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Abstract—Spectrum sensing in wideband regime requires huge 
amount of samples. The observed frequency spectrum is 
usually sparse. Compressed sensing technique provides a 
viable solution to reconstruct the sparse signals. The observed 
wideband spectrum can be reconstructed using compressive 
sensing technique. Inherent constraints of the compressed 
sensing algorithms hinder the flexible implementation of 
spectrum sensing process. The structure-based Bayesian sparse 
recovery algorithm is used in this paper to implement 
spectrum sensing process. Spectrum sensing performed using 
the Bayesian estimation approach resulted in better 
performance compared to the results based on compressed 
sensing technique. Various cases have been discussed 
considering the amount of information available for the 
observed frequency band. Spectrum sensing performed using 
the Bayesian algorithm showed improvement of more than 5 
dB in all cases.  

Keywords; cognitive radio; spectrum sensing; compressive 
sensing; structure-based bayesian sparse recovery algorithm. 

I. INTRODUCTION 

The ever-increasing high data rate services and new 
wireless service providers require more frequency spectrum 
than available. This appetence of more frequency spectrum 
has raised a concern of spectrum scarcity. The frequency 
spectrum is a limited natural resource. Measurements have 
shown that the current spectrum scarcity is a result of under-
utilization rather than the unavailability of spectrum. 
According to Federal communication comission [1], the 
spectrum utilization varies from 15% to 85% with high 
variance in time and space. These statistics puts question on 
the appropriateness of current regulatory authorities. To 
overcome this problem, Mitola and Maguire [2] introduced 
the cognitive radio device in 1999. The cognitive radio (CR) 
provides an adequate solution to the observed concern of 
spectrum scarcity. The CR avails opportunistic access to the 
frequency bands that are not used by the licensed users at a 
particular instance or space [2]. 

This paper focuses on performing spectrum sensing in 
wideband regime. The spectrum sensing process is core of 
the CR system. It enables the CR to scan range of 
frequencies and utilize any vacant ones. This process has 
many challenges associated with it. One key problem relates 
to the sensing of a wideband signal. Perpetually sampling of 

signal is done at the Nyquist rate. In the wideband regime, 
this means acquisition of colossal amount of samples and 
respectively high sensing time. In this paper solution to the 
wideband spectrum sensing problem is discussed using the 
sub-Nyquist rate sampling technique. 

Over the years, many algorithms (based on the Nyquist 
rate sampling criteria) have been developed for the spectrum 
sensing process. Among them are the energy detection based 
sensing, wave form based sensing, cyclostationary feature 
based sensing and match filtering based sensing [4]. Sensing 
a wideband signal using these techniques require large 
amount of time. The compressive sensing (CS) technique 
provides reconstruction of the sparse signals sampled at less 
than the Nyquist rate [5]. 

Over the last few years some algorithms have been 
proposed that perform spectrum sensing using the 
compressive sensing technique. Some of these algorithms are 
discussed in this paragraph. In 2007, Tian and Giannakis [6] 
proposed the idea of performing spectrum sensing using the 
compressive sensing technique. As the observed signal is 
sparse in frequency domain, its frequency spectrum was 
reconstructed using the compressive sensing technique. The 
estimates of various frequency band locations (within the 
observed spectrum) were generated using the wavelet edge 
detection technique. The presence or absence of a primary 
user within each frequency band was determined by 
observing the corresponding power spectral density (PSD). 
In 2009, Polo et al. [7] used the analog to information 
Converter (AIC) instead of the analog to digital converter 
(ADC) at the receiver. An AIC can be conceptually viewed 
as an ADC operating at the Nyquist rate followed by the 
compressive sampling mechanism. In 2009, Chen et al. [9] 
improved the work proposed in [6]. A multi-branched 
spectrum sensing structure was proposed. Each branch 
repeats the same procedure proposed in [6], i.e., reconstructs 
the frequency spectrum of received signal and calculates the 
PSD within each band. The results from all branches were 
combined to generate a final estimate. In 2010, Nassab et al. 
[8] assumed a fixed number of frequency bands in the 
observed spectrum. The wideband filters were used to 
acquire energies from some frequency bands. As the 
complete energy vector of the observed spectrum is sparse in 
nature, it was recovered using the compressive sensing 
technique. In 2010, Sundman et al. [10] modified the 
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proposed work of [7]. The autocorrelation vector achieved in 
[7] deals with the wide-sense stationary (WSS) signals only. 
However, the signal at the output of AIC is non-WSS. The 
autocorrelation vector was modified in order to deal with the 
non-WSS signals. They also proposed memory based 
spectral detection, which resulted in the overall reduction of 
computational complexity. In 2010, Liu and Wan [11] used 
the a priori knowledge of spectrum distribution and 
proposed a mixed ��/��  norm de-noising operator. They 
suggested to attain the primary user frequency band 
information from the regulatory authorities. The a priori 
knowledge of the band gaps and the block sparsity resulted 
in better performance when compared to the standard mixed 
��/�� norm de-noising operator. 

