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Abstract—In this paper, we present a network analysis and 

surveillance system based on the Complex Event Processing 

(CEP) paradigm. We demonstrate how complex event 

hierarchies based on single packets can be leveraged for 

detecting attacks such as, e.g., SYN Flooding, and present 

experimental performance results indicating that current CEP 

implementations running on consumer class computers are 

well capable of analyzing network traffic volumes with such 

patterns in the Gigabit range, rendering our approach 

applicable for enterprise network monitoring. 
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I.  INTRODUCTION 

Today, Information Technology (IT) and its underlying 
computer networks are the foundation of virtually all 
business infrastructures. Since mission-critical processes 
depend on the reliable operation of the IT, the continuous 
operation of the network has to be ensured.  Thus, the 
quality, reliability, performance and serviceability of the 
underlying computer network are paramount. Consequently, 
systems for assuring the proper operation of computer 
networks are needed. 

Computer networks resemble, in many ways, a complex 
nervous system interconnecting individual nodes. Their 
operation is affected by a broad range of factors such as, but 
not limited to, e.g., component failures, traffic overload, 
misconfigurations, or attacks. In order to assure the proper 
operation of a computer network, situations which negatively 
affect the network operation must be rectified in a timely 
manner. Ideally, critical situations are avoided altogether by 
detecting and reacting to conditions that may eventually 
become critical beforehand. 

Thus, information about relevant situations is needed. In 
terms of computer networks this means that data about the 
computer network and especially the occurrences in it is 
required. Hence, the very first step for assuring the proper 
operation of a computer network is the collection and 
analysis of data about the computer network. This data is the 
very basis for all other subsequent activities like the 
notification of administrative personnel or the 
implementation of counter measures. 

Gathering and analyzing data in today's complex 
computer network structures is a challenging task. In order to 
acquire a comprehensive overview it is insufficient to collect 
and analyze data at a single point with standalone tools. 
Instead,  a network analysis and surveillance system must be 
capable of distributed operation, allow for the integration of 
heterogeneous data sources, and to quickly and flexibly grow 
or adapt to new situations. 

Ideally, the general system structure will be suitable  for  
an extension beyond network analysis and surveillance and 
support the integration of methods for reactions into the 
overall system. This way, perspectively, a unified network 
management and security infrastructure can be implemented 
that supports the whole network operation, maintenance, and 
security process. 

Consequently, we chose a system approach that is very 
flexible, not bound to a specific application domain, and 
allows for a simple extension. Our approach is based on the 
Complex Event Processing (CEP) [1] paradigm. In this 
paper, we present the general idea of our approach to 
leverage CEP in the field of computer networks and analyze 
its practicability by exemplarily implementing methods for 
detecting different situations in computer networks and 
measuring the performance. While CEP had been already 
used in specialized and isolated areas in the application 
domain of computer networks, to the best of our knowledge, 
no overarching, general and unified system had been 
proposed yet. 

The remainder of this paper is organized as follows: at 
first, we give a summary of different network analysis and 
surveillance approaches. Then, we give an overview over 
work related to our research followed by an introduction of 
the relevant technologies in the fields of network analysis 
and surveillance and CEP. Afterwards, we introduce our 
approach and present the prototype that we used to assess the 
feasibility. Following, we describe the approach we used to 
assess the feasibility of using CEP in the field of network 
analysis and surveillance and present and discuss our results. 
Finally, we conclude this paper with a summary and outlook 
on future work. 

II. RELATED WORK 

While other approaches on employing CEP and event-
driven architecture (EDA) exist in the field of computer 
networks, these approaches are typically employed in 
specialized and isolated application fields only. However, 
they demonstrate that the CEP paradigm, in general, can be 
effectively applied in the application domain of computer 
networks. 

Some approaches aim on implementing intrusion 
detection systems based on CEP [2][3]. These approaches 
solely focus on detecting intrusions and can be viewed as 
evidence that CEP is capable of modeling important 
situations in the area of computer networks. Our approach 
has a wider scope; we use CEP for general network analysis 
and surveillance. This includes the detection of intrusions, 
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but also other use cases like network monitoring or detecting 
congestion situations, misconfigurations, or faults. 

