
Multi-agents Architecture for Distributed Intrusion Detection

Vinícius da Silva Thiago, Paulo Antonio Leal Rego, José Neuman de Souza
Master and Doctorate in Computer Science

Federal University of Ceará
Fortaleza - CE, Brazil

vsthiago@gmail.com, pauloalr@ufc.br, neuman@ufc.br

Abstract—The growing concern about information security in
computer networks is responsible for constantly producing
new ways to defend them. This work describes the proposal for
an Intrusion Detection System architecture that uses agents
and an ontology for sharing information. Mobile agents
provide a convenient way to distribute the detection process,
enabling peer to peer cooperation between network nodes. The
ontology provides an organized way of storing and sharing
knowledge. To evaluate the proposed solution, the architecture
has been implemented using the Java programming language
and Java Agent Development Framework.

Keywords - detection; intrusion; agents

I. INTRODUCTION

The growing number of computer networks applications
is responsible for the everyday great diversity and
sophistication of attacks and intrusion methods, raising
awareness about the safety of these networks. Intrusion
detection is one of the key techniques to protect networks
and is based on collecting and storing data for auditing
systems and networks. According to [1], when detected, an
intrusion should be reported to the security manager, and an
automatic reply, in order to eliminate the causes and/or the
effects of the intrusion, could be triggered.

An Intrusion Detection System (IDS) tries to detect and
warn of intrusion attempts to a system or network, in which
an intrusion is considered to be an unauthorized or unwanted
activity [2]. A centralized IDS runs on a machine in the
network in a way that it can collect data from each one of the
nodes and then analyze it. However, centralization becomes
a major weakness because if the machine crashes, intrusions
will not be able to be detected, apart from the fact that the
central analyzer can easily become a bottleneck [3].

The distributed detection architectures are more efficient
and can solve the problems of centralized architectures. The
more sources of information are used to ensure intrusion
detection, the more accurate it becomes. The main problem
faced by distributed architectures is how to collect and
correlate information and then evaluate the security status of
the monitored system.

The paper is organized as follows. Section II presents
concepts concerning intrusion detection and Section III
presents the problem to be treated. Related work is presented
in Section IV. Section V describes the proposed architecture,
while Section VI details its implementation. Section VII
describes the experiment results. In Section VIII, the
conclusion and future work are presented.

II. INTRUSION DETECTION

When dealing with intrusion detection, it should be
assumed that users and programs activities are observable by
auditing mechanisms and that normal activities and
intrusions have different behaviors [4]. It is also worth
considering that an attacker can try to compromise the IDS
itself [5]. Thus, it is important for an IDS to be fault tolerant
and/or able to detect problems in its own operation.

In general, the IDSs are composed of four components
(sensors, analyzers, database and response units) and are
responsible for activities such as monitoring the users and
systems activities, auditing systems configuration, accessing
data files, recognizing known attacks, identifying odd
activities, auditing data manipulation, tagging normal
activities, error correction and storing information
concerning invaders [6].

Agent systems are composed by a collection of software
agents that are autonomous and directed to a goal, located in
an organizational context to cooperate through adaptable and
flexible interactions and cognitive mechanisms to achieve
goals that could not be achieved by a single agent [7].
Mobile agents are defined as processes that can navigate
through large networks interacting with machines, gathering
information and returning after having carried out the tasks
defined by the user [8]. The agents are dynamically
updatable, lightweight, have a specific operation and can be
used as part of a flexible and dynamically configurable IDS
[2].

III. PROBLEM CHARACTERIZATION

An IDS architecture should be simple and effective to
provide security against different attacks. According to [9], it
is an efficient solution to defend against intrusions
cooperatively. It is also important for the IDS to be able to
perform its function without compromising the normal
operation of the network [10]. The problem then consists in
how to build a distributed architecture that is robust to
withstand attacks to the very structure of the IDS, enable
data sharing between network nodes without creating an
excessive overhead in traffic and avoid creating potential
bottlenecks.

In the case of a peer-to-peer (P2P) IDS, each host can
send detection requests to others without the weakness of a
central controller. However, many systems like this only
allow hosts on the network to get information from limited
sources, such as directly connected neighbors, which can
lead to inaccurate decision-making, especially in the case of
attacks on multiple hosts [11]. The most important feature of

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

these types of attacks is that the activity level of the attack in
each of the hosts may not be large enough to raise an alarm
for the entire network. However, if a distributed IDS can
collect and analyze information from multiple hosts, it may
be possible to recognize the attack.

