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Abstract—In literature, several studies have shown the 
presence of fractal nature in a wide variety of traffic and the 
impact of these phenomena on network performance. In this 
paper, we derive a new expression for effective bandwidth 
estimation in order to offer better resource allocation in 
network planning and design, especially for network traffic 
with multifractal characteristics. Based on a new construction 
approach for conservative multiplicative cascades proposed in 
literature and the corresponding multifractal traffic 
parameters, a global scaling parameter is determined and used 
together with the multifractal traffic model parameters for the 
effective bandwidth computation. The proposed approach was 
validated in terms of dynamically allocated bandwidths. 

Keywords - Multifractal Traffic; Global Scaling Parameter; 
Effective Bandwidth. 

I. INTRODUCTION 

The concept of effective bandwidth provides a way to 
characterize the resource requirements of a connection, being 
a useful tool for analysis and description of traffic in 
networks. It is considered that the effective bandwidth is the 
rate of transmission of information, usually with the lower 
limit the average rate and upper limit the peak rate of traffic, 
given the Quality of Service (QoS) requirements set a priori 
for a given traffic flow. A very good review and perspective 
on effective bandwidths can be found in [3].  

The effective bandwidth of a source is highly sensitive to 
the statistical properties of the source which frequently are 
not known a priori. Accurate effective bandwidth estimation 
depends on the how faithful is the chosen traffic model. 
Technically the concept of effective bandwidths is much 
broader than a simple measure, depending on traffic models, 
queue disciplines and performance criteria.  

Effective bandwidths required to meet the QoS 
requirements also depend on the traffic characteristics. The 
characteristics of traffic flows in current networks make 
their estimation no trivial and difficult using too simplified 
traffic models such as Markov models. Several methods of 
effective bandwidth estimation have been developed for 
broadband network traffic flow mainly based on different 
traffic modeling approaches. Among them the most 
representative ones are the following:  The estimation of 
effective bandwidths based on self-similar traffic modeling 
proposed by Norros [4]; the so-called empirical effective 
bandwidth proposed by Tartarelli, et al. [5] without 
assuming any specific statistical traffic model; effective 
bandwidths for ATM (Automatic Teller Machine) traffic 

based on Markov multi-class fluid modeling proposed by 
Kesidis, et al. in [6]; and finally effective bandwidths  based 
on traffic under the VVGM (Variable Variance Gaussian 
Multiplier) multifractal model proposed by Krishna, et al. in  
[7]. 

There are many studies showing the high variability and 
fast evolution of today´s internet traffic due to new 
applications and control protocols, i.e., modern traffic flows 
present variable bursts in a wide range of time scales, in 
contrast to the old assumptions that bursts of traffic exist 
only on short time scales [8, 9]. It has been shown that these 
incidences of multi-scales bursts affect significantly 
network performance [8, 9].  

More realistic modeling attempts appeared, initially for 
characterizing the self-similarity of Internet and Ethernet 
traffic [10]. Although the self-similarity has provided a 
plausible explanation, it has failed to justify some essential 
local behaviors and statistical measures of real traffic flows. 
Therefore, the term self-similarity generally refers to those 
processes which are asymptotically or the second order self-
similar, or monofractal [11]. In these cases, the Hurst 
parameter has been widely used to provide a measure of the 
degree of self-similarity of traffic processes. 

In order to achieve even more realistic traffic modeling, 
taking into account multiple scaling properties as well as 
providing robust description of local behavior of modern 
network traffic, multifractal theory was adapted and used for 
the building of new network traffic models. Multifractal 
traffic modeling has enjoyed considerable success due to its 
theoretical robustness, versatility and generalization 
capability. Some well-known multifractal models designed 
and used for modern network traffic modeling are: VVGM 
[7], VSCM (Variable Scale parameter Cauchy Multiplier) 
[12], MWM (Multifractal Wavelet Model) [13], AWMM 
(Adaptive Wavelet Based Multifractal Model) [14], and 
mBm (multifractional Brownian motion) [15]. No doubt 
have those traffic models provided a more accurate 
description of traffic flows and contributed to the 
improvement in the network simulation and design tools. 

