
An Environment for Implementing and Testing Routing Protocols in CARMNET

Architecture

Adam Kaliszan

Chair of Communication and Computer Networks

Poznan University of Technology

Poznań, Poland

e-mail: adam.kaliszan@gmail.com

Mariusz Glabowski

Chair of Communication and Computer Networks

Poznan University of Technology

Poznań, Poland

e-mail: mariusz.glabowski@put.poznan.pl

Abstract—The paper proposes a new development envi-
ronment for implementing and testing multi-criteria routing
protocols in wireless mesh networks considered under the
CARrier-grade delay-aware resource management for wire-
less multi-hop/Mesh NETworks (CARMNET) project. The
paper presents the justification for choosing Optimized Link-
State Routing (OLSR) protocol as the reference CARMNET
routing protocol for further extension from a single-criterion
to the multi-criteria protocol. The existing software router
architectures (Quagga, eXtensible Open Router Platform –
XORP, and BIRD) are evaluated. A software and hardware
architecture of a single wireless node as well as a network
testbed are described. The particular phases of the proposed
implementation of the modified multi-criteria OLSR protocol
in the nodes of testbed environment are presented. Two types of
nodes that differ in processor architecture and energy efficiency
are proposed for the testbed. The high performance nodes will
be used during the development of the routing protocol, while
the low performance nodes (energy efficient nodes) will be
used during testing the effectiveness of the protocol elaborated.
The developed architecture of the testbed network provides the
ability to separate the resources exploited by control functions
(routing) and data plane functions (forwarding).

Keywords-routing protocols; mobile ad hoc network; optimized
link state routing protocol; software router.

I. INTRODUCTION

Modern wireless mesh networks use multihop transmis-

sion in order to provide communication between the nodes

that are not in direct transmission range. Currently, the mesh

networks are used to extend the range of telecom operators’

wireless networks. According to this approach, assumed also

in CARMNET project [1], the nodes without direct access

to the Internet can use neighboring wireless nodes’ (mobile

or stationary) help in order to get access to the operators’

networks. However, in order to make mesh networks an

important solution for telecom operators, development of

cross-layer resource management framework is required.

Current research on mesh networks focuses mostly on: traf-

fic stream classification, packet scheduling, buffer memory

management, routing, and mobility management. One of the

key problem in multihop wireless networks, especially in

networks that serve heterogeneous traffic, is the problem of

optimal routing.

Within the activities related to CARMNET project, a new

routing protocol that allows for multi-criteria path selection

will be proposed [2]. According to the project’s assumptions,

the new protocol will be based on OLSR protocol. The new

protocol will be implemented in testbeds located in Poznan

University of Technology and Scuola Universitaria Profes-

sionale SV Italiana (SUPSI) in Lugano, in order to verify

algorithmic assumption taken in the proposed protocol, and

to perform complex tests of the protocol’s efficiency.

The main aim of the paper is to present the proposed

implementation platform for elaborating multi-criteria rout-

ing protocol. The further part of the paper is organized

as follows. In Section II, the choice of OLSR protocol as

the reference protocol is justified. This protocol will be

modified, in order to allow for multi-criteria path selection.

In Section III, the existing software router architectures

are described. The decision of reusing the existing im-

plementation of OLSRd [3] and Quagga software router

architecture [4] is justified. In Section IV, the software

development environment and the hardware testbed, used

for implementing and testing multi-criteria routing protocol,

are presented. Section V concludes the paper.

II. CHOICE OF ROUTING PROTOCOL

In CARMNET project it is assumed that there is a neces-

sity of implementing a routing protocol, which is capable

of building the routing tables including not only the best

path but a set of k best paths that lead to the known IP

networks/nodes in wireless mesh networks [2]. The paths

in the set will be selected as the subsequent shortest paths

to the specified destination, based on one of the k-shortest

paths algorithms [2]. The paths are determined according

to main criterion, e.g., delay, and they include additional

criteria (metrics). The additional metrics will be useful in

order to choose the best path, that fulfills the criteria for

a given traffic stream. The criteria will correspond to the

Quality of Service (QoS) requirements for all traffic classes

offered in the CARMNET network. An example of the

criteria can be delay, a number of hops, link reliability or

link load. It is assumed in the CARMNET project that – due

to a large number of already elaborated routing protocols

123Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

for wireless networks – the specified requirements for the

routing protocol can be satisfied by appropriate modification

of one of the existing routing protocol (there is no need

for design of a completely new routing protocol). The

following evaluation criteria were assumed during searching

the protocol that can form the basis for further modification:

