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Mariusz Głąbowski, Bartosz Musznicki, Przemysław Nowak and Piotr Zwierzykowski
Poznan University of Technology, Faculty of Electronics and Telecommunications

Chair of Communication and Computer Networks, Poznan, Poland
bartosz@musznicki.com, przemyslaw.nowak@inbox.com

Abstract—While the ever growing computational capabilities
of devices that are used for man-machine interaction are taken
for granted, the need to find their most optimum use is as
important as ever. This issue is particularly relevant when
considering solutions where the determination of the shortest
path between given points (nodes) is one of the basic operations.
In more complex executions of the shortest paths, sets of paths
with the shortest distance between a single initial (source) point
and all other destination points, as well as between all pairs of
points, are to be found. For each of these approaches, individual
algorithms with specific features have been worked out over
the past decades. With that in mind, the present article seeks
to explore this problem and is structured in such a way as to
describe some of the selected algorithms solving the shortest
path problem, and to analyse the efficiency of these algorithms
during their operation in directed graphs of different type.
The study shows that the efficiency varies among algorithms
under investigation and allows to suggest which one ought to
be used to solve a specific variant of the shortest path problem.
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I. INTRODUCTION

The foundations for the present evaluation of the algo-
rithms presented in this article are given by the research
studies on shortest path problem solving using Ant Colony
Optimization (ACO) metaheuristic approach [1]. It is just
in the initial stage in the assessment of the potential in
the applications of the ACO algorithm that the authors
decided to start an in-depth analysis of those algorithms that
represented a more traditional approach to the problem. As
a result of the following studies, relevant tests have been
carried out which are to be presented and compared in this
article. It should be stressed that both well-known [2] and
less commonly used algorithms are presented as long as they
provide a possibility of finding the optimal solution having
first satisfied some pre-defined initial requirements. Heuristic
ACO algorithms have not been included in the presented
evaluation for the simple reason that their operation does
not, in fact, guarantee finding a solution that would always
be optimal [3]. Moreover, the results obtained on the basis
of ACO can be strongly dependent on the structure of the
graph and there is no guarantee that any solution of any kind
would be found at all [1].

In the process of careful investigation of publications
related to the shortest path problem numerous books and
papers have been studied. The most of comparison papers

are either directed at specific aspects and applications of the
algorithms [4]–[6] or are focused on comparing new con-
cepts with more classical methods [7], [8]. Some papers are
concerned with asymptotic computational complexity [9]–
[12] while other works are aimed at empirical computational
complexity analysis of a number of algorithms based on
implementation and simulation [5], [13]–[16]. In this paper,
we decided to follow the latter approach to build this article
upon experimental findings with respect to practical perfor-
mance of a range of 12 closed-form complexity algorithms
for solving shortest path problems. The introduced homo-
geneous data structure representing graphs under scrutiny is
carefully discussed. Owing to the well-defined data structure,
the results can be directly compared what is critical to
conclusively evaluate the efficiency.

The contents of the subsequent sections are arranged
as follows. Section II shows the problem of the shortest
path and lists some of its applications. The relevance to
and relationship with the shortest path tree is discussed in
Section III. In addition, a description of the two groups of
algorithms that have been put to the analysis is presented.
The data structure that represents the graphs under consider-
ation is discussed in Section IV. Later on, in Section V, the
graphs in which simulations were carried out are described.
The description is followed by Section VI that will focus
on the presentation and discussion of the results of the
study. Finally, in Section VII, the article is summed up with
conclusions.

II. PROBLEM OF THE SHORTEST PATH

For the directed graph G = (N ,A), where N is the set of
nodes (vertices) and A is the set of arcs (edges), we assign
the cost aij to each of its edges (i, j) ∈ A (alternatively, this
cost can be also called the length). We denote the biggest
absolute value of an edge cost by C. For the resulting path
(n1, n2, . . . , nk), its length can be expressed by (1).

aij =
k−1∑
i=1

anini+1 (1)

A path is called the shortest path if it has the shortest length
from among all paths that begin and terminate in given
vertices. The shortest path problem involves finding paths
with shortest lengths between selected pairs of vertices. The
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initial vertex will be designated as s, while the end vertex
as t.

A number of basic variants of the shortest path problem
can be distinguished [17]:

• finding the shortest path between a pair of vertices.
• finding the shortest paths with single initial vertex.
• finding the shortest paths with single end vertex.
• finding the shortest paths between all pairs of vertices.
In solving the problem of the shortest path we shall

apply the following assumptions (which, in the case of some
specific algorithms, may not be required).