The main purpose of this work is to derive and evaluate 
effective bandwidth for data source under a multifractal 
model proposed in our previous work [1, 2]. The 
construction of this model has been based on a new 
conservative multiplicative binomial cascade with its 
multipliers determined by a Newton Binomial equation. The 
major strength of this model is its high capability of 
capturing major multifractal properties represented by the 
corresponding scaling function and moment factor. 
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Therefore, this work also intends to validate this new 
multifractal traffic model by comparing the efficiency of the 
derived effective bandwidth expression with others well-
established in the literature. 

The paper is organized as follows. In Section II, we 
present a brief description of the multifractal model proposed 
in [1, 2]. In Section III, we show in detail the derivation of 
the effective bandwidth expression. In Section IV we provide 
a brief summary of other effective bandwidth estimation 
methods used for experimental investigation. Section V is 
dedicated for the presentation and comparison of obtained 
experimental results. Finally, in Section VI we conclude. 

II. MULTIFRACTAL TRAFFIC MODEL 
The multifractal traffic model used in this work was 

proposed in our previous papers [1, 2] and in this section we 
present this model with enough details in order to be able to 
understand the follow-up.  

Definition 1: A stochastic process ܺ(ݐ) is called 
multifractal if it has stationary increments and satisfies: 

E(|X(t)|୯) = c(q)tத(୯)ାଵ = c(q)tதబ(୯)   (1) 

for some positive values ݍ ∈ ܳ, [0,1] ⊆ ܳ, τ(q) (scaling 
function) and  c (q) (moment factor) are functions on 
domain ܳ and are independent of ݐ. The function ߬(ݍ), also 
known as the partition function, is concave with ߬(0) = −1. 
[16] 

A. Multiplicative Cascades  
Definition 2. A multiplicative cascade is an iterative 

process that fragments a given set into smaller and smaller 
pieces according to a geometric rule and, at the same time, 
distributes the total mass of the given set according to 
another scheme. 

A.1.The Proposed Binomial Multiplicative Cascade 
Based on the Definition 2, the proposed multiplicative 

binomial cascade distribute its masses according to the 
Newton Binomial expression ቀ2

k
ቁ (x)ଶొି୩(1− x)୩	, where 

N  is a positive integer representing the stage number of the 
cascade and k = 0,1, … ,2 − 1. Without losing the 
generality, consider an initial interval I = 	 [0,1], and let ݔ be 
a real-valued random variable uniformly distributed over the 
interval I.  

At the Nth stage of the cascade, the first subinterval has 
the mass by applying the following weighting factor on the 
unit mass: 

ܹ 00…0ถ
ݏݐ݅݃݅݀	ܰ

= 1)	+2ܰ(ݔ) − 2ܰ(ݔ   (2) 

while for the remaining subintervals the weighting factors 
are: 

ܹܾ1ܾ2…ܾܰ = ቀ2ܰ

݅
ቁ 1)݅−2ܰ(ݔ) −  (3) 1−2ܰ,…,1=݅|݅(ݔ

where ܾ1ܾ2 … ܾܰ is the binary representation of decimal 
numeral i, also used to denote the corresponding sub-
interval at the Nth stage of the cascade. As consequence, it is 
easy to see that the cascade is mass conservative in 
expectation. 

 Considering the ݇ݐℎ stage of the cascade, each 
subinterval of the (k-1)th stage is further divided into two 
equal length intervals. Thus, at ݇ݐℎ stage of the cascade, the 
mass measure of the first interval ݇ܫ = [0, 2−݇] is equal to: 

[ܫ]ߤ = ,0]ߤ 2ି] = ܹ[ିଵܫ]ߤ …ᇣᇤᇥ
ೖ	ೞ

= ,0]ߤ 2ିାଵ]ܹ …ᇣᇤᇥ
ೖ	ೞ

= 

,0]ߤ 2ିାଵ] ቂ(ݔିଵ)ଶೖ + (1 − xିଵ)ଶౡቃ               (4) 

For the other intervals, we have: 

[ܫ]ߤ = [ିଵܫ]ߤ ܹభమ…ೖ = 

[ିଵܫ]ߤ ൬2
݅
൰ −ଶೖି(1(ିଵݔ)  ିଵ)|ୀଵ,…,ଶೖିଵ       (5)ݔ

Notice that 1ݔ, ,2ݔ 3ݔ , … are i.i.d. random variables 
uniformly distributed on [0,1]. 