• The protocol has to ensure the possibility of changing

the path determination algorithm,

• The protocol has to ensure the backward compatibility

after extension of its functionality,

• The protocol has to ensure the possibility of additional

information flooding,

• The protocol should be based on a simple finite state

machine,

• The protocol should demonstrate high resistance to

packet loss. The loss of a packet as well as receiving

an out-of-order packet cannot force the state machine

to re-initialize,

• The protocol should provide the possibility of skipping

certain nodes during the process of path determination.

As the result of analysing the existing routing protocols

for wireless network, the OLSR routing protocol was chosen.

Only this protocol fulfills all the criteria presented above.

In OLSR protocol, the Dijkstra’s algorithm is used for

shortest paths tree determination. This algorithm can be

replaced by one of the algorithms for set of k shortest paths

determination [8]. It is possible thanks to the OLSR protocol

architecture, which allows to extend algorithm functionality

in an easy way. The protocol consists of the core part, which

is responsible for the main functionality of the protocol,

and additional modules, which enable the protocol to be

extended. Additionally, this approach enables cooperation

between the nodes with and without extensions. According

to the OLSR specification, the nodes that do not support

protocol extensions are taking part in forwarding additional

information (not understandable for them) in a transparent

way. In CARMNET project, the OLSR extensions will be

used to flooding additional information about links’ and

nodes’ parameters as well as to elaborate a new shortest

path algorithm. The specified extensions will result in a new

multi-criteria OLSR protocol (the flooding mechanism was

used in Phosphorus project [9] for broadcasting information

about grid resources in Open Shortest Path First version

2 (OSPFv2) link state advertisements). Additionally, the

knowledge about links’ and nodes’ parameters can be used

by admission control algorithms.

In the OLSR protocol specification we can observe sig-

nificant state machine simplification in comparison to other

link state protocols. There are only three states defined

(NOT_NEIGH, SYM_NEIGH, MPR_NEIGH) [8] in the

process of forming OLSR adjacencies (neighbor relation-

ship). This simplification makes easier the implementation,

testing and extending of OLSR protocol. In OLSR, the

sequence numbers were used to protect the protocol against

numerous packet loss and out-of-order packets delivery,

occurring in wireless networks. However, in OLSR protocol,

in contrast to OSPF protocol, there is no handshake process

(sequence numbers synchronization) between two nodes

before the routing information exchange begins [10]. In

OSPF protocol, there is a special bit that specifies whether

neighboring nodes are synchronized or not. After receiving

a packet with a wrong value of the synchronization bit, the

synchronization procedure re-starts. In the case of OLSR

protocol, the last synchronization number (Packet Sequence

Number) is remembered for 30 seconds. After exceeding this

time period, the packet with any value of Packet Sequence

Number is accepted. Further, the node accepts only the

packets with Packet Sequence Number values greater than

the value included in the last message received.

The OLSR protocol allows also to disable forwarding

feature in certain of the nodes: these nodes will not forward

the packets that are not addressed directly to them. This

feature is very useful for the nodes with limited power

resources. In order to inform about activation/deactivation of

the forwarding feature in the OLSR node, the node sets an

appropriate value of the willingness field in hello messages

sent to its neighbors.

The OLSR protocol implements also an effective algo-

rithm for distributing the routing messages among the nodes.

According to this algorithm, each node determines the so-

called Multi Point Relays (MPRs) among their neighbors.

Subsequently, the nodes send the routing messages only

to the selected MPRs, not to all neighbors. The OLSR

protocol limits the number of MPR nodes, giving also a

possibility of using redundant nodes in order to increase

network reliability.

