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Abstract—Floor determination has become an extremely 

urgent issue to resolve because many applications require 

accurate information on floor numbers to provide better 

localization services. This paper presents a Wi-Fi based, low-

complexity floor determination method for multi-floor 

buildings. In this paper, the Multi-Wall-Floor (MWF) model is 

used in the simulation and the analysis. Simulation results 

show that the floor determination accuracy is nearly 100% if 

the deployment density of Wireless Access Points (WAPs) is 

sufficiently high on each floor. It is also shown that the 

proposed method provides a good estimation of floor 

determination even when only a few WAPs are implemented 

on each floor. In our scheme, detailed information on the WAP 

coordinates is not needed, except floor ID and Received Signal 

Strength (RSS) of each WAP. The novelty of the proposed 

method is that it can work in extreme conditions, where there 

are no WAPs on the floor. 

Keywords—Indoor positioning; Floor determination; WiFi; 

Wireless access point;  Received signal strength. 

I.  INTRODUCTION 

Determining a user’s floor number in multi-floor 
buildings is still a difficult issue. As urbanization increases, 
more and more tall buildings will be built in cities. Many 
applications need accurate floor number information to 

provide better services. For example, such information could 

prevent school violence in multi-floor buildings by providing 
a faster and more efficient response to student alarm signals. 
Thus, floor determination has become extremely urgent to be 
resolved. 

Outdoor positioning relies for the most part on GPS 
(Global Positioning System), which has an accuracy ranging 
from 1 meter to 10 meters. It is widely used in military 
applications such as surveillance and in civilian sectors such 
as scientific research, tracking, and navigation as well as e-
commerce. However, due to attenuation and scattering, GPS 
is not suitable for indoors use. Hence, the requirements of 
indoor positioning systems differ from those of their outdoor 
counterparts. Many technologies have been proposed for 
indoor positioning in the last decade. Among these, Wi-Fi 
has attracted a lot of research effort because it is a mature 
and relatively low-cost technology. Wi-Fi hot spots are now 

becoming commonplace in city buildings. The utilization of 
these Wi-Fi hot spots’ signals offers a feasible solution to 
floor determination [1-2,12-13]. 

Nowadays, numerous computing devices such as smart 
phones and tablet PCs are equipping Wi-Fi modules. 
Simultaneously, the floor number of each WAP can be 
known in advance. The following work is to find an effective 
floor determination method with RSS and ID information of 
scanned WAPs. To this end, we propose a Wi-Fi based, low-
complexity floor determination method for multi-floor 
buildings. The rest of this paper is organized as follows. 
Section II summarizes current state-of-art on Wi-Fi based 
floor determination, and Section III discusses the system 
model and proposes our method. Simulation results are 
presented in Section IV to demonstrate the efficacy of the 
proposed method. The final section presents conclusion and 
future works. 

II. CURRENT STATE-OF-ART OF WIFI-BASED FLOOR 

DETERMINATION 

There are many technology options for floor 
determination such as time of arrival, angle of arrival, and 
RSS. This paper focuses on RSS-based choices because of 
cost and implementation consideration.  

Some Wi-Fi based floor determination systems have 
been proposed [2-6]. Among these systems, fingerprinting-
based systems play an important role [2-5]. In particular, Liu 
et al. [3] have demonstrated a Wi-Fi based indoor positioning 
system based on fingerprinting. In their research, their floor 
positioning experimental results showed that the floor 
determination was highly accurate closed to 100%. However, 
in common with any fingerprinting systems, the main 
disadvantage is that a database is usually required to train an 
accurate localization model. To create a fingerprinting 
localization model for use in multi-floor buildings, we need a 
sufficient number of sample points on each floor. This can be 
time-consuming and expensive. The indoor environment is 
also very complex, not only due to the presence of walls and 
floors, but also due to uncertain factors such as human 
activity and furniture or equipment rearrangements. The 
effects of such factors are difficult to test and measure with 
today’s technologies. They also hamper the potential utility 
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of fingerprinting systems in the indoor environment. These 
systems are also unable to accommodate any changes in the 
Wi-Fi infrastructure and require a complete recalibration. 
The need to replace the database is another troublesome 
issue.  