Let ∆ݐ denote the length of each subinterval at the kth 
stage of the cascade. Thus, the mass measure of the 
multifractal process on the dyadic interval of length ∆ݐ 
starting at ݐ = 0. ܾଵ … 	ܾ = ∑ ܾ2

ୀଵ  calculated as: 

(ݐ∆)ߤ	 = ܴ(ܾଵ)ܴ(ܾଵܾଶ) …ܴ(ܾଵ,…,ܾ)      (6) 

where ܴ൫bଵ,…,b୧൯ is the multiplier of the corresponding sub-
interval at the stage i of the cascade.  As the multipliers are 
independently and identically distributed (i.i.d.), it can be 
shown that the expectation measurement satisfies the 
following scaling relationship: 

((ݐ∆)ܺ)ܧ = ((ܴ)ܧ) =  ିమா(ோ)  (7)ݐ∆	

Therefore, the multifractal process can be characterized 
through its scaling function defined by  ߬(ݍ) =
 .(ܴ)ܧଶ݈݃−	

A.2. Capture of Multifractal Characteristics 
From the Definition 1, multifractal traffic modeling 

consists of determination of scaling function ߬(ݍ) and the 
moment factor ܿ(ݍ) [17]. This can be achieved by the 
product of a cascade and i.i.d. positive random variables 
Y’s. More specifically, a multifractal traffic process model 
can be interpreted as the product of the random peak rate of 
the flow ܻ and the measure of burstiness µ(∆t) at the 
modelled time scale ∆t. The variable Y is chosen to be 
independent of the cascade measure µ(∆t୩), then the 
obtained series, denoted by ܺ(∆t),  satisfies the following 
equation: 

൯(ேݐ∆)൫ܺܧ = ((ேݐ∆)ߤ)ܧ(ܻ)ܧ = ேݐ∆(ܻ)ܧ	
ఛబ()  (8) 
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Analyzing Equation (8) with the definition of 
multifractal processes Equation (1) we can show that ܴ and 
ܻ should be related with τ(q) and c (q), respectively, as the 
following: 

൜
2݈݃−

(ݍ(ܴ)ܧ) = (ݍ)0߬
(ݍܻ)ܧ = (ݍ)ܿ

  (9) 

The scaling function τ(q) can be accurately modeled by 
assuming that R is a random variable on [0,1] with a beta 
distribution Beta(α,β). The beta distribution is a family of 
continuous probability distributions defined on the interval 
[0, 1] parameterized by two positive, typically denoted 
by α and β. The beta distribution can be suited to the 
statistical modeling of proportions in applications where 
values of proportions equal to 0 or 1 do not occur. Thus, the 
function τ0(q) ≔ 	τ(q) + 1  related to the scaling function 
τ(q), can be written as [1, 2]: 

τ0(q) = log2
Γ(α+β)Γ(α+q)

Γ(α)Γ(α+β+q)
   (10) 

where Γ(. ) denotes the Gamma function. 
In [14] and [18] the authors show that the random 

variable Y can be considered as having a lognormal 
distribution defined by its two parameters ݉ and ݒ. 
Therefore the qth moment of Y is explicitly given by 
(ܻ)ܧ = ݁ା௩మమ/ଶ. Consequently the moment factor 
 :for the processes is given by [1] and [2] (ݍ)ܿ

(ݍ)ܿ = 	 ݁ା௩మమ/ଶ2ேቀ୪୭మ
(ಉశಊ)(ಉశ౧)
(ಉ)(ಉశಊశ౧)ቁ        (11) 

Analyzing the Equations (10) and (11), one can notice 
that the proposed multifractal model is fully characterized 
by a set of four model parameters (ߚ,ߙ,݉,  and the mean ,(ݒ
and variance of this traffic process are related to the model 
parameters, respectively, as follows: 

[(t)ܺ]ܧ = ݁ା௩మ/ଶ    (12) 
 

var[X(t)] = ݁ଶାଶ௩మ2ଶே ቀ(ఈାఉ)(ఈାఉାଵ)
(ఈାଵ)ఈ

ቁ
ே
݁ଶା௩మ       (13) 

III. PROPOSED EFFECTIVE BANDWIDTH ESTIMATION 
It is well known that there is another popular way to 

characterize a multifractal process which is through its local 
Hölder exponent function [19]. The Hölder exponent also 
can be interpreted as a generalization of a global scaling 
parameter of a fractal process known as The Hurst 
parameter.  Frequently traffic flows are assumed holding 
only monofractal characteristics in order to make queuing 
analysis simpler, i.e., adopting a simplified traffic model 
parameter for multifractal traffic arrivals.  