One way to implement a distributed IDS is through the
use of mobile agents. A host can send mobile agents to
others in order to collect relevant information from multiple
hosts and to recognize an attack on multiple hosts.
According to [12] and [13], the advantages of mobile agent
technology include: reducing the overhead of the network,
overcoming the problem of delay in the network, executing
asynchronously and autonomously, fault tolerance, system
scalability and operation in heterogeneous environments.

IV. RELATED WORK

The work presented in [11] showed a proposal for a P2P
IDS using mobile agents to achieve a lower processing
overhead on the hosts, reduce the risk of a centralized
architecture and get more accurate detections. The proposed
architecture does not use ontologies and the direct contact
between agents is the only way to exchange information
about intrusions.

The work presented in [14] proposed the use of semantic
techniques in IDS, using ontologies to extract semantic
relations between intrusions in a distributed IDS. When
IDSagents detect an attack or a suspicious condition, they
send messages to the MasterAgent, which can extract the
semantic relationships using the ontology and decide
whether the activity represents or not an attack. Implemented
in a hierarchical architecture, the MasterAgent has shown to
be a point of failure, because if an attacker could prevent its
operation, intrusions wouldn’t be detected. The architecture
is efficient in reducing the false positives and false negatives
rates and has been implemented using Java Agent
Development Framework (JADE).

The work presented in [12] showed the proposal for a
distributed IDS using mobile agents and a data mining
algorithm to classify network traffic behavior. It proposes the
creation of signature detection agents and anomaly detection
agents, the latter using data mining techniques. The article
also proposed the creation of several classes of agents, in a
detection structure similar to [11], with a different technique
that classifies network connections according to the level of
abnormality found and also proposes that, when detecting
new attacks, the signatures are added to the signature
detection agents. The architecture does not rely on an
ontology. The authors used the JADE framework to
implement the proposed IDS.

The work in [15] showed the proposal for a distributed
IDS that uses agents and ontology. However, the author had
not defined the internal operation of the agents, did not
mentioned the use of mobile agents and proposed that the
ontology should be left available in a web server, which
eventually becomes a single point of system failure. The
present paper shows a proposal to define the missing
elements, detail the internal operation of the agents and,
making some adjustments and changes, to implement an
architecture that uses mobile agents very similar to that
proposed by the author.

V. PROPOSED ARCHITECTURE

This paper proposes a distributed architecture, based on
the proposal found in [15] in which agents perform the task
of detection by communication and collaboration, using a
global ontology. The architecture is organized as a multi-
agent detection system which consists of the following
classes of agents: sensor, analyzer, manager, ontology,
actuator and global ontology. The ontology and manager
agents are mobile, while sensor, actuator and analyzer agents
are fixed on network hosts and the global ontology agent is a
fixed agent which is located on a single host.

The sensor agent captures raw network traffic, transforms
it into a pre-defined format and lets it available for the
analyzer. This one will analyze the data and apply the
detection rules. If an intrusion is confirmed or suspected, two
cases are possible: in the first case, a malicious activity is
confirmed and the analyzer agent calls an actuator agent to
perform the necessary actions; in the second case, the
activity is classified as suspicious. In this case, an ontology
agent can invoke a sharing of global ontology data by
accessing information from the global ontology agent which,
if not sufficient for the analyzer agent to decide on
suspicions, will make it call a manager agent which will
request information related to local suspicious activity from
other analyzer agents located in other hosts of the IDS. The
operation of the architecture can be seen in Figure 1.

The specification of an ontology separates the data model
which defines the intrusion from the operation logic of the
IDS, what allows different systems, with distinct operational
logics, to share data with no previous agreement on
semantics [14].

JADE allows the creation of P2P platforms and the
implementation of mobile agents and is under the rules of the
Lesser General Public License (LPGL). It is written in Java
and offers a large amount of programming abstractions. The
structure of the messages exchanged in the communication
between agents is based on the Agent Communication
Language (ACL) defined by Foundation for Intelligent
Physical Agents (FIPA).

VI. ARCHITECTURE IMPLEMENTATION

In order to observe the operation of the architecture, the
proposed agents and ontology have been implemented using
the JADE framework. In this section, the implementation of
the agents and the ontology are described in details.