In  [4] and [5], a joined infrastructure for detecting attack 
preparations like so called “stealthy port scans” based on 
CEP is  proposed. This research shows the suitability of 
modeling computer network incidents by means of event 
patterns and illustrates the potential of CEP and EDA for 
creating distributed network surveillance systems.  However, 
[4] and [5] are focused on a single, very specific application 
while we propose to apply the CEP paradigm in the whole 
field of network analysis, surveillance and eventually 
reaction and mitigation. 

Another line of research considers CEP-based systems 
for network management [6]. This work primarily focuses 
administrative aspects and largely ignores technical problems 
like data acquisition, data analysis, or triggering reactions. In 
the long term, we plan to create a unified network analysis 
and surveillance system that enables the seamless integration 
of other components like management systems or reaction 
systems. 

In [7], an approach on using CEP for anomaly detection 
in computer networks is presented. This work shows the 
potential of using CEP-based systems even for advanced 
analysis methods like anomaly detection. However, this work 
is limited on anomaly detection. In our approach, we plan to 
integrated a multitude of possible analysis methods including 
classical, pattern-based approaches, as well as machine 
learning and anomaly detection techniques. 

Performance aspects, both in the field of network 
analysis and surveillance as well as in the field of CEP had 
also been subject to research. In [8], a cooperative approach 
on capturing and processing packets at wire-speed in 
computer networks is proposed. In this work, the load of 
capturing and processing packets in a network is distributed 
among multiple capturing components. This approach is not 
implemented with means of CEP and thus is not as versatile 
and flexible as our proposed approach. 

In [9], a hardware-based CEP engine is presented. With 
this “in-hardware” CEP implementation a throughput of 20 
Gbps could be achieved. This shows the performance 
potential of CEP systems and that CEP systems can be 
implemented in-hardware in order to increase the 
performance. Here, we use general-purpose Java 
implementations. However, depending on the requirements, 
special hardware-based solutions may become viable 
solutions as well. 

There also exist well-known monitoring tools like  
Nagios and Zabbix [10][11]. These tools emphasize on the 
hardware and services and not on the network itself. Devices 
and parameters that are usually monitored include 
performance, like CPU and memory, disk space, 
temperature, databases, or power systems. Furthermore, 
typically, such tools display the gathered data in large 
dashboard-like views. As we will discuss in the presentation 
of our approach, we believe that it is very important to 
support the administrative personal by inferring and 
extracting the important information instead of 
overwhelming them by displaying  all available information. 
Yet, the information gathered by such monitoring systems is 

also very valuable. Hence, we plan to incorporate such 
monitoring solutions in our system as well. Our chosen 
architecture already supports the flexible and effortless 
extension of our system and integration of different data 
sources and provides mechanisms for meaningfully 
processing heterogeneous data from different data sources. 

III. NETWORK ANALYSIS AND SURVEILLANCE 

In order to maintain a reliable, robust, and operational 
computer network, information about the computer network 
and the occurrences in it must be collected and analyzed in 
order to identify issues early on. Apart from noticing 
problems that already affected the operation of a network 
like a defective hardware component, continuous monitoring 
of a computer network also enables to discern trends like, 
e.g., an increase in network traffic or error rates over time, 
and thus aids in identifying and resolving issues before they 
become critical. For example, an upcoming congestion 
situation could be extrapolated by a monitoring system long 
before the actual effects impair the network functionality as 
suitable measures can be prepared and implemented early 
enough. Additionally, continuous monitoring also allows for  
identifying suspicious activities which may be related to 
ongoing attacks or attack preparations. 

 Thus, the very first step in assuring the proper operation 
of computer networks is to gather information about the 
network and the occurrences in it. 

The act of gathering this data is referred to as network 
analysis and surveillance or network reconnaissance [12]. 
While usually the analysis of the  data and the deduction of 
meaningful information is also usually considered part of 
network analysis, surveillance or network reconnaissance, 
we primarily consider the data acquisition part here. 