III. SOFTWARE ROUTER ARCHITECTURE

Nowadays, the most popular software router implementa-

tions are Quagga [4] and eXtensible Open source Routing

Platform (XORP) [11], [12]. Quagga is an unofficial suc-

cessor of Zebra [5]. The official successor of Zebra project

is the commercial product called ZebOS [6]. Because of

the General Public Licence (GPL) on which Zebra was

based and nowadays Quagga is developed, the Quagga is

the most popular software. Quagga architecture has been

applied among others in commercial product Vyatta (since

version 4.0) [7].

Both solutions (Zebra and XORP projects) have modular

architecture. Each module (routing module), is responsible

for all functions related to a specific routing protocol im-

plemented in it. Additionally, in both solution, there is a

special module responsible for communication between the

routing modules and an operating system’s Application Pro-

gramming Interface (API). A new architecture of a software

router is proposed within the project BIRD [13]. However,

the BIRD project is in initial phase of implementation.

124Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

Unfortunately, there is no OLSR protocol implementation

in any of the three existing software router projects. There

is only one free open source code OLSR implementation,

called OLSRd [3]. The OLSRd implementation allows to

add new plugins including OLSR protocol extensions, in

accordance with OLSR protocol philosophy. Among the

implemented hitherto plugins, there is also the plugin for

communication with Quagga software router.

Please note that in OLSRd implementation, the program

uses directly operating system’s API in order to get infor-

mation about the node’s (router’s) interfaces and in order

to add new paths to the node’s routing table. Additionally,

this implementation of OLSR protocol uses directly the

router’s interfaces to send/receive OLSR messages. Such

an approach means that the routing protocol (control plane)

has to be run on each node performing packets forwarding

(data plane). This means, that in OLSRd implementation, the

routing protocol functions cannot be transferred to a separate

machine, in accordance with the concept proposed in [14].

The OLSRd implementation of the OLSR protocol has

no command line interpreter. Therefore, it is impossible to

change the parameters of the protocol (the router configu-

ration) during its operation. The only method of setting the

parameters of the protocol is to load them directly from a

file, during the protocol start-up. Each change in the router’s

configuration requires modification of the configuration file,

and, subsequently, restart of the protocol’s software. In

the configuration file, in addition to the parameters of the

protocol, a list of the required plugins (extending the OLSR

protocol functionality) is also included.

Possibility of creating plugins eliminates the need for

modification of the core part of the OLSR protocol. Un-

fortunately, the existing plugins’ API documentation [15]

is outdated and therefore, in order to create a new plugin

it is necessary to study the source code of the OLSRd

software. Analysis of the entire OLSRd project’s code will

be required in one of four phases of the works related to

both the implementation of the OLSR protocol and to its

modifications.

In the first phase, the OLSRd source code will be used

directly. In order to adapt the OLSR protocol to the needs of

CARMNET project, a special OLSRd plugin, extending the

functionality of the OLSR protocol, will be implemented.

The software architecture that will be built in the first phase

of protocol development is shown in Figure 1. In Figure 1,

the plugin extending the OLSRd functionality is depicted as

a dotted line rectangle.

The second phase of the implementation of the OLSR

protocol will include its co-operation with other routing

protocols. This goal will be achieved due to the application

and possible revision of the plugin allowing OLSRd software

to communicate directly with the Quagga software. The

Quagga software router architecture is shown in Figure 2.

The Quagga software consists of many modules, each of

Figure 1. Extended OLSRd software architecture in the first phase of
implementation

Figure 2. Quagga software router architecture

them is responsible for handling different routing protocol

(BGPd daemon is responsible for Border Gateway Protocol

BGP, RIPd and RIP6d daemons are responsible for Routing

Information Protocol for Internet Protocol version 4 (IPv4)

and Internet Protocol version 6 (IPv6), etc.). In contrast to

the architecture proposed in OLSRd, the modules in Quagga

do not refer directly to the operating system’s API in order to

retrieve information about interfaces and their addresses or

in order to add new entries to the routing table. The activities

listed above are executed by Zebra module that provides a

bidirectional abstraction for the other modules. Communi-

cation between the modules is provided by Zebra protocol.

Figure 3 shows the architecture of the system, obtained in

the second phase of OLSR protocol implementation, after

combining Quagga software with OLSRd software.

