
Employing the CEP Paradigm for Network Analysis and Surveillance

Ruediger Gad, Martin Kappes

University of Applied Sciences Frankfurt am Main

Frankfurt am Main, Germany

e-mail: {rgad, kappes}@fb2.fh-frankfurt.de

Juan Boubeta-Puig, Inmaculada Medina-Bulo

Universidad de Cádiz

Cádiz, Spain

e-mail: {juan.boubeta, inmaculada.medina}@uca.es

Abstract—In this paper, we present a network analysis and

surveillance system based on the Complex Event Processing

(CEP) paradigm. We demonstrate how complex event

hierarchies based on single packets can be leveraged for

detecting attacks such as, e.g., SYN Flooding, and present

experimental performance results indicating that current CEP

implementations running on consumer class computers are

well capable of analyzing network traffic volumes with such

patterns in the Gigabit range, rendering our approach

applicable for enterprise network monitoring.

Keywords—CEP; network analysis; network surveillance.

I. INTRODUCTION

Today, Information Technology (IT) and its underlying
computer networks are the foundation of virtually all
business infrastructures. Since mission-critical processes
depend on the reliable operation of the IT, the continuous
operation of the network has to be ensured. Thus, the
quality, reliability, performance and serviceability of the
underlying computer network are paramount. Consequently,
systems for assuring the proper operation of computer
networks are needed.

Computer networks resemble, in many ways, a complex
nervous system interconnecting individual nodes. Their
operation is affected by a broad range of factors such as, but
not limited to, e.g., component failures, traffic overload,
misconfigurations, or attacks. In order to assure the proper
operation of a computer network, situations which negatively
affect the network operation must be rectified in a timely
manner. Ideally, critical situations are avoided altogether by
detecting and reacting to conditions that may eventually
become critical beforehand.

Thus, information about relevant situations is needed. In
terms of computer networks this means that data about the
computer network and especially the occurrences in it is
required. Hence, the very first step for assuring the proper
operation of a computer network is the collection and
analysis of data about the computer network. This data is the
very basis for all other subsequent activities like the
notification of administrative personnel or the
implementation of counter measures.

Gathering and analyzing data in today's complex
computer network structures is a challenging task. In order to
acquire a comprehensive overview it is insufficient to collect
and analyze data at a single point with standalone tools.
Instead, a network analysis and surveillance system must be
capable of distributed operation, allow for the integration of
heterogeneous data sources, and to quickly and flexibly grow
or adapt to new situations.

Ideally, the general system structure will be suitable for
an extension beyond network analysis and surveillance and
support the integration of methods for reactions into the
overall system. This way, perspectively, a unified network
management and security infrastructure can be implemented
that supports the whole network operation, maintenance, and
security process.

Consequently, we chose a system approach that is very
flexible, not bound to a specific application domain, and
allows for a simple extension. Our approach is based on the
Complex Event Processing (CEP) [1] paradigm. In this
paper, we present the general idea of our approach to
leverage CEP in the field of computer networks and analyze
its practicability by exemplarily implementing methods for
detecting different situations in computer networks and
measuring the performance. While CEP had been already
used in specialized and isolated areas in the application
domain of computer networks, to the best of our knowledge,
no overarching, general and unified system had been
proposed yet.

The remainder of this paper is organized as follows: at
first, we give a summary of different network analysis and
surveillance approaches. Then, we give an overview over
work related to our research followed by an introduction of
the relevant technologies in the fields of network analysis
and surveillance and CEP. Afterwards, we introduce our
approach and present the prototype that we used to assess the
feasibility. Following, we describe the approach we used to
assess the feasibility of using CEP in the field of network
analysis and surveillance and present and discuss our results.
Finally, we conclude this paper with a summary and outlook
on future work.

II. RELATED WORK

While other approaches on employing CEP and event-
driven architecture (EDA) exist in the field of computer
networks, these approaches are typically employed in
specialized and isolated application fields only. However,
they demonstrate that the CEP paradigm, in general, can be
effectively applied in the application domain of computer
networks.

Some approaches aim on implementing intrusion
detection systems based on CEP [2][3]. These approaches
solely focus on detecting intrusions and can be viewed as
evidence that CEP is capable of modeling important
situations in the area of computer networks. Our approach
has a wider scope; we use CEP for general network analysis
and surveillance. This includes the detection of intrusions,

204Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

but also other use cases like network monitoring or detecting
congestion situations, misconfigurations, or faults.

