl_ospf6d.pid

Figure 6 presents the node architecture (software router) IV. IMPLEMENTATION

in the proposed platform for testing and developing the The implementation is in progress. The aim of the DP
routing protocols. The top rectangle drawn with a dotted lin implementation is to build a firmware image which is then
includes the processes responsible for the CP functiowss, arflashed into the router. Linux is frequently chosen as an
the bottom one includes the processes responsible for thembedded system. The firmware image of embedded Linux
DP. Each CP process communicates via the Zebra protocabnsists of a kernel and a file system. Open Embedded [8]
with a Zebra module. The Zebra module supports API thats a toolset and sources for embedding Linux. The set offers
controls the work of DP. The Zebra server is responsible fomany possibilities, ranging from a kernel with a basic tdtolk
communication with a higher layer. In the proposed nodeup to a system with a graphic interface. With regards to
the modification the Zebra module additionally supportsthe network devices, Open WRT [9] distributions have been
sending and receiving of signaling messages of routingleveloped. It includes a toolset for an oblique compilation

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1 201

AICT 2012 : The Eighth Advanced International Conference on Telecommunications

the addresses of repositories with a system and programse The analysis of exchanged routing protocols’ messages;
kernel sources, and a set of patches that allow kernel or « The analysis of messages exchanged between CP and
programs adjustment to the given hardware platform. The DP;

software set has been narrowed. An Open WRT is simpler « Checking if the network is able to establish a new
in implementation, as compared to Open Embedded, and a path afer physical breaking the link (disconnecting the

software developer with a little experience can easilydail cable);
firmware image, using a creator. The configurator attached to « Making the changes in routing protocols configuration,
the project can be run, using thenu confi g command. e.g. changing the timers in the RIP protocol.

It enables a choice of hardware platform, a device and a set

of programs. Moreover, it makes an addition of one’s own Thi il f K platf
programs possible. In order to build a firmware image for IS article presents a new concept of a network platiorm

DP, the code with a Zebra module from Quagga projecfhat enables both an analysis of existing network protocols
’ g gnd the implementation, plus testing, of new protocols. The

consist in adding the commands and functions to send an'ampoSed platform, based on the Quagga software router

receive the messages or routing protocols described in th pncept, C(ln(mblr(;es t.he If_;ldvgntaggi O; SOIUU(.)”S rermgkon
previous section. the network node vitualization with the testing networks

The implementation of CP software consists in down_implemented with the help of hardware routers. The plat-

loading of a Quagga project source code and its furtheForm enab_les a sim_ple addition and modification of routing
modifications. The modification is based on adding the neV\PrOtO(FlOItS na ctjestlr:g g_etwoth V\gthout a ?eed f(;]r cfrot:;s-
commands to the Zebra protocol. It is necessary to modiffomp'a lon and uploading the firmware to each ol the
the way of sending and receiving of messages for eacgouters. Simultaneously, the qompIeX|ty of a routing peolo .
routing algorithm. These operations are executed via th oes not _affect the functioning of a hardware .node. This
Zebra module. Thus, in order to send the packet via d@\llows to implement the platform using much simpler and

given interface, its number and packet need to be plaCe(&heaper hardware nodes_. In further_ works, related to the
in a message data field compatible with Zebra protocoIPrOpOSed platform for testing the routing protocols, anlana

Similarly, packet reception is activated after Zebra medul ysis module for the Wireshark program will be developed.

message is received. This message includes in its data fieTol1IS should allow to pick up an information exchange with
&rdware nodes on the CP interface.

an interface number and the packet that has been receiv

VI. CONCLUSION

by this interface. The functions for sending and receiving REFERENCES
packets are stored in file x_network.c, where x stands for g “Quagga homepage.” [Online]. Available: www.quagggt/in
process name, e.g., ospféd for the OSPFv3 protocol. <retrieved: May, 2012>

It needs to be noted that the system will run in the sam) _) . :

way as the Quagga software router, if both softwares Dliz] A. Bianco, R. Birke, J. Finochietto, L. Giraudo, F. Macen

! . . ’ M. Mellia, A. Khan, D. Manjunath, “Control and management
(Zebra module) and CP (the modules with routing algo- plane in a multi-stage software router architecture, High
rithms) are installed on the same machine. That means that Performance Switching and Routinglay 2008, pp. 235-240.
the proposed code modification, after being implemente
may be added to the Quagga project. As a result, it wil
be possible to disperse one node onto more machines, to
place all the processes supporting the routing protocol offf] “Xorp architecture.” [Online]. Available: http://xgrrun.
one machine and to port very easily a project onto the new montefiore.ulg.ac.be/latex2wiki/design_overview <ested:

I]“Xorp homepage.” [Online]. Available: www.xorp.org/
<retrieved: May, 2012>

operating systems (all that needs to be done is to modify the May, 2012>
Zebra module). [5] E. Mannie, “Generalized Multi-Protocol Label Switckin
(GMPLS) Architecture,” RFC 3945 (Proposed Standard),
V. USAGE SCENARIOUS Internet Engineering Task Force, Oct. 2004.

The proposed pl_atform enables fulfilling the labs with 6] “Openflow switch specyfication,” Feb. 2011. [Online]. &l
routing protocols like RIP or OSPF. Regardless of the = aple: http://www.openflow.org/documents/openflow-spict.
routing algorithm, the labs include the following tasks: 0.pdf <retrieved: May, 2012>

. Preparing physical con_nections between DP device_s; 7] The Linux Kernel [Onling]. Available: http:/kernelbook.
« Connecting the CP device to the network, and checking = sourceforge.net/ <retrieved: May, 2012>

the communication between CP and DP devices;
« Launching the routing protocaol, e.g. RIP; (8]
« Watching the entries in forward (routing) table;

« Checking if the network is working correctly (ping [9] “OpenWRT.” [Online]. Available: https://openwrt.ofg
command); <retrieved: May, 2012>

“OpenEmbedded.” [Online]. Available: http://www.
openembedded.org <retrieved: May, 2012>

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-199-1 202