A. Sensor Agent Implementation

The sensor agent captures network traffic and saves it in
a file in the following format: the Jpcap [16] method
Packet.toString() is called and the result string is added to
the date and time of the reception of the package, each line
of the file representing a captured packet. Then it creates an
analyzer agent using the JADE command
“createNewAgent”.

B. Analyzer Agent Implementation

The analyzer agent treats the captured packets one by one
and extracts source and destination addresses, source and
destination ports (if any), date and time of capturing. It stores
the number of packets of a type (with the same features
except for date and time) that have been analyzed, the time

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

Figure 1. Agents interactions

interval between the last captured packet with these
characteristics and if its origin is considered suspicious of
attacks.

When implementing the architecture to detect attacks, the
following method [15] has been used: for each service, the
number of captured packets in the network was counted and
two pre-defined limits (Lmin e Lmax) were used to decide the
traffic’s nature. If the observed number of packets was less
than Lmin then it is normal traffic, in this case, the agent
temporarily stores the value. Otherwise, if the number
exceeds Lmax then it is a malicious activity. The third case is
when the number of packets is greater than Lmin and less than
Lmax , in which case the traffic is judged as suspect (probably
malicious). Consequently, further analyzes should be
performed, then it will be necessary collaboration with other
agents for more information on the service.

The amount of time that a service has not been accessed
until it is noted access in network traffic, has also been
considered as a source of information for deciding about
suspicious (a simplified solution of the proposed in [17]).
The autor ignored in his analysis packages that are not IP
protocol and outgoing traffic, in order to reduce the amount
of false positives and increase processing speed. However,
due to these considerations, some attacks went undetected.

Unlike [17], in the present implementation it has not been
disregarded any packet or traffic, to make the system more
generic and able to identify more types of attacks. Another
difference is that it does not have a training period, executing
classification of anomalies based only on the time interval.
Thus, if a service goes without being accessed by a time
interval greater than a specified value and be accessed, the
access is considered suspicious. However, this criterion only
classifies as anomalies or normal traffic, not directly

identifying intrusions. This identification is performed by the
distributed system, by interactions between agents, which, as
it uses several sources of information, is expected to reduce
the false positive rates.

In case of detecting a number of packets exceeding Lmax,
the analyzer agent creates an actuator agent, passing as
arguments the characteristics of the packets that led to the
detection. After creating the actuator agent, an ontology
agent is created, being passed as arguments its purpose
(“inclusion”), which is to include an attack in the ontology,
as well as the information passed to create the actuator agent.

In case of detecting a number of packets greater than Lmin

and less than Lmax , or detecting a time interval of capturing
packets of the same type higher than the one set for
generating suspicious, the analyzer agent marks the
representation of such as suspicious packets and creates an
ontology agent, passing as an argument its purpose
(“query”), which is to query the global ontology, as well
suspicious packets characteristics.

After analyzing each packet, the analyzer agent checks if
it has received a message. Upon receiving a message from a
native ontology agent stating that it was not possible to
confirm a suspicion, it extracts the characteristics of the
suspicion and uses them as parameters to create a manager
agent. Upon receiving a message from a native ontology
agent stating that a suspicion was confirmed, it extracts the
characteristics and uses them as parameters to create an
actuator agent. Upon receiving a message from a manager
agent generated in another host to check the suspects list, it
extracts the suspect’s characteristics and compares them with
its internal information, verifying if the information in the
message corresponds to a packet coming from a host it also
considers as suspected of generating attacks. If the suspicion

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

is confirmed, it creates a response message with the content
“intrusion occurred”. If it is not possible to confirm the
suspicion, it creates a response message with the content
“not detected”. Upon receiving a message from a native
manager agent stating that it was not possible to confirm
certain suspicion with the others system hosts, it considers
that it is not happening an intrusion. Upon receiving a
message from a native manager agent stating that a suspicion
was confirmed, it extracts the protocol, addresses and ports
and creates an actuator agent, passing them as parameters.
Then, an ontology agent is created, being passed as
arguments its purpose (“inclusion”) which is to include an
attack in the ontology, as well as the information passed to
create the actuator agent.