In [4] and [5], a joined infrastructure for detecting attack
preparations like so called “stealthy port scans” based on
CEP is proposed. This research shows the suitability of
modeling computer network incidents by means of event
patterns and illustrates the potential of CEP and EDA for
creating distributed network surveillance systems. However,
[4] and [5] are focused on a single, very specific application
while we propose to apply the CEP paradigm in the whole
field of network analysis, surveillance and eventually
reaction and mitigation.

Another line of research considers CEP-based systems
for network management [6]. This work primarily focuses
administrative aspects and largely ignores technical problems
like data acquisition, data analysis, or triggering reactions. In
the long term, we plan to create a unified network analysis
and surveillance system that enables the seamless integration
of other components like management systems or reaction
systems.

In [7], an approach on using CEP for anomaly detection
in computer networks is presented. This work shows the
potential of using CEP-based systems even for advanced
analysis methods like anomaly detection. However, this work
is limited on anomaly detection. In our approach, we plan to
integrated a multitude of possible analysis methods including
classical, pattern-based approaches, as well as machine
learning and anomaly detection techniques.

Performance aspects, both in the field of network
analysis and surveillance as well as in the field of CEP had
also been subject to research. In [8], a cooperative approach
on capturing and processing packets at wire-speed in
computer networks is proposed. In this work, the load of
capturing and processing packets in a network is distributed
among multiple capturing components. This approach is not
implemented with means of CEP and thus is not as versatile
and flexible as our proposed approach.

In [9], a hardware-based CEP engine is presented. With
this “in-hardware” CEP implementation a throughput of 20
Gbps could be achieved. This shows the performance
potential of CEP systems and that CEP systems can be
implemented in-hardware in order to increase the
performance. Here, we use general-purpose Java
implementations. However, depending on the requirements,
special hardware-based solutions may become viable
solutions as well.

There also exist well-known monitoring tools like
Nagios and Zabbix [10][11]. These tools emphasize on the
hardware and services and not on the network itself. Devices
and parameters that are usually monitored include
performance, like CPU and memory, disk space,
temperature, databases, or power systems. Furthermore,
typically, such tools display the gathered data in large
dashboard-like views. As we will discuss in the presentation
of our approach, we believe that it is very important to
support the administrative personal by inferring and
extracting the important information instead of
overwhelming them by displaying all available information.
Yet, the information gathered by such monitoring systems is

also very valuable. Hence, we plan to incorporate such
monitoring solutions in our system as well. Our chosen
architecture already supports the flexible and effortless
extension of our system and integration of different data
sources and provides mechanisms for meaningfully
processing heterogeneous data from different data sources.

III. NETWORK ANALYSIS AND SURVEILLANCE

In order to maintain a reliable, robust, and operational
computer network, information about the computer network
and the occurrences in it must be collected and analyzed in
order to identify issues early on. Apart from noticing
problems that already affected the operation of a network
like a defective hardware component, continuous monitoring
of a computer network also enables to discern trends like,
e.g., an increase in network traffic or error rates over time,
and thus aids in identifying and resolving issues before they
become critical. For example, an upcoming congestion
situation could be extrapolated by a monitoring system long
before the actual effects impair the network functionality as
suitable measures can be prepared and implemented early
enough. Additionally, continuous monitoring also allows for
identifying suspicious activities which may be related to
ongoing attacks or attack preparations.

 Thus, the very first step in assuring the proper operation
of computer networks is to gather information about the
network and the occurrences in it.

The act of gathering this data is referred to as network
analysis and surveillance or network reconnaissance [12].
While usually the analysis of the data and the deduction of
meaningful information is also usually considered part of
network analysis, surveillance or network reconnaissance,
we primarily consider the data acquisition part here.

Data acquisition can be distinguished into passive and
active approaches [13]. Passive data acquisition is based on
observing the network only whereas active data acquisition
also generates network traffic, e.g., by attempting to contact
a device. Here, we only consider passive approaches due to
space limitations.