• Costs of the edge aij are integers (this requirement
applies to only some of the algorithms). In the case of
the real costs of the edge, we can convert summations
to integers multiplying them by an appropriately high
number. Imaginary values would introduce unnecessary
complications with their representations in computer-
mediated activities.

• There is a directed path between the pairs of vertices
under consideration.

• The graph does not include negative cycles. The prob-
lem of the shortest path with negative cycles is
NP-hard (impossible to be presented using a polyno-
mial algorithm).

• The graph is a directed graph. In the case of the
undirected graph with non-negative weights, it is easy
to to transform it into a directed graph.

The solution for the problem of the shortest path finds
its application in a number of areas such as transportation
or routing in communication networks [2], [18], [19] and
is often related to searching for the shortest path tree in a
graph.

III. ALGORITHMS FOR SOLVING SHORTEST PATH
PROBLEMS

The following subsections of this Section focus on the
algorithms for a determination of the shortest paths between
a given single initial vertex and all the remaining vertices
of the graph. It can be proved that the shortest paths from
one node of a graph to all of the remaining nodes create a
shortest paths tree [17], [20]. A characteristic feature of this
tree is the fact that its root is formed from the initial (source)
vertex, all of its edges are directed in the direction opposite
to the vertex, and each path that can be created from the
initial vertex to any other vertex is the shortest path to this
vertex.

The algorithms solving shortest path problems that are
briefly discussed in the following subsections have been
evaluated through an efficiency analysis. Each of the algo-
rithms has particular features that eventually lead to their
differences in their properties and performance. On account
of their possible applications, the algorithms have been, in
turn, divided into two categories.

A. Single-Source Shortest Paths problem

The following subsections of this Section focus on the
algorithms for a determination of the shortest paths between
a given single initial vertex and all the remaining vertices
of the graph.

1) Generic algorithm: The operation of the generic algo-
rithm [21] is based on iterative checking of edges from the
vertex under consideration i and on label setting for vertex
j, in which a given edge terminates, to dj = di + aij , in
the case when dj > di + aij . To store the vertices that are
to be checked, the list V is used, called candidates list. The
way vertices are stored in this list, as well as the method
determining the addition and the retrieval of vertices to and
from it, is frequently the major factor that distinguishes
individual algorithms under consideration. In the case of the
generic algorithm, the candidates list is a FIFO queue in
which operations of additions and retrieval of a vertex to
the end of it or from its head, respectively, are performed.

2) Dijkstra’s algorithm: Dijkstra’s algorithm is presum-
ably the best known algorithm for finding the shortest path in
the directed graph [22]. The basic difference between this
algorithm and the generic algorithm is the way in which
vertices are drawn from the candidates list — the selected
vertex is the vertex that has the smallest label from all
available vertices in the list:

di = min
j∈V

dj (2)

This causes the vertex with its label set, as well as all vertices
that are in the path from the initial vertex to this particular
vertex, to have the minimum value of the label and to not
be added again to the candidates list. The total number of
operations that the Dijkstra’s algorithm needs to perform to
solve the shortest path problem is O(N2).

3) Dijkstra’s algorithm using a heap: It is not possible
to decrease the number of operations that are performed in
order to check labels, because this would not make it possi-
ble to guarantee the optimal solution finding — each edge
has to be checked at least once. A selection of an optimal
data structure that represents the list of candidates makes it
possible, in turn, to reduce significantly the computational
complexity of the operation of the selection of a vertex from
the candidates list [23]. Here, heaps (also known as priority
queues) can serve ideally the purpose. Using Fibonacci heap
we can solve the shortest path problem using Dijkstra’s
algorithm and performing O(A+N logN) operations.

4) Dial’s algorithm: Another way to reduce the number
of operations accompanying the selection of a vertex from
the candidates list is a division of the list into buckets [24].
Each bucket Bk stores only vertices with a given label k.
This causes lengths of edges to have to be integers and
non-negative. The computational complexity of the Dial’s
algorithm is O(A + NC). What is crucial to understand,
is that the bucket deletion and insertion operations require
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linear time and not more than NC buckets need to be
examined by the procedure [14]. The higher the absolute
value of an arc cost C, the more operations need to be
performed by the algorithm, and thus, the performance gain
related to the usage of buckets dramatically diminishes.
Therefore, for small values C ≪ N , Dial’s algorithm
performs very well in practice.

5) Bellman-Ford algorithm: The Bellman-Ford algorithm
belongs to algorithms of the label-correcting type that treat
all labels for vertex distances as temporary until the last
iteration, after which all labels are set to optimal values [25].
This algorithm provides a possibility to solve the shortest
path problem in graphs with negative lengths of edges. In
the case when a negative cycle is found, the algorithm
yields falsehood as the result of its operation. This algorithm
makes N − 1 iterations in which it checks A edges. Its
computational complexity is then equal to O(NA).