C. Ontology Agent Implementation

An ontology agent moves to the main container by
calling the JADE command “doMove()” and checks the
arguments passed in its creation. If the purpose is “query”
the agent’s goal is to query the global ontology to verify if a
suspected intrusion corresponds to one stored in it. If the
purpose is “intrusion” the agent’s goal is to include the
confirmed intrusion in the global ontology. It sends an ACL
message to the global ontology agent, whose content is an
instance of “suspicion” that consists of two instances of the
“host” class (attacker and target) that identify the protocols
and network addresses, and two strings that identify the ports
numbers. Both hosts and ports match the arguments of the
creation of the ontology agent. The message is written in the
detection system defined ontology language. Classes “host”
and “suspicion” correspond to statements of the global
ontology. If the agent’s purpose is querying, the message’s
performative is QUERY_IF, if it is to include an intrusion,
the performative is INFORM.

If the message is sent to query, the ontology agent waits
for the response message and when receives it, checks if it
confirmed the suspicion or not. Then it migrates back to its
native host, calling the command doMove() and creates an
ACL message to the native analyzer agent. The message
content is filled with the same parameters used to create the
ontology agent, the performative varying to REQUEST if it
confirmed an intrusion (because requests that the analyzer
agent creates an actuator agent to generate an alarm) or to
PROPOSE if it has not confirmed the suspicion (as proposes
that the analyzer agent creates an manager agent to check the
suspicion in other hosts).

D. Manager Agent Implementation

A manager agent sends a request to get informed about
all active containers, creating a list. Thus, it uses the JADE
command doMove() to move container by container. When
migrating to a new host, it sends an ACL message to the
local analyzer agent informing the characteristics of the
suspicion that was passed as an argument in its creation,
asking if it is present in its list of suspects. If the answer to
the message is that the suspicion was not confirmed, it
migrates to the next host of the list. If the answer is that the
suspicion was confirmed, or it has traveled to all hosts on the
list, it migrates back to its native container. If the intrusion is
confirmed, it creates an ACL message for the analyzer agent,
passing information about the protocol, source and
destination addresses and ports which were considered as

intrusion. Using this information, the local analyzer agent
creates an actuator agent to generate the corresponding
alarm. If the intrusion is not confirmed, it creates an ACL
message to inform the local analyzer agent that it was not
possible to confirm the suspicion.

E. Actuator Agent Implementation

The actuator agent extracts the information that has been
passed in its creation and adds information regarding the date
and time of when the alert is generated, saving this
information in a file.

F. Global Ontology Agent Implementation

The global ontology agent is responsible for maintaining
the information saved in the ontology and only receives
messages written in the ontology language defined for the
detection system. Upon receiving a message, it verifies its
performative. If it is a message of type QUERY_IF, it is a
message asking to perform a query on ontology information.
It checks if the attacker’s address shown in the query
matches an source address in the ontology. After checking, it
creates an ACL response message of type INFORM to
inform if the detection was confirmed or not. As it only
checks the attacker’s address when querying the ontology
knowledge, the global ontology agent is using the global
ontology (in laboratory tests) as a way to represent
knowledge about the attackers. If a message received by the
global ontology agent is of the type INFORM, its content is a
proposed information to be added in the ontology.

G. Detection Ontology Implementation

To define the detection ontology it was necessary to
extend the JADE Ontology class. The vocabulary is
composed of fifteen strings that represent elements and may
be used to represent entities of knowledge that the ontology
is intended to describe. The terms that comprise the
vocabulary of the ontology are:

• HOST that defines network hosts;
• HOST_ADD that defines a host’s address;
• HOST_TYPE_ADD that defines the protocol of the

previous term;
• SUSPICION that defines the characteristics of a

network stream considered as suspect of being an
intrusion;

• SUSPICION_ATTACKER that represents the host
suspected of being an attacker;

• SUSPICION_ATTACKER_PORT;
• SUSPICION_TARGET;
• SUSPICION_TARGET_PORT;
• SUSPICION_NUM_PACKETS that represents the

amount of packets that were detected accessing a
particular service and that generated the suspected
intrusion;

• SUSPICION_INTERVAL that represents the time
interval that a service has not being accessed;

• INTRUSION that represents an intrusion;
• INTRUSION_TARGET;
• INTRUSION_TARGET_PORT;
• INTRUSION_ATTACKER;
• INTRUSION_ATTACKER_PORT.

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

After defining the vocabulary, it was necessary to define
the schemas that represent the concepts, predicates and agent
actions. In the detection ontology, we defined schemas for
the concept HOST, the predicate SUSPICION and agent
action INTRUSION. Each added scheme is associated with a
Java class, so that, when using the defined ontology,
expressions indicating the terms need to be instances of these
classes.