Examples for activities that may be observed in computer
networks include packets being transmitted, connections
being established or torn down, attackers scanning a
network, hosts being added or removed from a network, or
services being announced, requested, or used. While there is
a multitude of different activities that happen in computer
networks, there are only few “elementary” data acquisition
techniques, namely:

 Packet capturing (also known as sniffing);

 Connection tracking, and

 Netflow-based methods.
These techniques have different properties and different

advantages and drawbacks. Packet capturing provides the
most information [14] as, in principle, all transmitted
information is accessible. However, the actual outcome
depends on factors like, e.g., the placement of the data
acquisition device, the network technology, or the network
topology. In general, capturing (and analyzing) packets can
be a costly operation. Considering a fully loaded Gigabit

205Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

Ethernet (1000Base-T) [15] transmitting Ethernet packets
with a payload of 1,500 bytes only, we obtain a packet rate of
approximately 82,000 packets per second; for minimum size
packet (520 bytes) approximately 240,000 packets per
second.

These rates are important because the monitoring system
must be dimensioned accordingly. If the number of arriving
packets exceeds the number of processed packets for a
duration, the queue memory will eventually be exhausted
and packets will be randomly discarded leading to
information loss. Various approaches for achieving high
capture rates exist, such as, special setups [8], optimized
software [16], special hardware, or combinations thereof.

Connection tracking observes state changes of
connections in a network [17]. While, formally, connection
tracking is only applicable for stateful connection protocols
such as, e.g., TCP [18], the notion of an implicit connection
and states has also evolved for connectionless protocols,
such as, e.g., UDP [19].

One advantage of connection tracking is that most
implementations are highly optimized and known to perform
very well. An example is nf_conntrack from the Linux
Netfilter Project, which is, e. g., utilized by stateful Linux
packet filters, like the well established iptables
implementation. However, the amount of information which
can be obtained from connection tracking is quite limited
compared to packet capturing.

Netflows are also a performance-friendly form of
providing information about network traffic in an aggregated
form. A netflow is defined as unidirectional data flow
between two endpoints and fully characterized by the 5-tuple
of source and destination network layer address, source and
destination transport layer port, and transport layer protocol
type. When netflows are used for monitoring, further
information about each flow is collected such as, e.g., packet
counts and byte counts. From the perspective taken here,
netflows can be considered similar to connection tracking
and have the same advantages and disadvantages. It is worth
mentioning that many commercial network interconnection
devices likes switches and routers allow to export netflow
data out of the box, and standards have been defined for
exporting and importing netflow information [20][21].

A. Desirable Properties

In the following, we will outline desirable properties for a
network analysis and surveillance system.

Distributed data collection: Nowadays, IT
infrastructures and the underlying networks are spread
topologically and topographically. Companies and
governmental institutions have several subsidiaries, which
are all integrated into the overall IT and network
infrastructure. Even in smaller businesses the company
network is usually composed of different subnetworks. In
order to get a comprehensive overall picture of the situation
in such networks, it is insufficient to collect data at a single
place. Instead, data about all topographical and topological
parts of the network is required. Hence, data must be
gathered at a large number of different places in the

computer network. The underlying network analysis and
surveillance infrastructure must support this.

Heterogeneous data sources: many different ways for
collecting data about computer networks exist. The
individual approaches have advantages and disadvantages.
While, e.g., packet capturing provides a very high detail of
information, it is perfomance-intensive. Connection tracking,
on the other hand, requires less performance but also offers
less detailed information. The required level of detail
strongly depends on the actual application scenario.
Furthermore, as we will show, it is even possible to derive
the same higher-level information from different types of
natural events. Additionally, some approaches may deliver
information that cannot be retrieved by other means. Thus, in
order to acquire a complete overview of a network and the
occurrences in it, ideally, multiple, heterogeneous data
sources should be used.

Near realtime information: In computer networks, it is
often required to swiftly respond to hazardous situations;
e.,g., failures must be compensated for quickly or attacks
must be stopped early. Therefore, the available information
about a network must be as current as possible. Ideally, the
information should be available immediately when incidents
in a network happen. A network analysis and surveillance
infrastructure should support the propagation of information
in a timely manner such that the information is available in
near realtime, i.e., “soon enough” or “in a timely manner” to
react meaningfully [23]. We refer to this property as "near
realtime" since strict definitions for “realtime” exist in other
areas of computer science, particularly in the scope of
embedded devices and realtime hardware.