6) D’Esopo-Pape algorithm: The D’Esopo-Pape algo-
rithm uses the candidates list in the form of a queue [26].
Vertices that are to be checked are always retrieved from the
head of the list. However, the place a given vertex is added
to in the candidate list depends on whether the vertex has
already been located in this list. If so, it is added to its head,
otherwise — to the end of the list.

7) SLF algorithm: The Small Label First algorithm (SLF)
seeks to manage the candidates list in such a way as to make
vertices with small labels located as close to the head of the
list as possible [27]. The reason for this operation is the fact
that the smaller the label of a vertex that is retrieved from
the candidates list, the lower the probability that this vertex
will be forwarded to the list once again. This algorithm,
just as the two following algorithms, attempts to reach the
characteristic operation of Dijkstra’s algorithm with a lower
computational outlay.

8) LLL algorithm: The Large Label Last algorithm (LLL)
attempts to achieve the operation that is similar to that of the
previous algorithm using a specific method for the retrieval
of vertices from the candidates list [28]. The addition of
vertices to the candidates list is not defined in any way.
However, the method for their retrieval from the list is
defined. Each time when a vertex is to be taken from the
list, the average value of the labels of the vertices in the list
is calculated. Then, the label of the vertex that is at the head
of the list is compared with this average. If the label of the
vertex is higher than the average, the vertex is moved to the
end of the list. Otherwise, the vertex is returned as the one
that has to be considered in this iteration.

9) SLF/LLL algorithm: The SLF/LLL combines the SLF
algorithm method for the addition of vertices to the candi-
dates list and the LL algorithm method for their retrieval
from the list [21]. The SLF/LLL algorithm requires a lower
number of iterations to solve the shortest path problem than
the algorithms it combines. This is done, however, at the
cost of the increased number of necessary calculations.

B. All-Pairs Shortest Path problem

The following subsections present algorithms that are
dedicated to finding the shortest paths between all pairs of
vertices.

1) The doubling algorithm: Algorithm’s operation is
based on iterative calculation of the shortest paths for all
vertices composed of an increasing number of edges [29].
It starts with paths that are composed of just one edge, and
then checks whether paths that are composed of two edges
would not be shorter. This operation is then repeated until all
paths that are composed of N−1 edges are checked. Bearing
in mind the fact that a path that is composed of more than
N − 1 edges cannot be shorter than the shortest path, we
know that Dn = D(N−1) for all n ≥ N − 1. This gives the
ultimate computational complexity of the algorithm equal to
Θ(n3 log2 N).

2) Floyd-Warshall algorithm: The Floyd-Warshall algo-
rithm obtains what the previous algorithm was capable of,
using a different approach and achieving at the same time
lower computational complexity equal to Θ(N3) [30], [31].

3) Johnson algorithm: For sparse graphs (i.e., those in
which the number of edges is far lower than N2) it is possi-
ble to improve the process of calculation of the shortest paths
between all pairs of vertices using Johnson algorithm [32].
For this purpose, the two algorithms discussed earlier, i.e.,
the Bellman-Ford algorithm and Dijkstra’s algorithm (most
favourably in its form with a heap), are used. If we choose
to apply the implementation of Dijkstra’s algorithm with
Fibonacci heap, then we are obliged to perform O(NA +
N2 logN) operations to calculate the shortest paths between
all the pairs of vertices in a sparse graph. Using a binary
heap would result in an increase in the number of necessary
operations to O(NA logN).

IV. DATA STRUCTURE REPRESENTING GRAPHS

To represent graphs during the simulation, a double asso-
ciative adjacency array was used. This structure is composed
of two associative arrays — one (external), representing
vertices from which edges originate, and the other (internal)
representing all vertices which edges for a given row of the
first matrix (table) join. Such a representation provides an
opportunity to minimize shortcomings of typical structures,

Figure 1. Exemplary directed graph
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Figure 2. Manually created custom graph in which the edges
marked with the dashed line create a shortest paths tree with the
root in node 1

such as the list of edges or the adjacency matrix, providing at
the same time appropriately low computational complexity
for individual operations. The applied structure makes it
possible to store additional information about edges, e.g.,
weights or costs. A homogeneous method for the projection
(mapping) of graphs for all simulated algorithms ensures
further comparability of the results of simulations.