Data acquisition can be distinguished into passive and 
active approaches [13]. Passive data acquisition is based on 
observing the network only whereas active data acquisition 
also generates network traffic, e.g., by attempting to contact 
a device. Here, we only consider passive approaches due to 
space limitations. 

Examples for activities that may be observed in computer 
networks include packets being transmitted, connections 
being established or torn down, attackers scanning a 
network, hosts being added or removed from a network, or 
services being announced, requested, or used. While there is 
a multitude of different activities that happen in computer 
networks, there are only few “elementary” data acquisition 
techniques, namely: 

 Packet capturing (also known as sniffing); 

 Connection tracking, and 

 Netflow-based methods. 
These techniques have different properties and different 

advantages and drawbacks. Packet capturing provides the 
most information [14] as, in principle, all transmitted 
information is accessible. However, the actual outcome 
depends on factors like, e.g., the placement of the data 
acquisition device, the network technology, or the network 
topology. In general, capturing (and analyzing) packets  can 
be a costly operation. Considering a fully loaded Gigabit 
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Ethernet (1000Base-T) [15] transmitting Ethernet packets 
with a payload of 1,500 bytes only, we obtain a packet rate of 
approximately 82,000 packets per second; for minimum size 
packet (520 bytes) approximately 240,000 packets per 
second. 

These rates are important because the monitoring system 
must be dimensioned accordingly. If the number of arriving 
packets exceeds the number of processed packets for a 
duration, the queue memory will eventually be exhausted 
and packets will be randomly discarded leading to 
information loss. Various approaches for achieving high 
capture rates exist, such as, special setups [8], optimized 
software [16], special hardware, or combinations thereof. 

Connection tracking observes state changes of 
connections in a network [17]. While, formally, connection 
tracking is only applicable for stateful connection protocols 
such as, e.g., TCP [18], the notion of an implicit connection 
and states has also evolved for connectionless protocols, 
such as, e.g., UDP [19]. 

One advantage of connection tracking is that most 
implementations are highly optimized and known to perform 
very well. An example is nf_conntrack from the Linux 
Netfilter Project, which is, e. g., utilized by stateful Linux 
packet filters, like the well established iptables 
implementation. However, the amount of information which 
can be obtained from connection tracking is quite limited 
compared to packet capturing. 

Netflows are also a performance-friendly form of 
providing information about network traffic in an aggregated 
form. A netflow is defined as unidirectional data flow 
between two endpoints and fully characterized by the 5-tuple 
of source and destination network layer address, source and 
destination transport layer port, and transport layer protocol 
type. When netflows are used for monitoring, further  
information about each flow is collected such as, e.g., packet 
counts and byte counts. From the perspective taken here, 
netflows can be considered similar to connection tracking 
and have the same advantages and disadvantages. It is worth 
mentioning that many commercial network interconnection 
devices likes switches and routers allow to export netflow 
data out of the box, and standards have been defined for 
exporting and importing netflow information [20][21]. 

A. Desirable Properties 

In the following, we will outline desirable properties for a 
network analysis and surveillance system. 

Distributed data collection: Nowadays, IT 
infrastructures and the underlying networks are spread 
topologically and topographically. Companies and 
governmental institutions have several subsidiaries, which 
are all integrated into the overall IT and network 
infrastructure.  Even in smaller businesses the company 
network is usually composed of different subnetworks. In 
order to get a comprehensive overall picture of the situation 
in such networks, it is insufficient to collect data at a single 
place. Instead, data about all topographical and topological 
parts of the network is required. Hence, data must be 
gathered at a large number of different places in the 

computer network. The underlying network analysis and 
surveillance infrastructure must support this. 

Heterogeneous data sources: many different ways for 
collecting data about computer networks exist. The 
individual approaches have advantages and disadvantages. 
While, e.g., packet capturing provides a very high detail of 
information, it is perfomance-intensive. Connection tracking, 
on the other hand, requires less performance but also offers 
less detailed information. The required level of detail  
strongly depends on the actual application scenario. 
Furthermore, as we will show, it is even possible to derive 
the same higher-level information from different types of 
natural events. Additionally, some approaches may deliver 
information that cannot be retrieved by other means. Thus, in 
order to acquire a complete overview of a network and the 
occurrences in it, ideally, multiple, heterogeneous data 
sources should be used. 