Focused user interface: It is equally important that the
important information can easily be found and that it is easily
understandable. In the field of network analysis and
surveillance, vast amounts of data are available. Thus,
identifying the important information is crucial in order to
enable taking correct decisions. Administrative personal can
only perform its tasks efficiently and solve problems quickly
if the important information is presented in an easily
perceivable and understandable fashion. Confronting the
administrative personal with too much information
significantly slows down the decision making process.
Presenting to much unimportant information may result in
in-effective actions being taken. In the worst case,
unimportant or even misleading information may result in
the wrong, counter-productive decisions. Thus, a network
analysis and surveillance system should assist the
responsible administrative personal by presenting the
important data in a way that is easily understandable and
quickly perceivable.

While the above list of desirable properties of a network
analysis and surveillance system is not meant to be
extensive, we believe it covers the most important aspects
for such a system. In the following, we will motivate our
choices and results presented here by referring back to these
desirable properties.

206Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

IV. COMPLEX EVENT PROCESSING

In the following, we will present the salient features of
Complex Event Processing (CEP) and define some
terminology. Please refer to the Event Processing Glossary
[24] for more details.

Complex Event Processing (CEP) is an approach for
processing data in form of events [1]. A typical usage
scenario is to infer increasingly complex information from
simpler information by correlating the simpler information
with each other. Other frequently used actions are filtering or
transformation of information.

In CEP, the basic unit of information is an “event”.
“Event”, thereby, has at least two meanings. Firstly, so called
“natural events” are occurrences that naturally happen in the
field a CEP system is applied in. The field in which a CEP
system is applied in is also referred to as the “application
domain” of the system. In the application domain of network
analysis and surveillance, a natural event is, e. g., a packet
being transmitted or a connection state being changed.
Secondly, the other meaning of “event” is the entity that is
processed inside a CEP system and which contains
information describing this event. This entity can also be
seen as an “event object” that carries information inside a
CEP system, possibly about a natural event. Please note that
event objects inside a CEP system do not necessarily relate
to natural events outside the CEP system. The information
contained in such an event object is also referred to as “event
properties”.

Inside a CEP system, events are processed. One of the
most powerful operations is the derivation of events from
other events. We use the terms “simpler events” and
“complexer events” to clarify the relationship between the
processed and the derived events [25]. Complex events may
be derived from simple events directly, but can be also be
derived from other (intermediate) complex events.

The actual correlation of events happens in a component
known as the “CEP engine”. The CEP engine is one of the
key components of every CEP system. For inferring
complexer events from simpler events special processing
rules are used. These processing rules are usually expressed
in an Event Processing Language (EPL). The actual form and
syntax of an EPL depends on the respective implementation.
One popular way to express EPLs is in a way similar to
Structured Query Language (SQL), but with additional
functionality for correlating events [26].

A more general term in this context is “derived event”.
“Derived events” are events which were processed by some
mean. Thereby, it doesn’t matter if events had only been
filtered or transformed or had been inferred from other
events with means of a CEP engine.

Closely related to event objects is the idea of an “event
type” or “event class”. In a nutshell, an “event type” roughly
defines the structure of concrete event objects. However,
please note that an “event class” is not a class in the object-
oriented paradigm. An event type definition is much less
strict than a class definition in object-oriented languages.
When considering the application domain of network
analysis and surveillance one event type is that of a packet

being transmitted. A packet can be of many different protocol
types like TCP, UDP, ICMP, or ARP [27][28]. Clearly, all
these protocols contain very different information and so do
the resulting event objects inside the CEP system. So, an
event type in a CEP system can be more seen roughly similar
to an eXtensible Markup Language (XML) Schema
Definition (XSD) than a class in the object-oriented sense.

When events are derived from each other, typically,
events of one class or type are derived from events of
another type. The relationship between these complexer and
simpler events can be represented in a directed graph with
the event types being the vertices and the edges resembling
the derivation relations. The direction of the edges indicates
the derivation relation from simpler events to complexer
events. Such a graph representation of events and their
relations is also referred to as “event hierarchy”.