The software developed in the Quagga project was op-

timized for sake of its performance, imposing a specific

approach to programming as well as the C programming

language. For the typical network layer tasks (sending and

receiving packets), Berkeley’s socket API [16] was used in

the Quagga. Consequently, also in this solution the routing

protocol software (control plane) has to be running on

the same machine the interfaces of which are used. The

direct access of OLSRd module to the network interfaces is

indicated in Figures 2 and 3 using dotted arrows.

Another approach, which will be used in phase 3 of OLSR

125Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

Figure 3. Software architecture in the second phase of OLSR protocol
implementation

Figure 4. Software architecture in the third phase of OLSR protocol
implementation: Zebra module supports sending and receiving packages
for other modules

protocol’s implementation and modification, was proposed

in work [14]. In [14], the concept of modification of Zebra

protocol and Zebra module is described. The modification

is based on extending the Zebra’s functionality by sending

and receiving routing protocol’s messages. This modifica-

tion makes it possible to transfer the modules responsible

for the routing from the routers to the separate machine.

The transfer of the routing protocol to the separate high

performance machine allows to perform many interesting

experiments. Since we are not limited by (frequently) low

computing power of the nodes performing data plane, it is

possible to study the influence of complex routing algorithms

on network performance. In addition, the transfer of the

routing protocol to the separate machine does not enforce

the efficient implementation of the protocol when being in

experimental stage.

In order to fully integrate the routing protocol software

with Quagga architecture, in phase 4 of the implementation a

new module for Quagga project will be written. This module

will be responsible for supporting both, the reference OLSR

protocol and the proposed multi-criteria OLSR protocol. The

module will use the same libraries as the other Quagga’s

modules and will offer a command line interpreter. The use

of libraries from Quagga project will significantly reduce the

size of the code. In this way it will be possible to install this

software on a simple router, supported by the Open WRT

system (the concept of a network consisting of devices that

support OpenWRT will be presented in the next section).

IV. TESTBED NETWORK

The concept of a testbed network is shown in Figure 5.

This network consists of nodes and an internal server that

will facilitate the process of software development. All the

nodes and the internal server are connected via a network,

denoted in Figure 5 as an internal Local Area Network

(LAN). This network is invisible to the routing protocols

running on the nodes. The nodes are not able to use the

internal LAN to exchange packets between each other.

As proposed in the previous section, the software archi-

tecture of the routing protocol will be implemented in two

types of nodes: the high performance nodes, built using

x86 processors, and the energy efficient nodes, built using

Reduced Instruction Set Computer (RISC) processors. These

nodes will then be used to build the network, enabling the

testing and performance examination of protocols, imple-

mented within the CARMNET project. The use of the nodes

that were built using x86 processors (hereinafter referred to

as x86 nodes) facilitates the implementation of the software,

however, such nodes are more expensive and consumes more

energy with respect to the nodes using RISC processors.

The main advantage of x86 nodes is that the developing

software for this kind of the nodes does not require cross-

compilation. The source code can be compiled directly on

the developer’s workstation or within the node. The simplest

solution for x86 nodes is the native compilation of the

software at the nodes. In the case of native compilation it is

only required to provide the node with a source code. In the

proposed architecture, providing software code to individual

nodes will take place via an internal development server

that grants an access to the repository server. An additional

requirement for native compilation is the need for installing

the necessary compilers and software libraries at each of

the nodes in the network. Consequently, the large memory

resources are required in all the nodes during the software

compilation. In the case of x86 nodes, each of them is

equipped with: a Solid State Drive (SSD) with the capacity

of 24 GB, 4 GB of Random Access Memory (RAM)

and double core ATOM Central Processing Unit (CPU).

Currently, these CPUs offer the best ratio of performance

to energy consumption among all x86 CPUs. In addition,

the ability of installing a secondary hard disk using Serial

Advanced Technology Attachment (SATA) interface in x86

nodes is provided. The interface mini Peripheral Component

Interconnect (mPCIE) is used for connecting the primary

126Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

Figure 5. A testbed for development and testing of routing protocols

SSD and for connecting the Wireless Fidelity (WiFi) card.

The presented node’s configuration allows for installing

Linux in both, "server" and "desktop" version. It is assumed

that in order to speed up starting the Linux system, a desktop

environment will not be installed.