Near realtime information: In computer networks, it is 
often required  to swiftly respond to hazardous situations; 
e.,g., failures must be compensated for quickly or attacks 
must be stopped early. Therefore, the available information 
about a network must be as current as possible. Ideally, the 
information should be available immediately when incidents 
in a network happen. A network analysis and surveillance 
infrastructure should support the propagation of  information 
in a timely manner such that the information is available in 
near realtime, i.e., “soon enough” or “in a timely manner” to 
react meaningfully [23]. We refer to this property as "near 
realtime" since strict definitions for “realtime” exist in other 
areas of computer science, particularly in the scope of 
embedded devices and realtime hardware. 

Focused user interface: It is equally important that the 
important information can easily be found and that it is easily 
understandable. In the field of network analysis and 
surveillance, vast amounts of data are available. Thus, 
identifying the important information is crucial in order to 
enable taking correct decisions. Administrative personal can 
only perform its tasks efficiently and solve problems quickly 
if the important information is presented in an easily 
perceivable and understandable fashion. Confronting the 
administrative personal with too much information 
significantly slows down the decision making process. 
Presenting to much unimportant information may result in 
in-effective actions being taken. In the worst case, 
unimportant or even misleading information may result in 
the wrong, counter-productive decisions. Thus, a network 
analysis and surveillance system should assist the 
responsible administrative personal by presenting the 
important data in a way that is easily understandable and 
quickly perceivable. 

While the above  list of desirable properties of a network 
analysis and surveillance system is not meant to be 
extensive, we believe  it covers  the most important aspects  
for such a system. In the following, we will motivate our 
choices and results presented here by referring back to these 
desirable properties. 
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IV. COMPLEX EVENT PROCESSING 

In the following, we will present the salient features of 
Complex Event Processing (CEP) and define some 
terminology. Please refer to the  Event Processing Glossary 
[24] for more details. 

Complex Event Processing (CEP) is an approach for 
processing data in form of events [1]. A typical usage 
scenario is to infer increasingly complex information from 
simpler information by correlating the simpler information 
with each other. Other frequently used actions are filtering or 
transformation of information.   

In CEP, the basic unit of information is an “event”. 
“Event”, thereby, has at least two meanings. Firstly, so called 
“natural events” are occurrences that naturally happen in the 
field a CEP system is applied in. The field in which a CEP 
system is applied in is also referred to as the “application 
domain” of the system. In the application domain of network 
analysis and surveillance, a natural event is, e. g., a packet 
being transmitted or a connection state being changed. 
Secondly, the other meaning of “event” is the entity that is 
processed inside a CEP system and which contains 
information describing this event. This entity can also be 
seen as an “event object” that carries information inside a 
CEP system, possibly about a natural event. Please note that 
event objects inside a CEP system do not necessarily relate 
to natural events outside the CEP system. The information 
contained in such an event object is also referred to as “event 
properties”. 

Inside a CEP system, events are processed. One of the 
most powerful operations is the derivation of events from 
other events. We use the terms “simpler events” and 
“complexer events” to clarify the relationship between the 
processed and the derived events [25]. Complex events may 
be derived from simple events directly, but can be also be 
derived from other (intermediate) complex events. 

The actual correlation of events happens in a component 
known as the “CEP engine”. The CEP engine is one of the 
key components of every CEP system. For inferring 
complexer events from simpler events special processing 
rules are used. These processing rules are usually expressed 
in an Event Processing Language (EPL). The actual form and 
syntax of an EPL depends on the respective implementation. 
One popular way to express EPLs is in a way similar to 
Structured Query Language (SQL), but with additional 
functionality for correlating events [26]. 

A more general term in this context is “derived event”. 
“Derived events” are events which were processed by some 
mean. Thereby, it doesn’t matter if events had only been 
filtered or transformed or had been inferred from other 
events with means of a CEP engine. 