A self-similar process ܺ(ݐ) with Hurst parameter H with 
mean zero and variance ߪଶ obeys a scaling relation of the 
form: 

{[ܺ]ݎܽݒ}݈݃ = ܪ2) − {݉}݈݃(2 +  (14)     {ଶߪ}݈݃

where ݉ is the aggregating parameter [20]. In particular, it 
was shown in [2], for the proposed cascade modeling 
process, one can obtain the following expression: 

{[ܺ]ݎܽݒ}ଶ݈݃ = ଶ൛eଶ୫ାଶ୴݈݃
మൟ+	 

+ ൜logଶ ቀ
(ାଵ)

(ାஒ)(ାஒିଵ)
ቁ

ൠ + ൜logଶ ቀ

(ାଵ)
(ାஒ)(ାஒାଵ)

ቁ
ି୪୭మ୫

ൠ  (15) 

In terms of multifractal model parameter, ߚ,ߙ,݉,  .ݒ
Comparing (15) with (14), we can establish the following 

equality: 

ܪ2){݉}݈݃ − 2) = ଶ݈݃	{݉}݈݃	− 	ቀ
(ାଵ)

(ାஒ)(ାஒାଵ)
ቁ(16) 

Therefore, 

ாீܪ ≜ ܪ = 	1− ଵ
ଶ
ଶ݈݃ ቀ

ఈ(ఈାଵ)
(ఈାఉ)(ఈାఉାଵ)

ቁ   (17) 

In Equation (17) we define a global parameter ܪாீfor 
multifractal traffic processes, similar to the Hurst parameter 
 ,in monofractals cases. More details see [2]. Thus ܪ
considering that there is a global scaling parameter for 
multifractal processes, given by Equation (17), next we 
derive an analytical expression for effective bandwidth in 
terms of multifractal model parameters. 

Let ܺ(ݐ) the traffic arrival process under the proposed 
multifractal modeling with global scale given by ܪாீ. 
Assuming the stage number ܰ in the generation of the 
cascade is large enough and using the fBm statistical model, 
we can express the mean by [(ߜ)ܺ]ܧ =  and the variance ߜߤ
by [(ߜ)ܺ]ݎܽݒ =  ଶுಶಸ.  The moment generating functionߜଶߪ
of X(t) in terms of parameters ߠ  and ߜ  is [21]: 

(ߜ,ߠ)ܩ = ቆ݁ఓఋఏା
మഃమಹಶಸഇమ

మ ቇ                       (18) 

Thus the effective bandwidth may be given as: 

݁ೣ(ߠ, (ߜ = ଵ
ఏఋ
,ߠ)ܩ݈݃  (19)                              (ߜ

Substituting the relation (18) into (19), we have: 

݁ೣ(ߠ, (ߜ = 	 ଵ
ఏఋ
݈݃ ቆ݁ఓఋఏା

మഃమಹಶಸഇ
మ

మ ቇ  (20) 
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Thus, 

݁ೣ(ߠ, (ߜ = ଵ
ఏఋ
ߠߜߤ + ఙమఋమಹಶಸఏమ

ଶ
= ߤ + ఏఙమ

ଶ
    (21)	ଶுಶಸିଵߜ

Therefore 

,ߠ)ݔܾ݁ (ߜ = ߤ +
2ߪߠ

2
ߜ
ቆ2−݈2݃ቀ

(1+ߙ)ߙ
(1+ߚ+ߙ)(ߚ+ߙ)

ቁቇ−1
   (22) 

where ߠ represents the asymptotic exponential decay rate of 
the distribution of the queue size and ߜ the time scale. 