The operation of the structure may differ depending on the
implementation of the associative array and is dependable on
the programming language used if embedded structures are
used. The most crucial operation is the operation of checking
whether a given key is in the array, hence structures that
handle this best, e.g., hash tables or self-balancing binary
search trees, are applied. Additionally, we can adjust the
operation of the double associative adjacency array for our
particular needs and thus make it possible, for example, to
sort vertices in the internal array which a given edge joins
using a heap.

For a graph with edge weights, the double, associative
adjacency array T2asoc can be written as follows:

T2asoc = Text external array

T2asoc[i] = Text[i] = Tinti
internal array for edge coming out
from vertex i

T2asoc[i][j] = Tinti [j] = ai,j edge weight (i, j)

For example, the graph in Fig. 1 will be mapped in the
following way:

T2asoc[1] = Tint1
T2asoc[1][3] = Tint1 [3] = a1,3
T2asoc[1][5] = Tint1 [5] = a1,5
T2asoc[2] = Tint2
T2asoc[2][1] = Tint2 [1] = a2,1
T2asoc[2][2] = Tint2 [2] = a2,2
T2asoc[3] = Tint3
T2asoc[3][2] = Tint3 [2] = a3,2
T2asoc[3][5] = Tint3 [5] = a3,5
T2asoc[4] = Tint4
T2asoc[4][1] = Tint4 [1] = a4,1
T2asoc[4][3] = Tint4 [3] = a4,3
T2asoc[5] = Tint5
T2asoc[5][4] = Tint5 [4] = a5,4

Characteristic features of the structure:

• required memory: O(N +A)
• effective memory complexity for directed sparse graphs

Figure 3. A graph that presents the problem of the shortest path in
a multi-stage graph

TABLE I. STRUCTURE OF THE GRAPHS USED IN THE
SIMULATION

graph vertices edges

number lengths

custom 10 19 ⟨1, 7⟩
multistage 52 420 ⟨1, 9⟩

random 25 125 ⟨1, 9⟩

• effective execution of graph algorithms that require to
reach all vertices adjacent to a given vertex (logarithmic
complexity)

• capacity of remembering parallel edges
• effective execution of checking whether the graph in-

cludes a given edge (logarithmic complexity)
• effective execution of addition and removal of edges of

a graph (logarithmic complexity)
• possibility of a substitution of the internal associative

table with some other structure, e.g., in order to sort
vertices in which a given edge terminates by the weight
of the edge (e.g., using binary, Fibonnaci, binomial or
Relaxed heap)

• fairly complicated in its execution

V. GRAPHS USED IN THE SIMULATION

To examine the efficiency and performance of the algo-
rithms during their operation in different graphs, directed
graphs constructed manually and those that were generated
pseudo-randomly were used. To discuss the results, the 3
representative graphs described in Table I were selected.
Graph custom shown in Fig. 2 was created manually from
10 vertices that were joined together by 19 edges.

Another graph that was used in the tests is the graph
that is characteristic for a multi-stage shortest path problem.
An exemplary graph is presented in Fig. 3. The multi-
stage graph used in the tests, multistage, has 5 stages, each
having 10 vertices. The lengths of edges were generated
randomly from within the interval ⟨1, 9⟩. The random graph
was generated randomly, without loops, and with 5 edges
coming out of each of the vertices.
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VI. RESULTS OF THE SIMULATIONS OF THE
ALGORITHMS

All the tests were carried out in a simulation environment
prepared in C# programming language. In order to achieve
reliable results, each algorithm was performed 100 times
for each of the graphs. To eliminate the influence of the
simulation environment, extreme results were rejected and
then the average of the remaining results was calculated.

Table II shows the running times of the algorithms tested
for the graphs discussed in Section V. The results are
divided into two groups — algorithms solving Single-Source
Shortest Paths problem (SSSP) and algorithms solving All-
Pairs Shortest Path problem (APSP).

The graph custom was solved by all SSSP algorithms
in almost identical times. Of all the algorithms only two
deserve a mention here — Dijkstra’s algorithm with a heap
(that operated within the longest time), and SLF (that solved
the problem slightly quicker than the rest). The results that
were very similar to that of the SLF algorithm were also
shared by Dijkstra’s algorithm, Dial’s algorithm and the LLL
algorithm. From the group of the APSP algorithms, it was
the Floyd-Warshall algorithm that fared the best, being less
than twice as long as the SSSP algorithms. The remaining
algorithms needed about twice as much time to find all paths.