Closely related to event objects is the idea of an “event 
type” or “event class”. In a nutshell, an “event type” roughly 
defines the structure of concrete event objects. However, 
please note that an “event class” is not a class in the object-
oriented paradigm. An event type definition is much less 
strict than a class definition in object-oriented languages. 
When considering the application domain of network 
analysis and surveillance one event type is that of a packet 

being transmitted. A packet can be of many different protocol 
types like TCP, UDP, ICMP, or ARP [27][28]. Clearly, all 
these protocols contain very different information and so do 
the resulting event objects inside the CEP system. So, an 
event type in a CEP system can be more seen roughly similar 
to an eXtensible Markup Language (XML) Schema 
Definition (XSD) than a class in the object-oriented sense. 

When events are derived from each other, typically, 
events of one class or type are derived from events of 
another type. The relationship between these complexer and 
simpler events can be represented in a directed graph with 
the event types being the vertices and the edges resembling 
the derivation relations. The direction of the edges indicates 
the derivation relation from simpler events to complexer 
events. Such a graph representation of events and their 
relations is also referred to as “event hierarchy”. 

The event processing itself is usually composed of a 
larger number of other components. When the events are 
processed in a CEP system they usually flow through what is 
also called “Event Processing Network” (EPN). An EPN can 
consist of different components like event filters, event 
transformers, CEP engines, or communication 
infrastructures. In Figure 1, an exemplary EPN is depicted. 
The feedback loop at the event pattern matching component 
indicates that increasingly complex events can be derived in 
an iterative manner. 

The communication infrastructure that is used in a CEP 
system can be manifold like common network sockets, 
higher-level infrastructures like Message-Oriented 
Middleware (MOM) [29] or an Enterprise Service Bus 
(ESB) [30] or traditional mechanisms for interprocess 
communication, like shared memory when components are 
locate on the same system. 

V. OUR APPROACH 

Much information about a computer network inherently 
has the nature of events. Many different things happen in 
computer networks all the time and naturally occur as events. 
The different events range from low-level to high-level. 
Examples of events happening in a network are packets 
being sent, connections changing the state, hosts “entering” 
or “leaving” a network, services being announced, requested, 
or used, devices failing, or attacks taking place. 

Hence, in our opinion, an event-driven architecture [31] 
is the natural choice for processing data in the application 
domain of network analysis and surveillance [32]. In an 
event-driven system, the processing of data is triggered 
instantaneously upon the arrival of new data. Thus, an event-

Figure 1: Simple Example EPN. 
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driven system supports the processing of data in near 
realtime. This actively helps to fulfill the desired property 
that a network analysis and surveillance system shall operate 
in near realtime. 

In event-driven architectures, data exchange also follows 
the event-driven paradigm. One approach for communicating 
data inside event-driven systems is via messages. Messages 
simply contain the event data that needs to be exchanged. 
Thereby, messages can be exchanged locally via “classical” 
interprocess communication or via different hosts across 
computer networks. This allows to integrate components 
from different spatially distributed locations. Thus, we can 
address the desired property of integrating distributed event 
sources this way. 

However, using the event-driven paradigm alone is not 
sufficient for addressing the other desired property: a focused 
user interface that aids the administrative personal in 
identifying and solving critical situations. It is crucial that the 
important information is clearly and easily perceivable and 
understandable. Thus, a mechanism for efficiently filtering 
information and inferring high-level information is required. 
Consequently, we chose CEP as paradigm because this not 
only offers all features of an event-driven architecture but 
also allows to filter information and most important of it all 
enables to infer high-level information. 

Furthermore, the message-driven event exchange results 
in a loose coupling between the individual components. The 
loosely-coupled infrastructure in combination with the  CEP 
paradigm allows for the simple integration of heterogeneous 
components. In Figure 2, the general architecture of our 
proposed system is depicted. Our prototype takes advantage 
of all these properties. It combines the capability of 
integrating heterogeneous data sources at distributed 
locations with an EDA and a CEP engine. 

VI. EVALUATION 

In order to assess the feasibility of our approach we 
implemented a CEP-based network analysis and surveillance 
system as prototype. We tested this prototype in real world 
network scenarios. Furthermore, we performed synthetic 
load tests for benchmarks. 

