
Signature Generation Based on Executable Parts in Suspicious Packets

Daewon Kim, Jeongnyeo Kim, and Hyunsook Cho

Cyber Convergence Security Research Department

Electronics and Telecommunications Research Institute

Daejeon, Korea

{dwkim77, jnkim, hscho}@etri.re.kr

Abstract—Generally, attackers obtain the control authority of

a remote host through the exploit/worm codes with some exe-

cutable parts. The majority of the codes are still made of the

codes which can be executed directly by CPU of the remote

host without some decryptions. We focused on the fact that

some parts in the exploit/worm codes include the function call

related instruction patterns. In some suspicious packets with

the exploit/worm codes, the function call instruction parts can

be important information to generate the signature of Intru-

sion Detection System (IDS)/Intrusion Prevention System (IPS)

for blocking the packets with the exploit/worm. In this paper,

we propose the approach that detects the instruction patterns

following the function call mechanism in some suspicious

packets and generates a signature including the specific pay-

load positions within the pattern-detected packets. We have

implemented a prototype and evaluated it against a variety of

the executable and non-executable codes. The results show that

the proposed approach properly classifies the executable and

non-executable codes and can generate the high-qualified sig-

nature based on the analyzed results.

Keywords-network security; intrusion detection system;
intrusion prevention system; malicious code; exploit code; worm

code

I. INTRODUCTION

To avoid the signature-based IDS/IPS such as Snort [4],
Bro [5] and recent techniques [11], [12], encrypted ex-
ploit/worm codes [1]-[3] are gradually increasing. However,
in real fields, most of the exploit/worm codes are still non-
encrypted codes. Therefore, it is possible to detect and pre-
vent the exploit/worm codes if a distinction can be made
between the executable and non-executable codes in network
flows with the anomalous and suspicious traffic patterns be-
cause normal network services of servers are primarily based
on non-executable plain texts and not executable codes
[6],[7].

Several researches were published to detect malicious
codes in network traffic. Earlybird [8] and Autograph [9] are
based on the fact that different instances of the exploit/worm
codes would contain common substrings or fingerprints,
which would potentially have the code patterns to penetrate
vulnerabilities. TRW (Threshold Random Walk) [10] is
based on the idea that the exploit/worm codes infected host
that is scanning the network randomly will have a higher
connection failure rate than a host engaged in legitimate op-
erations. However, for generating signatures, the above re-

searches have difficulty analyzing the logical features of
non-encrypted malicious codes because they are based on the
simple matching of repeated payload substring and traffic-
behavior. As a result, the probability of detection decreases
significantly as the size of input data is decreased.

Although not a complete program, the executable part of
a non-encrypted malicious code has very logical features. As
a malicious code has many action roles, attackers have in-
cluded many function-based logics in malicious codes. Final-
ly, non-encrypted malicious codes have high probability of
including the logical feature following function call mecha-
nisms.

In this paper, we extended our previous work [13] by
proposing a signature generation method based on the pay-
load positions detected by our function call detection mecha-
nism. The proposed method calculates the match probabili-
ties of instruction patterns according to the function call
mechanism and determines the existence of executable codes
in the suspicious packets of anomalous traffic. Finally, the
method generates a unique signature with the packet payload
including the detected function call instructions.

The rest of the paper is organized as follows: Section II
overviews the background and operation according to our
method; Section III presents analysis steps of the proposed
method; Section IV shows the experimental results; and Sec-
tion V presents our conclusion and suggestions for future

Figure 1. Instruction patterns of function call/return pairs.

166Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

works.

II. OVERVIEW

The function call instruction patterns are one of the logi-
cal features in the executable codes. If a source code with
functions is compiled, the function parts are transformed into
the instruction patterns with call/return pairs. In the IA (Intel
Architecture)-32, Fig. 1 shows the generated instruction pat-
terns after the function call/return is compiled.

The proposed method detects the patterns of Fig. 1 and
decides in terms of probability whether an executable code
exists in the payload of suspicious packets or not. After that,
the method generates a signature based on the detected posi-
tion in the packets. Fig. 2 shows the simple process flows of
the method.

In Fig. 2, Match Counter measures the trial and match
counts of Fig. 1 instructions about the input packets. Similar-
ity Evaluator has the pattern match probabilities of executa-
ble codes and compares them with the results of Match
Counter. Signature Generator generates a signature includ-
ing the payload around detected positions.