The event processing itself is usually composed of a
larger number of other components. When the events are
processed in a CEP system they usually flow through what is
also called “Event Processing Network” (EPN). An EPN can
consist of different components like event filters, event
transformers, CEP engines, or communication
infrastructures. In Figure 1, an exemplary EPN is depicted.
The feedback loop at the event pattern matching component
indicates that increasingly complex events can be derived in
an iterative manner.

The communication infrastructure that is used in a CEP
system can be manifold like common network sockets,
higher-level infrastructures like Message-Oriented
Middleware (MOM) [29] or an Enterprise Service Bus
(ESB) [30] or traditional mechanisms for interprocess
communication, like shared memory when components are
locate on the same system.

V. OUR APPROACH

Much information about a computer network inherently
has the nature of events. Many different things happen in
computer networks all the time and naturally occur as events.
The different events range from low-level to high-level.
Examples of events happening in a network are packets
being sent, connections changing the state, hosts “entering”
or “leaving” a network, services being announced, requested,
or used, devices failing, or attacks taking place.

Hence, in our opinion, an event-driven architecture [31]
is the natural choice for processing data in the application
domain of network analysis and surveillance [32]. In an
event-driven system, the processing of data is triggered
instantaneously upon the arrival of new data. Thus, an event-

Figure 1: Simple Example EPN.

207Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

driven system supports the processing of data in near
realtime. This actively helps to fulfill the desired property
that a network analysis and surveillance system shall operate
in near realtime.

In event-driven architectures, data exchange also follows
the event-driven paradigm. One approach for communicating
data inside event-driven systems is via messages. Messages
simply contain the event data that needs to be exchanged.
Thereby, messages can be exchanged locally via “classical”
interprocess communication or via different hosts across
computer networks. This allows to integrate components
from different spatially distributed locations. Thus, we can
address the desired property of integrating distributed event
sources this way.

However, using the event-driven paradigm alone is not
sufficient for addressing the other desired property: a focused
user interface that aids the administrative personal in
identifying and solving critical situations. It is crucial that the
important information is clearly and easily perceivable and
understandable. Thus, a mechanism for efficiently filtering
information and inferring high-level information is required.
Consequently, we chose CEP as paradigm because this not
only offers all features of an event-driven architecture but
also allows to filter information and most important of it all
enables to infer high-level information.

Furthermore, the message-driven event exchange results
in a loose coupling between the individual components. The
loosely-coupled infrastructure in combination with the CEP
paradigm allows for the simple integration of heterogeneous
components. In Figure 2, the general architecture of our
proposed system is depicted. Our prototype takes advantage
of all these properties. It combines the capability of
integrating heterogeneous data sources at distributed
locations with an EDA and a CEP engine.

VI. EVALUATION

In order to assess the feasibility of our approach we
implemented a CEP-based network analysis and surveillance
system as prototype. We tested this prototype in real world
network scenarios. Furthermore, we performed synthetic
load tests for benchmarks.

In a CEP-based system, event patterns are used for
processing information. For meaningfully applying a CEP
system in a respective application domain, it is crucial that
the intended application domain can be modeled with means
of event patterns. To show that CEP can be meaningfully

applied in the application domain of network analysis and
surveillance we developed different event patterns and tested
these in real-world network scenarios with our prototype.
The event patterns were written in the Esper EPL language
[26] and aim on detecting different situations in a computer
network. These EPL patterns serve as proof of concept
implementations and show that it is possible to effectively
deduce meaningful high-level data in the application domain
of network analysis and surveillance with means of CEP. In
Figure 3, we show an exemplary event hierarchy for
detecting Denial of Service (DoS) attacks.

We actually implemented different event patterns for the
DoS attack scenario. It is, e. g., possible to conclude from a
TCP SYN packet that is not followed by an established TCP
connection that something irregular is happening; only the
initial SYN packet was observed but the actual three-way
handshake didn’t happen. When there is a large number of
such events within a short time it can be concluded that a
SYN flood is going on and in turn it can be concluded that a
DoS attack is performed. The act of checking for the absence
of a certain event as described here is also referred as the
“absence pattern” [33]. Similarly, it could be concluded that
an DoS attack is going on by just looking at the frequency
with which SYN packets are sent without looking for non
established connections. In the event hierarchy shown in
Figure 3 the optional ways for deriving events are indicated
by dashed edges. For the sake of brevity we only depict and
explain one exemplary event hierarchy. However, we could
successfully implement many other patterns, e.g., for
detecting ARP spoofing attack, congestion situations, or
brute-force attacks. This example illustrates that the domain
of network analysis and surveillance can be modeled with
means of event patterns.