The concept HOST was associated with the class Host, as
well as to primitive schemas HOST_ADD and
HOST_TYPE_ADD, both of type BasicOntology.STRING.
These associations imply that information passed to the
ontology to represent a host must be an instance of Host, that
implements the class Concept and has as attributes the
strings Add and TypeAdd and the methods needed to access
and assign values to them.

The predicate SUSPICION was associated with class
Suspicion, as well as to concept schemas SUSPICION_
ATTACKER and SUSPICION_TARGET, both of type
HOST; primitive schemes SUSPICION_ATTACKER_
PORT and SUSPICION_TARGET_ PORT, both of type
BasicOntology.STRING; and primitive schemes
SUSPICION_NUM_PACKETS and SUSPICION_
INTERVAL, both of type BasicOntology.INTEGER. These
associations imply that information passed to the ontology to
represent a suspicion must be an instance of Suspicion,
which implements the class Predicate and has as attributes
the Hosts Attacker and Target, the strings AttackerPort and
TargetPort, the integers (long) NumPacotes and Interval as
well as methods needed to access and assign values to them.

The agent action INTRUSION was associated to class
Intrusion, to the concept schemes INTRUSION_TARGET
and INTRUSION_ATTACKER, both of type HOST and to
primitive schemas INTRUSION_TARGET_PORT and
INTRUSION_ATTACKER_PORT, both of BasicOnto-
logy.STRING type. These associations imply that
information passed to the ontology representing an intrusion
should be an instance of the class Intrusion that implements
the class AgentAction and has as attributes Hosts Target and
Attacker, strings AttackerPort and TargetPort and methods
needed to access and assign values to them.

VII. TESTS AND RESULTS

To evaluate the solution, a test lab was prepared. To
perform attacks it was used Low Orbit Ion Cannon (LOIC),
that performs simple denial of service attacks by sending a
sequence of TCP or UDP requests to a target machine. The
attacks initiate multiple connections to the same target host
and continuously send a predefined string. The group
Anonymous used LOIC to carry out attacks on several sites
in recent years [18].

The hosts that took part in IDS will be called A, B and C.
In the tests, C acted as main container (the container hosting
global ontology). Attacks were carried out on the three hosts
to see if they could identify the attacks, how the attacks were
being detected, and false positives generated by the system.
The objective of the tests was to determine whether the
proposed architecture could be used in an IDS, although the
detection criteria used were quite simple, which do not
reflect the reality of the commercial systems currently used.
As discussed earlier, the fact that the global ontology agent is

located in a specific network node makes this node a weak
point of the architecture, however, as seen in [19], JADE
allows the main container to be replicated a few times
creating redundant containers that take the main-container’s
place if it becomes unavailable.

There have been performed a total of eight sequences of
attacks, in which LOIC was set to flood the target with TCP
packets in the first four sequences and UDP packets in the
last four. Table 1 summarizes the results.

A. First, Second, Third and Fourth Attack Sequences

In the first sequence, attacks with TCP packets were
performed with an amount of packages that exceeded the
Lmin but not exceeded the Lmax of the analyzer agents. Hosts
A, B and C were attacked in that order. At the end of the
attacks, the following results were obtained: A did not detect
any attack, B detected the attack by means of its manager
agents and C detected the attack through its ontology agents.
These detections happened according to expectations, since
the first host attacked (A) has detected suspicious activity
and called its ontology agents, which resulted in no
conclusion because there was no information about this
attack in the ontology. Thus the manager agent was called,
migrated to B and C and also found no information about the
attack. Unable to conclude anything about the suspicious, it
did not detect the attack. B has detected suspicious activity,
called an ontology agent (which also resulted in no useful
information) and then called a manager agent that, when
migrating to A, received information that the attacker was
already considered as a suspect, confirming an attack, calling
the actuator agent that generated an alert. After that, the
analyzer agent called an ontology agent to add information
about the attacker to the global ontology. Host C, when
detected suspicious activity, called an ontology agent, that,
by consulting the global ontology, confirmed the suspicion
of attack and called an actuator agent to generate the alarm.

In the second sequence, attacks were carried out in the
same way as at the first, but at the end of the sequence it was
performed another attack on A, flooding it with a number of
packages exceeding the limit Lmax. Once again, the results
were exactly as expected: B and C generated alarms similar
to those of previous sequence and host A has generated two
alarms, both due to the detection of packets in excess of the
Lmax limit, an alarm with source on the attacker and an alarm
with source on A, which corresponds to the responses of
requests from the attacker.