The graph characteristic for the multi-stage shortest path
problem (multistage) brought a significant increase in differ-
ences between SSSP algorithms. Again, the SLF algorithm
was the quickest, whereas Bellman-Ford and D’Esopo-Pape
algorithms handled the problem the worst. Except Dijkstra’s
algorithm with a heap, which was performing slightly longer
than the rest, the remaining algorithms had similar running
times. This situation for the APSP algorithms was different
than in the case of the previous graph — Johnson algorithm
was the quickest and the doubling algorithm was the slowest.

The last graph under consideration (random) was solved
the quickest in the SSSP mode by the SLF algorithm, with

TABLE II. COMPARISON OF RUNNING TIMES FOR THE
ALGORITHMS SOLVING THE SHORTEST PATH PROBLEM
IN MICROSECONDS

group algorithm graph

custom multistage random

SSSP

generic 112 312 163
Dijkstra 100 324 148

DijkstraHeap 146 466 200
Dial 104 322 172

Bellman-Ford 119 3252 511
D’Esopo-Pape 113 1260 239

SLF 96 262 143
LLL 102 336 155

SLF/LLL 112 318 161

APSP
doubling algorithm 324 47678 4756

Floyd-Warshall 184 16045 2057
Johnson 418 9309 2959
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Figure 4. Chart of aggravated running times of the algorithms
solving the shortest path problem with one initial vertex (SSSP)

Dijkstra’s algorithm as the runner up and the Bellman-Ford
and the D’Esopo-Pape algorithms well behind the two. The
latter two were the worst as compared to all involved SSSP
algorithms. This time, the quickest APSP algorithm was
the Floyd-Warshall algorithm. Johnson algorithm performed
slightly worse, while the doubling algorithm was the worst
(the longest) of the lot.

The procedures that solve the SSSP problem best include
the SLF algorithm, that had the shortest times for each tested
graph, and Dijkstra’s algorithm, that always performed with
a quite similar time. The LLL and the SLF/LLL algorithms
performed very well and did not generate solutions over
times that differ much from those provided by the quickest
algorithm. The generic algorithm and Dial’s algorithm per-
formed slightly better or slightly worse depending on the
chosen graph. Dijkstra’s algorithm with a heap had some
problems and, instead of performing quicker than Dijkstra’s
algorithm, was slower. In this particular case, this can be
most probably explained by the missing optimization of
the heap that formed the base for the algorithm. Undoubt-
edly, however, an improvement in the running time during
which solutions are provided is still possible. At least, an
improvement in the running time needed for the algorithm to
generate solutions is possible. As it is clear from Fig. 4, for
the Bellman-Ford and D’Esopo-Pape algorithms, the worst
case occurs far too often, which may result from both non-
optimal implementation and from the possibility of their
operation on graphs that were unsuitable for them. The
D’Esopo-Pape algorithm was much quicker to solve graphs,
but irrespective of the fact it underperformed far too much as
compared to the rest of the algorithms. Underperformance
of the latter group of algorithms is particularly visible in
graphs that have a higher number of edges, which results
from the assumptions, as they were, that served as a basis
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Figure 5. Chart of aggravated running times of the algorithms solv-
ing the shortest path problem between all pairs of vertices (APSP)

for their design.
The APSP algorithms were decidedly varied across differ-

ent performance dimensions, in particular in relation to the
time necessary to generate results, which is clearly shown
in Fig. 5. The doubling algorithm was the slowest and
performed several times slower than the competitors. The
Floyd-Warshall algorithm was the fastest for 2 graphs, while
for the third graph it was in second place. The differences
in the time needed for graphs to be solved are in its case
significant as compared to Johnson algorithm that overall
turned out to be the fastest one.

VII. CONCLUSION

This article presented 12 algorithms solving the shortest
path problem and provided an evaluation of their efficiency.
The study showed that in a prepared simulation environment
that ensured directed graphs of different type to be pro-
vided, the weakest aggregated time results from among all
the available algorithms solving the Single-Source Shortest
Paths problem were those of, in the descending order, the
Bellman-Ford and the D’Esopo-Pape algorithms. The fastest
algorithm was Small Label First algorithm, slightly faring
better than Large Label Last algorithm. From the pool of
the algorithms dedicated for All-Pairs Shortest Path problem,
the doubling algorithm performed decidedly worst, while the
best results were those of Floyd-Warshall algorithm (two
graphs) and Johnson algorithm (one graph).

In addition to the presentation of run-time relationships
between the algorithms, the study indicated the importance
and significance of an appropriate choice of a method des-
tined to solve the problem that would be the most efficient
for a type of the graph structure to be used. Moreover, details
concerning the implementation as well as the architecture of
the structures for the representation of data can significantly
influence the performance of an algorithm.
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