Alsehly et al. [2] have designed two different models for 
using Wi-Fi signals to determine the floor number in multi-
floor buildings. One is called the “nearest floor algorithm.” 
Essentially, it is a simplified solution of the well-known 
nearest neighbor classification algorithm used in 
fingerprinting. Although they used the system to 
simultaneously update records of Wireless Access Points 
(WAPs) in the database, the system still cannot overcome the 
aforementioned disadvantages. Their second model, called 
the “group variance algorithm” can be divided into three 
steps. The first step involves grouping the Wi-Fi RSS 
depending on the floor number. The second step entails 
calculating the floor parameters (range, variance, 
availability) for each floor. The last step involves selecting 
the floor number with the maximum number of points as the 
estimation result. Their experimental results showed that the 
group variance algorithm performed worse than the nearest 
floor algorithm. However, it was more reliable in areas such 
as washrooms and building edges where the received signal 
is weak. More importantly, the group variance algorithm 
does not require the creation of a database in advance. 
However, the disadvantage of this algorithm will be 
discussed later in Section IV. 

The attenuations of horizontal and vertical signals are 
significantly different in buildings due to different materials 
used in the floors and the walls along with their different 
thicknesses. Generally, the attenuation of the floors is greater 
than that of the walls. This property may be exploited to 
estimate the floor number based on the characteristics of the 
received signals. Actually, floor determination will be easy if 
the signal attenuation of the floor is much larger up to the 
user’s device unable to receive a signal or if the received 
signal is very small from the WAPs on the other floors. Thus, 
a critical issue that needs to be addressed in those buildings 
is the moderate loss of the floor penetration value.  

Another disadvantage of the conventional systems is that 
none considers the effect of accidents, e.g., all the WAPs on 
one floor stopping working, but those on the other floors 
remaining operational as usual. The existing algorithm 
would be unable to determine the floor number in such a 
situation. 

III. SYSTEM MODEL AND PROPOSED FLOOR 

DETERMINATION METHOD 

A. System Model 

 Path loss greatly impacts the localization accuracy of 

algorithms based on the RSS. It results in varying degrees of 

loss when the radio signals propagate in different 

environments. Thus, choosing a suitable path loss model is 

very important. Research has shown that the Multi-Wall-

Floor (MWF) path loss model might be the most precise 

model when compared to all the other models including the 

Motley-Keenan model for both office and commercial indoor 

topologies [7-11]. The following equation describes the 

MWF model. 

0

1 1 1 1

10 log( )
fjwi

KKI J

MWF wik fjk

l k j k

L L n d L L
   

          (1) 

where  

0L : Pass loss at a distance of 1 meter 

n : Power decay index  

d : Distance between the transmitter and the receiver 

wikL : Attenuation due to wall type i and thk traversed wall 

fjkL  : Attenuation due to floor type j and thk traversed floor 

I : Number of wall types 

J : Number of floor types 

wiK : Number of traversed walls of category I  

fjK : Number of traversed floors of category J  

 In addition, taking into account the influence of 

obstruction in indoor environment, we add a normal random 

variable N  with zero-mean and variance of 
2  to represent 

shadow noise. Then, the RSSI value from WAP can be 

written as: 

r MWFL L N                                   (2) 

 To make the simulation easier, we suppose that all the 

floors are the same type and all the walls are the same type in 

our model. We represent the received Wi-Fi signals of the 

user using the set  , which contains the number of signals. 

The set 
iR contains the floor identity and the RSS value of 

the WAP. 

 1 2[ , , , ]iR R R                                  (3) 

[ , ]i i iR FloorID Rss                                (4) 

B. Proposed Feedback Method 

In an indoor environment, the thickness of each part of 

each floor and the thickness of the materials in the floors are 

nearly equal. In most cases, the thickness of each floor and 

the thickness of the material are also nearly equal. Based on 

the signal’s propagation, the floor penetration loss value will 

fall in a certain range. In our research, we assume that 

random attenuation value due to the floor follows a constant 

value which is denoted as fL . In practical applications, we 

can measure the attenuation value of each part of each floor 

of the building, and then average these values as the 

attenuation due to the floor. Based on the analysis described 

above, we propose a floor determination algorithm called the 

“feedback method.” 
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The following steps describe how the proposed feedback 

method calculates the floor number during the analysis. 

1) Pre-estimation step: We conduct a pre-estimation of 

the user’s floor number. Generally, we choose those floor 

IDs that have occurred in the set  . 

2) Feedback step: We suppose that the user is on the thp  

floor which is part of the pre-estimated floor numbers. Based 

on this assumption, it is simple to determine how many 

floors the signal penetrated before the user received it. Then, 

we feedback the attenuation value of the floor to  . The 

feedback value equals to f iL FloorID p  . 