In the third sequence, the attack to A was performed with
an amount of packets which exceeded Lmax, while attacks to
B and C were performed with an amount of packets that
exceeded Lmin but did not exceeded Lmax. At the end of the
attacks, A generated two detections when its analyzer agent
detected a number of packages exceeding Lmax coming from
the attacker and the generated responses to these requests. B
and C detected the attacks through their ontology agents.
Once A was attacked first, it has detected the attack, and its
actuator agent has called an ontology agent to include the
attacker in the global ontology. B and C, when detected
suspicious activity, called ontology agents, that by consulting
the global ontology, confirmed the suspicions and called
actuator agents to generate alarms.

The fourth attack sequence was performed similarly to
the first, but in this one it was waited, before initiating the

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

TABLE I. TESTS RESULTS

Attack sequence 1 2 3 4 5 6 7 8

Host A
correct detections 0 2 2 2 0 1 1 1
false positives 0 0 0 12 0 0 0 6

Host B
correct detections 1 1 1 2 1 1 1 1
false positives 0 0 0 13 0 0 0 9

Host C
correct detections 1 1 1 1 1 1 1 1
false positives 0 0 0 10 0 0 0 8

attacks, a period of time greater than the interval set in the
detection system from which the captured packages are to
generate suspicious. Host A generated fourteen alerts: two
from the packets coming from the attacker and their
responses and twelve false alerts. Host B generated fifteen
alerts, two from the packets coming from the attacker and the
responses and thirteen false alerts. Host C generated eleven
alerts, an alert from the packets coming from the attacker
machine and ten false alerts.

B. Fifth, Sixth, Seventh and Eighth Sequences

Sequences five, six, seven and eight were performed in
the same way as numbers one, two, three and four, but the
LOIC program has been set to flood the targets with UDP
packets. Sequence number five obtained the same results as
number one. Sequences number six and seven obtained
similar results to sequences two and three, but host A
generated only one alert, concerning the detection of packets
from the attacker machine in an amount that exceeded Lmax.
In the eighth sequence, host A generated seven alerts, an
alert for the packets coming from the attacker and six false
alerts. Host B generated ten warnings, one concerning the
packets coming from the attacker and nine false alerts. Host
C generated nine alerts, an alert concerning the packets
coming from the attacker and eight false alerts.

VIII. CONCLUSION AND FUTURE WORK

The results of the laboratory tests confirmed that the
proposed architecture can be used in intrusion detection
processes. All the attacks have been identified by the system,
and many have been identified by all hosts attacked. The
detection method that considers as decision parameter the
time interval the service has not been accessed showed to be
able to detect attacks, however, led to the generation of a
large number of false positives.

As opportunities for future work, it could be identified:
the deployment of a more complex detection, with smarter
agents, using statistical anomalies detection identified by
managers agents and enabling the creation of attack
signatures, which would be stored in the ontology alongside
signatures already known; the development of more complex
detection ontology, with more parameters to characterize the
attacks; the study of the impact of the use of the proposed
architecture in network traffic; and the implementation and
testing of the architecture with a redundant and fault-tolerant
main container.

REFERENCES

[1] R. Puttini, J. Percher, L. Mé, and R. De Sousa, “A fully distributed
ids for manet”. In Computers and Communications, Proceedings.
ISCC 2004. Ninth International Symposium on, IEEE, Vol. 1, Jun
2004, pp. 331–338, doi: 10.1109/ISCC.2004.1358426.

[2] O. Kachirski and R. Guha, “Effective intrusion detection using
multiple sensors in wireless ad hoc networks”. In System Sciences.
Proceedings of the 36th Annual Hawaii International Conference on,
IEEE, Jan 2003, pp. 57-64, doi: 10.1109/HICSS.2003.1173873.

[3] I. Osman and H. Elshoush, “Alert correlation in collaborative
intelligent intrusion detection systems-a survey”. Applied Soft
Computing, Vol. 11(7), Oct 2011, pp. 4349-4365, doi: 10.1016/
j.asoc.2010/12/004.

[4] Y. Zhang, W. Lee, and Y. Huang, “Intrusion detection techniques for
mobile wireless networks”. Wireless Networks, Vol. 9(5), 2003, pp
545–556, doi: 10.1023/A:1024600519144.