Furthermore, in the example from Figure 3, it is also

possible to use events from connection tracking for detecting
DoS attacks. This property can, e.g., be leveraged for
optimizing the performance of a network analysis and
surveillance system. In our prototype, we implemented and

Figure 3: Exemplary Event Hierarchy for Detecting Denial of Service

Attacks.

Figure 2: System Overview.

208Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

tested the DoS detection pattern shown in Figure 3 for
natural events from packet capturing and connection
tracking. Both variants showed to be capable of detecting the
same DoS situations. With this example, we could show that,
thanks to the loose coupling enabled by the CEP and EDA
paradigm, the integration of heterogeneous data sources with
our approach is simple and quick.

In order to assess the performance of a CEP system in the
application domain of network analysis and surveillance, we
exemplary used the Java-based, general purpose Esper CEP
implementation. For our benchmarks, we used three different
event patterns from the targeted application domain based on
natural events from packet capturing: a simple pattern for
simply filtering the input data, a pattern with average
complexity for calculating the time between the occurrence
of certain packets, and a complex pattern for detecting the
TCP three-way handshake. The sample data had been
collected with Wireshark. For the benchmarks, the data was
synthetically fed to the CEP engine at different rates. For
each measurement, the rate with which the data was
“replayed” was constant. During each measurement run, we
determined the CPU usage of the system and the percentage
of events that could be successfully processed. The computer
system on which we made the benchmarks was a common
consumer class laptop with an Intel Core i5 CPU and 4GB
memory. In order to avoid measuring artifacts of multi-CPU
features as offered by this CPU, like impacts on multi-
threading, etc., we artificially disabled the multi-processor
functionality of the CPU.

The results of our benchmarks are shown in Figure 3.
Please note that we used the rate of input events for the x-
axis. The overall rate of events inside the CEP engine is
usually higher because the derived events also attribute to the
overall event rate. Similarly, we calculated the ratio of
successfully processed input events for the statistics.

It can be clearly seen that the actual performance strongly
depends on the complexity of the respective event patterns.
Thereby, the percentage of successfully processed events is
approximately 100% as long as enough CPU resources are
available. Once the CPU resource limit is reached, the

percentage of successfully processed events continuously
decreases with increasing input event rate. Thus, we consider
the highest rate of input events for which the percentage is
still 100% as the maximum achievable rate for the respective
event pattern. For the simplest patterns, we could achieve a
throughput of ~170.000 events per second; with enabled
multi-processing this was even higher, in the magnitude of
500.000 events per second. However, with multiple CPU
cores, the result data showed some irregularities that we
attribute to the multi-CPU features. For the sake of clarity
we, therefore, disabled the multi-CPU support via the
operating system. For the average complexity pattern, the
maximum achievable throughput in our test setup is about
125.000 events per second. Meaningfully processing the
most complex pattern was not possible at all; even at a rate
of 5000 input events per second it was not possible to get a
event processing rate near 100%. Still, this shows that even a
general purpose CEP engine on consumer class commodity
hardware CEP can generally perform with Gigabit Ethernet
speed with a packet rate of roughly 82000 events per second.
Yet, the actual performance strongly depends on the
respective event patterns. With increasing event pattern
complexity the performance degrades until it becomes
impossible to meaningfully process the input data. However,
this strongly depends on the applied event patterns.
Furthermore, we purposely used packet capturing as data
acquisition approach as it has the highest rate of emitting
data. Other approaches like connection tracking or netflows
emit data at a much lower speed. Additional ways for
compensating performance issues are additional pre-
processing and filtering steps.

Also, note that the CEP engine we used for
benchmarking is a general-purpose implementation, which is
intended to run on a large variety of platforms. In the field of
CEP, there is also work and research on highly optimized
CEP engines that leverage hardware acceleration.

VII. CONCLUSION AND FUTURE WORK

Computer networks are crucial for the operation of
nowadays IT infrastructures. Failures in computer networks
very often directly impact the functionality of the
corresponding IT with possibly severe consequences. Thus,
maintaining operational computer networks is highly
important.