The presented architecture of the nodes based on x86

processors simplifies the process of software development

and testing the routing protocols. Due to the high energy

requirements and the price of a single node this architecture

will not be used in practical deployments. For large networks

it is intended to use low cost nodes based on RISC CPUs. It

was assumed that these nodes will support Open WRT [17].

Open WRT is a Linux distribution dedicated for routers.

It is characterized by small hardware requirements, since a

firmware image (including kernel but without WiFi support)

often does not occupy more than 2 MB of memory. This is

very important because most of the wireless routers available

on the market are equipped with a flash memory (for storing

operating system’s firmware) with the capacity of 8 MB. One

of the main advantages of the Open WRT is its ability to run

on wide variety of processor architectures. This is possible

owing to the fact that the software has an open code, which

can be compiled into binary code designed for a specific

platform. The compilation is done using a set of tools and

libraries called buildchain. A buildchain, used in the Open

WRT, is based on buildroot project [18].

In addition, the Open WRT supports ipkg package sys-

tem, which allows for subsequent installation of software

packages without the need for uploading the entire firmware

image to a node. Despite the possibility of installing ipkg in

flash or RAM memory, such a solution is often unfeasible

due to the limited resources of these memories. Therefore,

the Open WRT nodes will not be used for testing the

routing protocol software being in the second phase of its

development.

The nodes with Open WRT may be applied to test the

software that is in the third phase of the development. In

this phase, the control plane (responsible for routing) and the

data plane (responsible for forwarding) are separated [14].

However, the transfer of the control plane from the nodes to

the separate machine has some disadvantages. The nodes

without the control plane are useless outside the testbed

network.

The full autonomy of the nodes is achieved only in the

fourth phase of the software development of OLSR routing

protocol. In addition, an integration with Quagga software,

completed in this phase, provides the minimum size of the

module that support OLSR protocol as well as the possibility

of launching it in simple routers supported by the Open

WRT. The software obtained in the fourth phase will be

characterized by the highest performance.

Let us notice that the process of upgrading the operating

system at the nodes managed by OpenWRT may be quite

complicated. In the case of certain of the nodes it may be

necessary to use an additional connection to the node via a

serial port. The reason for this is the application of a boot-

loader that works only with the serial port. The bootloader

is used as the easiest way to upload a new operating system

image to the node. Unfortunately, uploading the operating

system via the serial port is not comfortable: the serial port

offers low bit rate and, in addition, requires direct physical

access to the device.

The described architecture for the implementation and

testing of routing protocols foresees two working modes

of the developers. In the first mode, the developers work

directly on the internal server that is connected to the

same LAN as the nodes (the developer’s computer is just

a console). The source code can be compiled on the internal

development server or on each network node (see Figure 5).

The machine, which is building the software, has to have

127Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

an access to the source code. One of the simplest yet most

effective ways to provide access to the source code is to use

the repository system, that is located on a server attached

to the Internet. For this purpose, the internal development

server performs the function of network address translation

(NAT). In the case of teleworking, the access to the internal

LAN is secured by a Virtual Private Networks (VPN) tunel.

The mode, in which the developer has physical access to the

internal LAN, has been denoted in Figure 5 by placing the

computer labeled as "developer’s console".

In the second mode, the developers are working without

any access to the internal LAN. They only have access

to the source code located on a repository server, which

is connected to a public network. The compilation of the

source code can be done either on the dedicated internal

development server or on the programmer’s workstation. The

second mode is denoted in Figure 5 by the computer icon

labeled as a "developer’s workstation". The main limitation

of this mode is that the software developers do not have

any access to the network nodes, and, they are not able to

perform any tests.

The final component of the proposed architecture for

the implementation and testing of routing protocols are

repositories that store i.a. the source code of the protocol

software. According to the testbed network’s architecture

presented in Figure 5, the repository server is located in

a separate location (accessible via public IP address). The

separation of the repository and the internal development

server guarantees an access to the source code even after

switching the internal development server off (or in the case

of its failure). Additionally, according to this solution many

testbed networks may use the common repository.