IV.  OTHER METHODS OF EFFECTIVE BANDWIDTH 

A. Norros Effective Bandwidth 
Norros et al. [4] proposed an expression for effective 

bandwidth estimation by considering traffic with  the fBm 
self-similar characteristics, that is: 

ߙ = ݉ + )ඥ−2݈݊(ܪ)ܭ ܲ௦௦)
ଵ/ு

ܽ
భ
మಹܾି(ଵିு)/ு݉

భ
మಹ  (23) 

where ݉ represents the average rate of  the traffic flow in 
(bit/s), (ܪ)ܭ =  ଵିு, ܽ the coefficient of(ܪ−1)ுܪ
variance, ܲ௦௦ the overflow probability of buffer, ܪ Hurst 
Parameter and ܾ the buffer size.  

The effective bandwidth suggested by (23) takes into 
account the self-similarity property of traffic through its 
Hurst parameter, which is an appropriate alternative for most 
traffic flows holding long-range dependence (LRD) 
characteristics. The effective bandwidth estimates become 
much tighter when  buffer size become large. For more 
details, see [4]. 

B. Empírical  Effective Bandwidth   
The effective bandwidth estimation by Equation (24)  

Proposed in [5], known as Empirical Effective Bandwidth, 
does not assumes any specific traffic flow model. 

,ݏ)ߙ (ܰ,ݐ = ଵ
௦௧
ேൣ݁ܧ݈݃

௦(,௧)൧				0 < ;ݏ 0 < ݐ < ௧ܰ  (24) 

where X(0, t) indicates the aggregated amount of arrived 
traffic data within a time interval t and  E౪ൣe

ୱଡ଼(,୲)൧ is the 
data-measured moment generating function from the traffic 
trace with N୲ samples. For both Poisson and On-Off 
processes, the empirical effective bandwidths are very close 
to their respective analytical effective bandwidths. For more 
details, see [5]. 

C. Kesidis Effective Bandwidth 
In [6] Kesidis et.al. derived an expression of effective 

bandwidth for fluids Markov multi-class and other types of 
source models under ATM traffic. The authors showed that 
when traffic sources share a buffer system with deterministic 
service rate, a constraint on the tail of the buffer occupancy 
distribution is a linear constraint on the number of sources, 
i.e., for a small loss probability one can assume that each 
source transmits at a fixed rate called effective bandwidth. 

Let m	be the average rate of traffic, ݏ = ݈݊	( ܲ௦௦/ܤ), 
ܲ௦௦ the overflow probability of buffer and ܤ the buffer size. 

The Effective Bandwidth (EB) is given by: 

ܤܧ = ݉ ೞିଵ
௦

    (25) 

For more details, see [6]. 

D.  Krishna Effective Bandwidth 
Krishna et al. [7] propose an expression for calculating 

effective bandwidth based on the multifractal VVGM model. 
Also, they assumed that traffic can be characterized as fBm 
processes. The effective bandwidth (EB), given by (26), is 
written in function of the parameters	θ (asymptotic 
exponential decay rate of the distribution of the queue size) 
and δ (time scale), traffic average rate m and variance	σଶ, 
and the global scaling exponent of the VVGM model, ܪ . 

ܤܧ = ݉ + ఏఙమ

ଶ
 ൫ଶுିଵ൯        (26)ߜ

For more details, see [7] 

V. EXPERIEMENTAL EVALUATION  
In this section, we evaluate the efficiency of the 

proposed effective bandwidth estimation method. Instead of 
obtaining a unique static bandwidth estimate for the entire 
traffic trace, dynamically effective bandwidth is estimated 
instantaneously using only traffic samples inside a sliding 
time window and used as the current server transmission 
rate. 

Three real traffic traces were used in our simulation: a 
TCP / IP traffic trace called “lbl_tcp_3” [22], a video traffic 
flow called  “The Simpsons” [23] (high quality video) and a 
traffic trace collected in a wireless network collected during 
the  ACM SIGCOMM08 conference [24], namely 
“Sigcomm08”. The traffic samples were aggregated under a 
time scale on which all three traffic flows exhibit 
multifractal characteristics [25].  Service is conservative, 
i.e., server will never remain idle if there is one or more jobs 
in the service node. 