Modern data processing paradigms, modern IT
infrastructures and architectures, and increased performance
open up new possibilities for gathering, processing,
combining, and using data. We take advantage of this and
propose an improved approach for network analysis and
surveillance.

Based on an overview of existing approaches for network
analysis and surveillance, we defined and explained desirable
properties for a modern network analysis and surveillance
system. Our approach on addressing these requirements is to
leverage the CEP and EDA paradigm of data processing.
Based on these technologies, we could successfully
implement a distributed network analysis and surveillance
system prototype that operates in near realtime and offers
powerful functionality for processing, filtering, and enriching

Figure 4: CEP Performance Comparison for Events with Different

Complexity.

209Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

information. We tested our system in real world networking
scenarios and with benchmarks. The results, so far, show that
our approach works and is suited to fulfill the requirements
we stated.

In future, we are going to further extend our system. We
are currently working on integrating machine learning and
anomaly detection techniques into the system. This way, we
will further improve the capability of the system for
deducing meaningful information and detecting important
situations. We will also test the system in more scenarios and
will optimize the performance.

REFERENCES

[1] D. C. Luckham, “The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems,” Addison-
Wesley Longman Publishing Co., Inc., Amsterdam 2001.

[2] M. Ficco and L. Romano, “A Generic Intrusion Detection and
Diagnoser System Based on Complex Event Processing,” First
International Conference on Data Compression, Communications
and Processing (CCP), IEEE Computer Society, Los Alamitos, 2011,
pp. 275-284.

[3] J.J. Martinez-Molina, M.A. Hernandez-Ruiz, M.G. Perez, G.M.
Perez, and A.F. Gomez-Skarmeta, “Event-Driven Architecture for
Intrusion Detection Systems Based on Patterns,” Second
International Conference on Emerging Security Information, Systems
and Technologies SECURWARE ’08, Cap Esterel, 2008, pp. 391-
396.

[4] L. Aniello, G.A. Di-Luna, G. Lodi, and R. Baldoni, “A Collaborative
Event Processing System for Protection of Critical Infrastructures
from Cyber Attacks,” Proceedings of the 30th International
Conference on Computer Safety, Reliability, and Security
SAFECOMP’11, Springer-Verlag Berlin, Heidelberg, 2011, pp. 310-
323.

[5] L. Aniello, G. Lodi, and R. Baldoni, “Inter-domain Stealthy Port
Scan Detection through Complex Event Processing,” Proceedings of
the 13th European Workshop on Dependable Computing EWDC ’11,
ACM New York, 2011, pp. 67-72.

[6] V. Krishnamoorthy, N.K. Unni, and V. Niranjan, “Event-driven
Service-oriented Architecture for an Agile and Scalable Network
Management System,” International Conference on Next Generation
Web Services Practices, 2005.

[7] S. Cheng, Z. Cheng, Z. Luan, and D. Qian, “NEPnet: A scalable
monitoring system for anomaly detection of network service,” 7th
International Conference on Network and Service Management
(CNSM), 2011.

[8] C. Morariu and B. Stiller, “DiCAP: Distributed Packet Capturing
architecture for high-speed network links,” 33rd IEEE Conference on
Local Computer Networks, LCN 2008.

[9] H. Inoue, T. Takenaka, M. Motomura, “20Gbps C-Based Complex
Event Processing,” International Conference on Field Programmable
Logic and Applications (FPL), 2011.

[10] Nagios Enterprises, “Nagios - The Industry Standard in IT
Infrastructure Monitoring,” Online, http://www.nagios.org/, last
accessed 2013-02-16.

[11] Zabbix SIA, “Homepage of Zabbix, An Enterprise-Class Open
Source Distributed Monitoring Solution,” Online,
http://www.zabbix.com/, last accessed 2013-02-16.

[12] S.A. Shaikh, H. Chivers, P. Nobles, J. A. Clark, and H. Chen,
“Network Reconnaissance,” Network Security, 2008.

[13] S. Webster, R. Lippmann, and M. Zissman, Experience Using Active
and Passive Mapping for Network Situational Awareness, Fifth IEEE
International Symposium on Network Computing and Applications,
2006.