Though compressive sensing algorithms reconstruct the 
sparse signals with good probability, they do suffer from 
some deficiencies. They are computationally complex, do 
not use the structure of the sensing matrix and do not use the 
a priori statistical information about signal support and 
noise. These algorithms are bottlenecked by the number of 
observations. Increasing the number of observations leads to 
the better performance and vice versa. In order to overcome 
these shortcomings the structure-based Bayesian sparse 
recovery algorithm (SBBSR) is proposed in [12]. 

This paper focuses on utilizing the SBBSR algorithm and 
performing spectrum sensing at the sub-Nyquist rate. The 
SBBSR algorithm allows flexible implementation in contrast 
to the compressed sensing based algorithms. The rest of 
paper is organized as follows. Section II describes the 
spectrum sensing process performed using the SBBSR 
algorithm. Section III exploits the flexible implementation of 
SBBSR algorithm to improve performance. Simulations 
results are shown and discussed in section IV. Section V 
provides conclusion to this paper. 

II. SPECTRUM SENSING USING THE SBBSR ALGORITHM 

The SBBSR algorithm provides reconstruction of sparse 
signals using the Bayesian estimation approach. While 
reconstructing the signal it uses the a priori statistical and 
sparsity information and the sensing matrix structure. 
Assume the sensing timing window is defined as � ∈
[0, 
��]  (where �� represents the Nyquist sampling rate). 
According to the Nyquist theorem, 
 samples are required to 
reconstruct the original signal without aliasing. The sampling 
process at a digital receiver can be expressed as 

 
� = �� + �         (1) 
 

where � represents the 
 × 1 length sparse vector, � is an 
� × 
  projection matrix (or sensing matrix, which is 
incoherent with the domain in which � is sparse) and � is the 
complex additive white Gaussian noise vector ���0, �����. 
The process defined in (1) can be explained as the 
conversion of a continuous domain signal � ∈ �  into the 

discrete sequence � ∈ �!. In (1) when � = 
 the Nyquist 
rate uniform sampling is performed whereas setting � < 
 
performs the reduced rate sampling scheme or the sub-
Nyquist rate sampling [6].  

The sparse signal � can be modeled as 
 

� = �#⨀�%          (2) 
 

where ⨀ represents dot multiplication between the two 
vectors, �#  is an independent and identically distributed 
(i.i.d) Bernoulli random variable and the entries �%  can be 
drawn from any distribution. This model of �  provides a 
sparse signal. The sparsity information is indulged by the 
Bernoulli random variable and the amplitudes of these 
observations are drawn from some other distribution [12]. 

If the support & of � is known it can be written as  
 

			� = �� + �      
       = ()� + �    
�|& = �+�, + �,         (3) 
 

�+  is the sub-matrix formed from �  containing only 
those columns represented by &. The maximum a posteriori 
(MAP) estimate of observed signal � is given as [12] 

 
�-!./ = 012	304, 5��/&� 5�&�        (4) 
 

where 5�&� is the probability of a given support. Assuming 
the signal model of (2), the probability of support can be 
written as [12] 

 
5�&� = 	5,�1 − 5� 7,         (5) 
 

Now, the problem of calculating MAP narrows down to 
the calculation of 5��/&�. In this paper it is assumed that 
primary user data has Gaussian distribution, �|& is Gaussian, 
then �|&  will also be Gaussian with zero mean and 
covariance 8, . Corresponding probability is calculated as 
[12] 

 

5��/&� 	= 	
9:;	�7

<

=>
?	�

@AB
C<��

D9E	�AB�
        (6) 

 
where covariance matrix is given as 
 

A, = F +	
GH
?

G>
?
I,I,

J         (7) 

 
To perform the spectrum sensing process using SBBSR 

algorithm following steps are opted. These steps are also 
described in Fig. 1. 

1- The sub-Nyquist rate sampled signal � is correlated 
with the sensing matrix I.  

2- Based on the correlation result K clusters are made. 
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3- Let KL denote the maximum possible support size in 
a cluster. For each cluster find the likelihoods for all 
support size starting from � = 1,2, …	KL. 

4- Within each cluster the MAP estimates of 
corresponding likelihoods are calculated as 
explained in (4). 

5- Decision regarding presence or absence of the 
primary user on certain frequency band is made 
based upon the MAP estimate. The indexes of 
maximum valued estimates correspond to the 
occupied locations by a user. 

III.  EXPLOITING FLEXIBLE IMPLEMENTATION OF  THE 

SBBSR ALGORITHM 

The SBBSR algorithm is used to recover the locations 
where transmission has been done by primary user. 
Numerous conditions can be imposed to enhance the sensing 
ability of a CR. These conditions have been discussed in this 
section and will be used in the simulation part.  

• Case 1: Considering only signal sparsity as an 
assumption for spectrum sensing. 