III. SIGNATURE GENERATION BASED ON FUNCTION CALL

INSTRUCTIONS

A. Match Counter

The pattern match counts in the detection window of any
instruction range are measured, and moving through the in-
structions one by one, this measuring is repeated to the end

of an input payload. In the IA-32, the instruction patterns
defined by our method are presented in Table I.

In Table I, the attempt to match patterns is triggered by
the gray-highlighted triggering instructions. Other instructio-
ns in Table I are inappropriate for triggering detection be-
cause they are frequently appeared regardless of the function
call mechanism. When Match Counter measures the trial and
match counts according to the instruction patterns of Table I,
the instruction gaps between the instructions of Table I have
to be considered. It is because some additional instructions
can be made between the instructions of Table I by a compil-
er. Therefore, the pattern match counts of Table I should be
counted in the acceptable instruction gap size.

In the case of a pc pattern, for example, if the call -
which is the instruction number 2 - within the detection win-
dow is detected, the trial count of the pc pattern is increased
by one. If the instructions are compared one by one in the
reverse direction of the call, and if the push - which is the
instruction number 1 - is detected, the match count is in-
creased by one. At this time, if the number of instructions
tracked as the reverse direction exceeds the pre-defined in-
struction gap size, the match count is not increased because
of the match failure.

B. Similarity Evaluator

After the trial count set T and match count set M are
measured on each notation, the match probability set

iii TMP / , where },,,,,{ lrprmprpmpceci  , is

calculated. Our basic idea considers that P will be similar

to the match probability set U of the real executable code if

the input packets have executable codes constructed as some
functions. Fig. 3 shows an example to describe this idea.

In Fig. 3, the match probability exists in both the execut-
able and non-executable code. It means that the false positive
can be large if the total trial count is very small. Therefore,
for a more reliable analysis result, the similarity calculation
to decide the existence of executable codes in the current
detection window should be processed when the total trial

Figure 3. Probability comparison of input payload and real executable code.

Figure 2. Operational overview.

TABLE I. INSTRUCTION PATTERNS ACCORDING TO FUNCTION

CALL MECHANISM

Fn. Not.

Instruction order to be matched for each notation

1 2 3

Call
ec esp ops. call(s)

pc push call(s)

Start pm push ebp mov ebp,esp

Return
mpr mov esp,ebp pop ebp ret(s)
pr pop ebp ret(s)

lr leave ret(s)
‘esp ops.’ means instructions that include ‘%esp’.

167Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

count within the current detection window is larger than the
minimum trial count e .

The more similar the input payloads are to the executable

code, the closer P would be to U . This could be calculated

from the relative similarity set iR between U and L like

the below formula.

.),.0.1,(

,

zeroRLPIfRUPIf

zeroTforexcept
LU

LP
R

iiiiii

i

ii

ii
i









(1)

In Fig. 3, each pattern has individual probability gaps be-

tween U and L . It means that the decision about the input

payload is more reliable if the gap is large. Therefore, the
weight set Wi is required to increase the reliability.

,zeroTforexcept
LU

LU
W i

j

jj

ii
i 







(2)

If the final weighted similarity s is larger than the deci-

sion threshold d , the input payload evaluated by our meth-

od has high probability of including some executable codes.

  .zeroTforexceptRWs i

i

ii 
(3)

C. Signature Generator

Signature generating does not require special techniques
in this paper because the signature style is various according
to the IDS/IPS. Based on the detection results of our method,
it can be the entire payload or the specific-range payload in
an input packet. In the case of specific-range, the signature
needs to be a continuous range to include the detected all
position.

IV. EXPERIMENTS

The test files for the experiments are the IA-32 based
3000 executable files of Windows/Linux and 3000 data files
such as .txt, .doc, .ppt, pdf, mp3, gif, etc. In the case of exe-
cutable files, only <.text> section was used in the experiment.

A. Size of Detection Window

When the detection window moves one byte at a time,
the triggering instruction is always required for the analysis.
In Fig. 4, when we select the existence probability of trigger-
ing instruction as 99%, the detection window sizes were 114
instructions in Windows and 155 in Linux. Therefore, the
desired size z can be set as 155, which is about 450 bytes.

B. The Match Probabilities and Instruction Gaps of

Executable and Non-Executable Code

Table II shows the experiment results for the match prob-
abilities and the instruction gaps of executable and non-
executable code. The determined detection window size of
450 bytes and the results of Table II show that this work pro-
poses a reasonable method for detecting executable codes
although the input is only one packet.

C. Executable Threshold and Minimum Trial Count

Figs. 5 and 6 show some parts of experimental results to

determine the executable threshold d and minimum trial

count e . In Fig. 5, the threshold d of executable codes is

Figure 5. A graph for determining executable thresholds.