[14] C. Sanders, “Practical Packet Analysis : Using Wireshark to Solve
Real-World Network Problems,” No Starch Press, Incorporated, San
Francisco, 2007.

[15] The Institute of Electrical and Electronics Engineers, Inc., “IEEE Std
802.3-2008 Part 3: Carrier Sense Multiple Access with Collision
Detection (CSMA/CD) Access Method and Physical Layer
Specifications,” 2008.

[16] L. Deri, "nCap: wire-speed packet capture and transmission,"
Workshop on End-to-End Monitoring Techniques and Services, 2005,
pp. 47-55.

[17] P. Ayuso, “Netfilter’s Connection Tracking System,” LOGIN: The
USENIX magazine, Berkeley, 2006.

[18] J. Postel, “Transmission Control Protocol – RFC 793 (Standard),”
Request for Comments, Internet Engineering Task Force, 1981.

[19] J. Postel, “User Datagram Protocol – RFC 768 (Standard),” Request
for Comments, Internet Engineering Task Force, 1980.

[20] P. Phaal, S. Panchen, and N. McKee, “InMon Corporation's sFlow: A
Method for Monitoring Traffic in Switched and Routed Networks –
RFC 3176,” Request for Comments, Internet Engineering Task
Force, 2001.

[21] B. Claise, “Cisco Systems NetFlow Services Export Version 9 – RFC
3954,” Request for Comments, Internet Engineering Task Force,
2004.

[22] M. Natu and A.S. Sethi, “Active Probing Approach for Fault
Localization in Computer Networks,” 4th IEEE/IFIP Workshop on
End-to-End Monitoring Techniques and Services, 2006.

[23] C. Ballard, M.S. Roopa, O. Mueller, Z.Y. Pen, A. Perkins, and P.J.
Suresh, “Preparing for DB2 Near-Realtime Business Intelligence,”
IBM Redbooks, 2004.

[24] D.C. Luckham, et al., “Event Processing Glossary – Version 2.0,”
Online, http://www.complexevents.com/wp-
content/uploads/2011/08/EPTS Event Processing Glossary v2.pdf,
last accessed 2013-02-16.

[25] R. Gad, J. Boubeta-Puig, M. Kappes, I. Medina-Bulo, “Hierarchical
Events for Efficient Distributed Network Analysis and Surveillance,”
Proceedings of the 2nd International Workshop on Adaptive Services
for the Future Internet, WAS4FI-Mashups ’12, ACM New York,
2012, pp. 5-11.

[26] EsperTech Inc., “Esper - Event Stream and Complex Event
Processing for Java Reference Documentation,” Online,
http://esper.codehaus.org/esper/documentation/documentation.html,
last accessed 2013-05-02.

[27] J. Postel, “Internet Control Message Protocol – RFC 792 (Standard),”
Request for Comments, Internet Engineering Task Force, 1981.

[28] D.C. Plummer, “An Ethernet Address Resolution Protocol or
Converting Network Protocol Addresses – RFC 826 (Standard),”
Request for Comments, Internet Engineering Task Force, 1982.

[29] B. Snyder, D. Bosanac, and R. Davies, “ActiveMQ in Action,”
Manning Publications, 2011.

[30] D. Bo, D. Kun, and Z. Xiaoyi, “A High Performance Enterprise
Service Bus Platform for Complex Event Processing,” Seventh
International Conference on Grid and Cooperative Computing, IEEE
Computer Society Washington, DC, 2008, pp. 577-582.

[31] H. Taylor, A. Yochem, L. Phillips, and F. Martinez, “Event-Driven
Architecture: How SOA Enables the Real-Time Enterprise,”
Addison-Wesley Professional, Boston, 2009.

[32] R. Gad, J. Boubeta-Puig, M. Kappes, and I. Medina-Bulo,
“Leveraging EDA and CEP for Integrating Low-Level Network
Analysis Methods into Modern, Distributed IT Architectures,” VII
Jornadas de Ciencia e Ingenierıa de Servicios (JCIS - SISTEDES
2012), Almerıa, Spain, 2012.

[33] O. Etzion and P. Niblett, “Event Processing in Action,” Manning
Publications Co., 2010.

210Copyright (c) IARIA, 2013. ISBN: 978-1-61208-279-0

AICT 2013 : The Ninth Advanced International Conference on Telecommunications