3) Estimation step: We calculate the variance of all the 

RSS values for each pre-estimation. We then compare the 

variances of all the pre-estimation steps and select the floor 

number with the minimum variance value. 

If the pre-estimation is correct, the feedback value will 

eliminate the influence of the floor attenuation. If not, the 

received RSS values in set   will become more confused 

due to incorrect feedback. Thus, we selected the minimum 

variance value as the last estimation result. Compared to 

fingerprinting-based approaches, our proposed scheme does 

not require frequent updates of the attenuation values after 

accurate measurement, because the location and make-up of 

the floor will not usually change after the building has been 

built, except in exceptional cases. Compared to the group 

variance method, the proposed feedback method can handle 

the effects of accidents mentioned above. The group variance 

algorithm groups the RSS values according to the floor 

number and the last estimation results from these groups. 

Thus, this algorithm is unable to determine the number of the 

floor where the accident occurred. In contrast, our proposed 

scheme can handle the effects of accidents by selecting all 

the floor numbers as the pre-estimation. 

IV. SIMULATION RESULTS 

A. Simulation Environment 

The simulations were performed on a multi-floor 

building model with eight floors. The detailed parameters 

and settings for the simulations are summarized in Table I. 

TABLE I.  PARAMETERS OF SIMULATION ENVIRONMENTS 

Parameters Values 

Areas of each floor 236.5 22.7 m  

Thickness of each floor/wall 40 cm, 30 cm 

Height between floors 3 m 

Attenuation due to each floor/wall fL = 25 dB, wL =10 dB 

MWF model 
0L = 20 dB, n = 2.5 

N ~ 2(0, ) ,  =3 

RSS value 110 dBm   

Note that, in order to reduce the workload, we used a 

simple model where the structure of each floor in the 

building is the same. From the commonly used free space 

propagation model for path loss at a distance of 1 meter and 

frequency of 2.4GHz (i.e., Wi-Fi frequency) we set 
0L  = 

20dB. 

B. Analysis of Proposed Feedback Method 

 The estimated points were chosen at three random 

positions on the 1st, 5th, and 6th floor, and there were two 

WAPs on each floor.  
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Figure 1.  Simulation results for the 1st floor. 
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Figure 2.  Simulation results for the 5th floor. 

 Figs. 1 and 2 show the simulation results for pre-

estimation floor IDs that occur in the received Wi-Fi signals 

set. These figures illustrate that the lowest variance occurs 

when the assumed number from the pre-estimation step 

equals that of the actual floor number of the user.  

In this paper, we also consider a specific case. In that 

case, all of the WAPs on the floor where an accident happens 

have stopped working, while WAPs on other floors can still 

work normally. In this case, we will choose all the floor 

numbers as the pre-estimation in the simulation as shown in 

Fig. 3.  
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Figure 3.  Simulation results for the 6th floor. 

In terms of the pre-estimation, the variance maintains the 

same value for all the floors except the 6th floor. To explain 

aforementioned phenomena, we present in Table II an 

example with the received signals set 
1 2 3[ , , ]R R R  on the 

6th floor. The table clearly indicates that the variance is the 

same for the first five floors and the last two floors with an 

exception of the 6th floor. 

TABLE II.  EXAMPLE OF THE 6TH FLOOR 

Pre-

estimation 

Feedback 
Variance 

1 1[5, ]R Rss  2 2[6, ]R Rss  3 3[7, ]R Rss  

1  1 4 fRss L   2 5 fRss L   3 6 fRss L   
1V  

2 1 3 fRss L   2 4 fRss L   3 5 fRss L   
2V  

3 1 2 fRss L   2 3 fRss L   3 4 fRss L   
3V  

4 1 fRss L  2 2 fRss L   3 3 fRss L   
4V  

5 1Rss  2 fRss L  3 2 fRss L   
5V  

6 1 fRss L  
2Rss  3 fRss L  

6V  

7 1 2 fRss L   2 fRss L  
3Rss  

7V  

8 1 3 fRss L   2 2 fRss L   3 fRss L  
8V  

C. Comparsion with Group Variance Algorithm 

 As shown in Figs. 4 and 5, the comparison of the 

performance of the proposed feedback method with that of 

the conventional group variance algorithm reveals a 

significant change according to the number of WAPs on each 

floor. The simulation results are based on four different cases. 

Table III shows the detailed parameters.   