[5] Y. Huang and W. Lee, “A cooperative intrusion detection system for
ad hoc networks”. In Proceedings of the 1st ACM workshop on
Security of ad hoc and sensor networks, Oct. 2003, pp. 135–147, doi:
10.1145/986858.986877.

[6] D. Farid and M. Rahman, “Anomaly network intrusion detection
based on improved self adaptive bayesian algorithm”. Journal of
computers, Vol. 5(1), Jan 2010, pp. 23–31, doi: 10.4304/jcp.5.1.23-31

[7] T. Oren and L. Yilmaz, “Synergies of simulation, agents, and systems
engineering”. Expert Systems with Applications, Vol. 39(1), 2012,
pp. 81–88, doi: 10.1016/j.eswa.2011.06.038.

[8] R. Nakkeeran, T. Albert, and R. Ezumalai, “Agent based efficient
anomaly intrusion detection system in adhoc networks”. IACSIT
International Journal of Engineering and Technology, Vol. 2(1), Feb
2010, pp. 52-56.

[9] E. Ahmed, K. Samad, and W. Mahmood, “Cluster-based intrusion
detection (cbid) architecture for mobile ad hoc networks”. In 5th
Conference, AusCERT2006 Gold Coast, Australia, May 2006
Proceedings, <http://eprints.qut.edu.au/33277/> 04.12.13

[10] E. Ferreira, G. Carrijo, R. Oliveira, and N. Araujo, “Intrusion
detection system with wavelet and neural artifical network approach
for networks computers”. Latin America Transactions, IEEE (Revista
IEEE America Latina), Vol. 9(5), Sep 2011, pp. 832–837, doi:
10.1109/TLA.2011.6030997.

[11] D. Ye, Q. Bai, M. Zhang, and Z. Ye, “P2P distributed intrusion
detections by using mobile agents”. In Computer and Information
Science. ICIS 08. Seventh IEEE/ACIS International Conference on,
IEEE, May 2008, pp. 259–265, doi: 10.1109/ICIS.2008.21.

[12] I. Brahmi, S. Yahia, and P. Poncelet, “MAD-IDS: Novel intrusion
detection system using mobile agents and data mining approaches”.
Intelligence and Security Informatics, Jun 2010, pp. 73–76, doi:
10.1007/978-3-642-13601-6_9.

[13] W. Jansen, “Intrusion detection with mobile agents”. Computer
Communications, Vol. 25(15), Sep 2002, pp. 1392–1401, doi:
10.1016/S0140-3664(02)00040-3.

[14] F. Abdoli and M. Kahani, “Ontology-based distributed intrusion
detection system”. In Computer Conference, 2009. CSICC 2009. 14th
International CSI, Oct. 2009, pp. 65–70, doi:
10.1109/CSICC.2009.5349372.

[15] A. Zaidi, “Recherche et détection des patterns d’attaques dans les
réseaux IP à haut débits”. Tesis, Université d’Evry Val d’Essonne,
Évry. 2011, 109 f.

[16] K. Fujii, (2007). Jpcap Tutorial. <http://www.eden.rutgers.edu
/~muscarim/jpcap/tutorial/index.html>. 04.14.13.

[17] M. Mahoney, “Network traffic anomaly detection based on packet
bytes”. In Proceedings of the 2003 ACM symposium on applied
computing, Mar 2003, pp. 346–350, doi: 10.1145/952532.952601.

[18] A. Pras, et al. Attacks by ”anonymous” wikileaks proponents not
anonymous. Report. University of Twente, Centre for Telematics and
Information Technology (CTIT), Dec 2010,
<http://doc.utwente.nl/75331/> 04.16.13

[19] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, and R. Mungenast,
Jade administrator’s guide. <http://jade.tilab.com/doc/index.html>
04.12.13.

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

	I. Introduction
	II. Intrusion Detection
	III. Problem Characterization
	IV. Related Work
	V. Proposed Architecture
	VI. Architecture Implementation
	A. Sensor Agent Implementation
	B. Analyzer Agent Implementation
	C. Ontology Agent Implementation
	D. Manager Agent Implementation
	E. Actuator Agent Implementation
	F. Global Ontology Agent Implementation
	G. Detection Ontology Implementation

	VII. Tests and Results
	A. First, Second, Third and Fourth Attack Sequences
	B. Fifth, Sixth, Seventh and Eighth Sequences

	VIII. Conclusion and Future Work