Figure 6. A graph for determining a minimum trial count.

Figure 4. Existence probability of instructions gaps between triggering

instructions.

TABLE II. PARAMETERS DETERMINED BY EXPERIMENTS

Notation I U L

ec 1 0.80 0.10

pc 2 0.60 0.20

pm 3 0.98 0.02

mpr 2 0.80 0.01

pr 7 0.75 0.25

lr 2 0.70 0.10

168Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

over 60% and in Fig. 6, the minimum trial count e is about

3.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed an approach that detects the
instruction patterns following the function call mechanism in
some suspicious packets and generates a signature including
the specific payload positions within the pattern-detected
packets. As the experiments shows, the proposed detection
method is efficient even for one packet.

Regarding the method of detecting executable codes, our
method analyzes in a form that is similar to the pattern-
matching of instruction patterns following the function call
mechanism. Our method can determine whether the executa-
ble codes exist or not in terms of the probability even in
small input payload. In current method, we used a Detection
Window of several hundred bytes. In next experiment, we
will try a method which sequentially searches the payloads in
order to detect the triggering instructions without the Detec-
tion Window. As a result, we may be able to identify the
function call patterns for input payloads of a smaller size.

ACKNOWLEDGMENT

This work was supported by the ETRI R&D program of
KCC (Korea Communications Commission), Korea [12-912-
01-001, “Development of MTM-based Security Core Tech-
nology for Prevention of Information Leakage in Smart De-
vices”].

REFERENCES

[1] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis,

“Network-level polymorphic shellcode detection using
emulation,” Proc. of the Third Conference on Detection of
Intrusions and Malware & Vulnerability Assessment
(DIMVA06), July 2006, pp. 54–73.

[2] Q. Zhang, D. S. Reeves, P. Ning, and S. P. Lyer, “Analyzing
network traffic to detect self-decrypting exploit code,” Proc.

of the ACM Symposium on Information, Computer and
Communications Security (ASIACCS07), 2007, pp. 4-12.

[3] M. Polychronakis, E. P. Markatos, and K. G. Anagnostakis,
“Emulation-based Detection of Non self-contained
Polymorphic Shellcode,” Proc. of the International
Symposium on Recent Advanced in Intrusion Detection
(RAID07), 2007, pp. 87-106.

[4] M. Roesch, “Snort: Lightweight intrusion detection for
networks.,” USENIX LISA Conference, 1999, pp. 229-238.

[5] V. Paxson, “Bro: a System for Detecting Network Intruders in
Real-time,” Proc. of the USENIX Security Symposium, Jan.
1998, pp. 2435-2463.

[6] R. Chinchani and E. V. D. Berg, “A fast static analysis
approach to detect exploit code inside network flows,” Proc.
of 8th International Symposium on Recent Advanced in
Intrusion Detection (RAID05), 2005, pp. 284-308.

[7] X. Wang, C. Pan, P. Liu, and S. Zhu, “SigFree: A Signature-
free Buffer Overflow Attack Blocker,” Proc. of the 15th
USENIX Security Symposium, 2006, pp. 225-240.

[8] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated
worm fingerprinting,” Proc. of the 6th Symposium on
Operating Systems Design & Implementation (OSDI04),
2004, pp. 45-60.

[9] H.-A. Kim and B. Karp, “Autograph: Toward automated,
distributed worm signature detection,” Proc. of the 13th
USENIX Security Symposium, 2004, pp. 271–286.

[10] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast
portscan detection using sequential hypothesis testing,” Proc.
of IEEE Symposium on Security and Privacy, 2004, pp. 211-
225.

[11] B.-H Chang and C. Jeong, “An Efficient Network Attack
Visualization Using Security Quad and Cube,” ETRI Journal,
vol. 33, no. 5, Oct. 2011, pp. 770-779.

[12] S. A. Taghanaki, M. R. Ansari, B. Z. Dehkordi, and S. A.
Mousavi, “Nonlinear Feature Transformation and Genetic
Feature Selection: Improving System Security and Decreasing
Computational Cost,” ETRI Journal, vol. 34, No. 6, Dec. 2012,
pp. 847-857.

[13] D. Kim, Y. Choi, I. Kim, J. Oh, and J. Jang, “Function Call
Mechanism Based Executable Code Detection for the
Network Security,” Proc. of the International Symposium on
Applications and the Internet (SAINT08), 2008, pp. 62-67.

169Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