Cases #1-4 show that the floor determination accuracy 

gradually deteriorates with the reduction in the number of 

WAPs on each floor. However, the degree of deterioration in 

the performance of the two methods is quite different. The 

proposed feedback method is always able to achieve 

accuracy of 95% in terms of floor determination especially 

for Case #1. It shows that the correct determination by the 

proposed method is significantly close to 100% because the 

deployment density of the WAPs is relatively high. In 

contrast, the performance of the group variance algorithm is 

worse than the feedback method for each case and the 

performance of former one decreases rather rapidly. As 

shown in Case #4, the group variance algorithm can realize 

accuracy of just 30–40%. 

1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

35

Floor Number

P
e
rc

e
n
ta

g
e
 O

f 
D

e
te

rm
in

a
ti
o
n
 E

rr
o
r(

%
)

 

 

FeedBack Case #1

FeedBack Case #2

Group Variance Algorithm Case #1

Group Variance Algorithm Case #2

 
Figure 4.  Comparison of the performance (Cases #1 and #2). 
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Figure 5.  Comparison of the performance (Cases #3 and #4). 

TABLE III.  COORDINATE INFORMATION 

Cases Positions of WAPs on each floor 

 
Case #1 

(5.3 5.3) (5.3 17.4) (15.6 5.3) 

(15.6 17.4) (25.9 5.3) (25.9 17.4) 

(33.7 5.3) (33.7 17.4) (15.6 11.4) 

Case #2 
(10.3 10.3) (20.6 12.4) (30 5) 

(4 20) (30 20) 

Case #3 (10.3 10.3) (20.6 12.4) (30 5) 

Case #4 (10.3 10.3) (20.6 12.4) 

TABLE IV.  COORDINATE INFORMATION 

Floor ID Range Variance Availability 

F1 0.5 0 0 

F2 0.5 0 0 

F3 0.5 0 0 

The poor performance of the group variance algorithm is 

due to its inability to distinguish which floor the user is on 

when the variables shown in Table IV are present. In this 
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situation, the group variance algorithm cannot make a choice 

due to the three groups having the same points. 

D. Effects of Accidents 

 We assumed that there are no WAPs on the 1st floor and 

the 6th floor, and nine WAPs on the other floors. An 

estimated point was chosen from 1,000 random positions on 

each floor.  
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Figure 6.  Comparison of the performance under extreme conditions. 

 Fig. 6 presents the simulation results based on this 

scenario. The results clearly show that the group variance 

algorithm was unable to adapt to this case. In contrast, the 

feedback method was still operational under this extreme 

condition. In particular, the accuracy of floor determination 

was high, with the change in the number of WAPs on the 6th 

floor seemingly causing no influence. 

 In order to demonstrate it clearly, we divide floor IDs 

into two types, as shown in Table V, since the received 

signals are from single direction (up-floor or down-floor), 

when the user locates on the accident floor which belongs to 

the edge building. Similarly, the signals will come from 

double directions (up-floor and down-floor) when the user 

locates on the accident floor belonging to middle building. 

Based on that, we can observe that the ability to deal with 

accidents happening on middle building is stronger than that 

on edge building. 

TABLE V.  TYPE OF FLOOR 

TYPE Floor ID 

Middle building 2nd ~ 7th floor 

Edge building 1st and 8th floor 

 Meanwhile, the accuracy of the proposed feedback 

method falls off sharply when the floors are close to those 

without WAPs (2nd, 5th and 7th floor), because the received 

signals are from single direction on those floors adjacent to 

the accident floor. 

V. CONCLUSION AND FUTURE WORK 

 This paper presented a Wi-Fi based floor determination 
method for multi-floor buildings. Compared to traditional 
approaches, there are three advantages of the scheme 
proposed in this paper: robustness, simplicity, and an ability 

to deal with accidents. First, the simulation results showed 
the floor determination accuracy was nearly 100%, if the 
deployment density of the WAPs is sufficiently high on each 
floor. They also showed that the proposed method performs 
well in terms of floor determination, even in the presence of 
just two WAPs on each floor. Second, there is no need for 
detailed coordinate information on the WAPs in this scheme. 
In our research, the floor ID and the RSS value of each WAP 
are sufficient. Third, the final simulation results showed that 
this method can work under extreme conditions where there 
are no WAPs on the floor.  

 Future work will focus on perfecting the proposed 
algorithm for the floor determination and developing a 
mobile application in real environments.  
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