• Case 2: In addition to sparsity, assuming the 
observed spectrum consists of fixed (same) length frequency 
bands. 
    Consider a scenario in which a priori information about 
the primary user frequency band is available. As proposed in 
[11], regulatory authorities assign a certain frequency band 
to a user following the static spectrum allocation scheme. For 
instance, the bands 1710-1755 MHz and 1805-1850 MHz are 
allotted to GSM 1800. This also provides a hint that on a 
certain frequency band the primary users will appear in the 
form of clusters. For the observed frequency spectrum these 
details can be gathered a priori from the regulatory authority. 
Here, it is assumed that on a given spectrum all primary 
users have been assigned known and fixed length bands. One 
key advantage is the reduction of computational complexity. 
Earlier calculation of the estimates for various support sizes 
� = 1, 2, …	KL  was required. This resulted in calculation of 
2/O estimates. Now with the length knowledge, the estimates 

 
  

Begin 

Correlate Observation vector � with sensing matrix I 

Form K semi-orthogonal clusters of length P each around the 

positions with high correlation values 

Process each cluster independently and in each cluster calculate 

the likelihoods for support of size � = 1,2,… KL 

Evaluate MAP estimate 

END 

 
Figure 1. Spectrum Sensing Using SBBSR Algorithm 

for various support sizes are not required. One estimate is 
calculated for each cluster. 

• Case 3: In addition to sparsity, assuming the 
observed spectrum consists of variable length frequency 
bands. 

Assume that in the observed spectrum, variable length 
frequency bands are present. The length of these frequency 
bands is assigned based on some probability distribution 
function. Assume that this a priori length information is also 
known at the receiver. 

IV.  SIMULATIONS  

The sensing matrix in case of spectrum sensing is a 
partial inverse discrete Fourier transform (IDFT) matrix and 
is given as 

 
� = QR	

ST 
7�          (8) 

 
where QR is the identity matrix of size 
 ×� and T 

7� 
is the IDFT matrix of size 
 × 
 . In this case the 
observation vector can be written as 

 
� = 	QR	

ST 
7�� + �         (9) 

 
�  is the complex additive white Gaussian noise vector 
���0, �����. Here it is assumed that the wideband signal of 
interest lies in the range of [0,1000]∆ Hz, where ∆ is 
frequency resolution. There are two primary users present in 
the observed spectrum and are shown in Fig. 2. The observed 
spectrum is sparse with a sparsity level of 6% and possesses 
the same structure as described in [6]. This choice of model 
is helpful in comparing the results of SBBSR algorithm and 
the approach proposed in [6]. In [6], compressive sensing 
technique was used for the spectrum sensing process. 
Frequency spectrum was recovered from the sub-Nyquist 
rate sampled observations using the ��  minimization 
approach. In order to obtain the frequency band edge 
information the wavelet edge detection technique was 
applied on the recovered spectrum. The PSD of each 
frequency band is calculated and decision regarding presence 
or absence of the primary user is made. In simulation, 
Gaussian wavelet is used for the edge detection technique.   

 
Figure 2. Assumed Wideband Signal-Flat PSD 
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Aforementioned cases are considered and compared to 
the compressed sensing approach of [6]. Table I provides the 
values required by the SBBSR algorithm for these different 
cases and Table II shows the corresponding working ranges 
for probability of detection greater than 0.9 for both 
techniques. Fig. 3 shows the corresponding plots of 
probability of detection versus signal to noise ratio (SNR). 

The spectrum sensing performed using SBBSR algorithm 
showed better performance than the compressive sensing 
technique. In all cases, gain of (approximately) more than 5 
dB over SNR is observed. The flexible implementation of 
SBBSR algorithm allowed improvement in the working 
range of a CR.  

V. CONCLUSION 

In this paper, the structure-based Bayesian sparse 
reconstruction algorithm (SBBSR) was used for the spectrum 
sensing of wideband signals. The SBBSR algorithm provides 
sub-Nyquist rate sampling solution to the wideband spectrum 
sensing problem. Spectrum sensing was performed for 
various cases using both the SBBSR algorithm and the 
compressed sensing based technique. The results obtained 
from the SBBSR algorithm showed better performance 
compared to the other technique. It provided an improvement 
of more than 5	VW in signal to noise ratio for the observed 

 
TABLE I. REQUIRED VALUES BY SBBSR ALGORITHM 

 
Cases Observation 

Vector Size 

X 

Number 

of Cluster 

Y 

Maximum 

Support Size 

YR 

Cluster Size 

Z 

1 


4
 

29 9 9 

2 


4
 

79 1 31 

3 


4
 

79 3 [25 31] 

 
TABLE II. COMPARISON OF CASES FOR PROBABILITY OF 

DETECTION ≥ 0.9 
 

 Compressed 
Sensing 

Case 1 Case 2 Case 3 

SNR ≥ 12.95 dB 7.1 dB 7.8 dB 1.8 dB 
 

 
Figure 3. Probability of Detection versus SNR for Case 1 

 

spectrum. The a priori knowledge of the frequency band 
(whether fixed or variable) helped to achieve better 
performance. Hence, the SBBSR algorithm improves the 
performance of spectrum sensing process for the wideband 
signals and in addition overcomes the shortcomings of 
compressed sensing technique. 
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