V. CONCLUSION AND FUTURE WORK

This paper proposes a testbed network architecture for

implementation and testing of multi-criteria routing protocol

for wireless mesh networks. The proposed testbed network

architecture is programmer-friendly. It provides three ways

of compiling the network nodes’ source code: the native

compilation on the individual network nodes, the compi-

lation on the separate internal development server and the

compilation on a developer’s workstation.

Two types of network nodes are proposed for the testbed

network: high-performance x86-based nodes and energy-

efficient RISC nodes. The use of two types of the nodes

allows to adapt the testbed network to the evolution of the

routing protocol software. It is assumed that the software

created in the first phase, due to its sub-optimal use of

resources, will require high computing power that can be

only provided by the nodes based on x86 architecture.

Further optimization of the software will results in lower re-

quirements for computing power in the nodes. Consequently,

the final tests will be conducted in a large network, made

up of the nodes with lower performance and greater energy

efficiency (RISC architecture).

ACKNOWLEDGEMENT

This work was supported by a grant CARMNET financed

under the Polish-Swiss Research Programme by Switzerland

through the Swiss Contribution to the enlarged European

Union.

REFERENCES

[1] “CARrier-grade delay-aware resource management for wire-
less multi-hop/Mesh NETworks,” <retrieved: April, 2013>.
[Online]. Available: http://www.carmnet.eu/

[2] J. C. Climaco, M. M. Pascoal, J. M. Craveirinha, and M. E. V.
Captivo, “Internet packet routing: Application of a k-quickest
path algorithm,” European Journal of Operational Research,
vol. 181, no. 3, pp. 1045–1054, September 2007

[3] “Olsrd homepage,” <retrieved: April, 2013>. [Online].
Available: www.olsr.org/

[4] “Quagga homepage,” <retrieved: April, 2013>. [Online].
Available: www.quagga.net/

[5] “Information about Zebra” <retrieved: April, 2013>. [Online].
Available: http://www.gnu.org/software/zebra/

[6] “ZebOS homepage,” <retrieved: April, 2013>. [Online].
Available: http://www.ipinfusion.com/about

[7] “Vyatta homepage,” <retrieved: April, 2013>. [Online].
Available: http://www.ipinfusion.com/about

[8] T. Clausen and P. Jacquet, “Optimized Link State Routing
Protocol (OLSR),” RFC 3626 (Experimental), Internet
Engineering Task Force, Oct. 2003, <retrieved: April, 2013>.
[Online]. Available: http://www.ietf.org/rfc/rfc3626.txt

[9] “Phosphorus homepage,” <retrieved: April, 2013>. [Online].
Available: http://www.ist-phosphorus.eu/

[10] R. Coltun, D. Ferguson, J. Moy, and A. Lindem, “OSPF for
IPv6,” RFC 5340 (Proposed Standard), Internet Engineering
Task Force, Jul. 2008, <retrieved: April, 2013>. [Online].
Available: http://www.ietf.org/rfc/rfc5340.txt

[11] “Xorp homepage,” <retrieved: April, 2013>. [Online].
Available: www.xorp.org/

[12] “Xorp architecture,” <retrieved: April, 2013>. [Online]. Avail-
able: http://xorp.run.montefiore.ulg.ac.be/latex2wiki/design_
overview

[13] “Bird homepage,” <retrieved: April, 2013>. [Online].
Available: http://bird.network.cz/

[14] A. Kaliszan, M. Głąbowski, and S. Hanczewski, “A didactic
platform for testing and developing routing protocols,” in
Proceedings of The Third Advanced International Conference
on Telecommunications, Stuttgart, Germany, May 2012.

[15] A. Tonnesen, “Unik olsrd plugin implementation howto,”
2004, <retrieved: April, 2013>. [Online]. Available: http:
//www.olsr.org/docs/olsrd-plugin-howto.html/

[16] B. Hall, Beej’s guide to network programming using internet
sockets, july 2012, <retrieved: April, 2013>. [Online].
Available: http://beej.us/guide/bgnet/

[17] “Open wrt homepage,” <retrieved: April, 2013>. [Online].
Available: https://openwrt.org/

[18] “Build root homepage,” <retrieved: April, 2013>. [Online].
Available: http://buildroot.uclibc.org/

128Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