Table I shows some statistical information (means, 
variances and number of samples) of three traffic traces.  

For performance comparison purposes, we also evaluate 
the queue system using four effective and width estimation 
approaches described in the previous section: the effective 
bandwidth proposed by Norros [4], the empirical effective 
bandwidth proposed by S. Tartarelli et al. [5], the effective 
bandwidth proposed by Kesidis [6], and the effective 
bandwidth proposed by Krishna [7]. 

Table II shows the global scaling parameter 
values obtained under the proposed modeling method and 
compares with the Hurst parameters estimated  through a 
Whittle Estimator  [26] for  all three mentioned traffic traces 
(namely lbl_tcp_3, The Simpsons and Sigcomm08). It can 
be seen that numerically two global scaling parameters are 
close. As a result, the global scaling parameter HEG can be 
viewed as an alternative measure for self-similarity. 
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TABLE I.  MEAN, VARIANCE, SAMPLES 

Traffic Trace Mean Variance Samples 
lbl_tcp_3  136.3555 5.7062x104 1.789.995 

The Simpsons 6.5137x103 7.2420x106 30.334 
Sigcomm08 451.9165 2.3723x105 1.358.782 

TABLE II.  HURST AND GLOBAL PARAMETER 

Traffic Trace Hurst  Paramenter (H)  
Whittle Estimator 

Global Scaling 
Parameter ۶۳۵ 

lbl_tcp_3 0.8420 0.8691 
The Simpsons 0.7130 0.7262 
Sigcomm08 0.7650 0.7567 

 
Figure 1 shows the necessary effective bandwidth values 

obtained using Equation (22) and also those using other cited 
methods for the lbl_tcp_3 traffic trace, 10-6 loss probability 
system performance, 64Kbytes buffer size and a sliding time 
window of 500 traffic samples. Notice that the proposed 
method outperforms other approaches requiring the lowest 
service rate. However, the improvement is relatively small 
with respect to the methods proposed in [5] and [7], and 
considerably remarkable in comparison with those by Norros 
[4] and Kesidis et.al. [6].    

It is noteworthy that the method proposed by Kesidis 
et.al. [6] is based on Markovian traffic modeling, and it is a 
well-known fact that Markovian Modeling cannot fully 
represent traffic with multifractal characteristics [11].  As a 
result, the Markovian based effective bandwidth estimates 
may be too conservative. 

Figure 2 shows the performance curves for the video 
traffic trace (The Simpsons), considering 10-6 loss 
probability system performance, 32Kbytes buffer size and a 
sliding time window of 100 traffic samples. Again, the 
proposed approach shows considerably better performances. 

Figure 3 shows the performance curves for a wireless 
traffic trace (Sigcomm08), considering 10-6 loss probability 
system performance, 64Kbytes buffer size and a sliding time 
window of 500 traffic samples. Similar results are also 
observed and, once again, the proposed method prevails. 

 
Fig.1. Effective Bandwidth for Traffic Trace lbl_tcp_3. 

 
Fig.2. Effective Bandwidth for Traffic Trace Video 

 

 
Fig.3. Effective Bandwidth for Traffic Trace Sigcomm08. 

 

VI. CONCLUSION AND FUTURE WORK 
In this work, we derived a global scaling parameter based 

on the multifractal traffic model presented in our recent 
previous work. In addition, by using this global scaling 
coefficient we derived an analytical expression of effective 
bandwidth, which take into account traffic’s fractal behavior 
e characteristics. Experimental investigation results validated 
our approach showing its outstanding performance in terms 
of network resource usage. We also believe this global 
scaling parameter can be used alternatively as a measure of 
traffic’s self-similarity. 

For future work, we may investigate how efficient this 
global scaling parameter is in comparison with the Hurst 
parameter. The testing results encourage us to pursue further 
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investigation on our derived effective bandwidth expression 
in terms of its susceptibility and robustness with respect to 
the variation of traffic modeling and queue system 
parameters. Based on this new multifractal traffic model, as 
well as the experience from effective bandwidth 
investigation acquired from this work, new schemes for 
network resource allocation and admission control, possibly 
in real time, will be also our future research issues. 
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