In a CEP-based system, event patterns are used for 
processing information. For meaningfully applying a CEP 
system in a respective application domain, it is crucial that 
the intended application domain can be modeled with means 
of event patterns. To show that CEP can be meaningfully 

applied in the application domain of network analysis and 
surveillance we developed different event patterns and tested 
these in real-world network scenarios with our prototype.  
The event patterns were written in the Esper EPL language 
[26] and aim on detecting different situations in a computer 
network. These EPL patterns serve as proof of concept 
implementations and show that it is possible to effectively 
deduce meaningful high-level data in the application domain 
of network analysis and surveillance with means of CEP. In 
Figure 3, we show an exemplary event hierarchy for 
detecting Denial of Service (DoS) attacks. 

We actually implemented different event patterns for the 
DoS attack scenario. It is, e. g., possible to conclude from a 
TCP SYN packet that is not followed by an established TCP 
connection that something irregular is happening; only the 
initial SYN packet was observed but the actual three-way 
handshake didn’t happen. When there is a large number of 
such events within a short time it can be concluded that a 
SYN flood is going on and in turn it can be concluded that a 
DoS attack is performed. The act of checking for the absence 
of a certain event as described here is also referred as the 
“absence pattern” [33]. Similarly, it could be concluded that 
an DoS attack is going on by just looking at the frequency 
with which SYN packets are sent without looking for non 
established connections. In the event hierarchy shown in 
Figure 3 the optional ways for deriving events are indicated 
by dashed edges. For the sake of brevity we only depict and 
explain one exemplary event hierarchy. However, we could 
successfully implement many other patterns, e.g., for 
detecting ARP spoofing attack, congestion situations, or 
brute-force attacks. This example illustrates that the  domain 
of network analysis and surveillance can be modeled with 
means of event patterns. 

 
Furthermore, in the example from Figure 3, it is also 

possible to use events from connection tracking for detecting 
DoS attacks. This property can, e.g., be leveraged for 
optimizing the performance of a network analysis and 
surveillance system. In our prototype, we implemented and 

 

Figure 3: Exemplary Event Hierarchy for Detecting Denial of Service 

Attacks. 

Figure 2: System Overview. 
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tested the DoS detection pattern shown in Figure 3 for 
natural events from packet capturing and connection 
tracking. Both variants showed to be capable of detecting the 
same DoS situations. With this example, we could show that, 
thanks to the loose coupling enabled by the CEP and EDA 
paradigm, the integration of heterogeneous data sources with 
our approach is simple and quick. 

In order to assess the performance of a CEP system in the 
application domain of network analysis and surveillance, we 
exemplary used the Java-based, general purpose Esper CEP 
implementation. For our benchmarks, we used three different 
event patterns from the targeted application domain based on 
natural events from packet capturing: a simple pattern for 
simply filtering the input data, a pattern with average 
complexity for calculating the time between the occurrence 
of certain packets, and a complex pattern for detecting the 
TCP three-way handshake. The sample data had been 
collected with Wireshark. For the benchmarks, the data was 
synthetically fed to the CEP engine at different rates. For 
each measurement, the rate with which the data was 
“replayed” was constant. During each measurement run, we 
determined the CPU usage of the system and the percentage 
of events that could be successfully processed. The computer 
system on which we made the benchmarks was a common 
consumer class laptop with an Intel Core i5 CPU and 4GB 
memory. In order to avoid measuring artifacts of multi-CPU 
features as offered by this CPU, like impacts on multi-
threading, etc., we artificially disabled the multi-processor 
functionality of the CPU. 

The results of our benchmarks are shown in Figure 3. 
Please note that we used the rate of input events for the x-
axis. The overall rate of events inside the CEP engine is 
usually higher because the derived events also attribute to the 
overall event rate. Similarly, we calculated the ratio of 
successfully processed input events for the statistics. 

It can be clearly seen that the actual performance strongly 
depends on the complexity of the respective event patterns. 
Thereby, the percentage of successfully processed events is 
approximately 100% as long as enough CPU resources are 
available. Once the CPU resource limit is reached, the 

percentage of successfully processed events continuously 
decreases with increasing input event rate. Thus, we consider 
the highest rate of input events for which the percentage is 
still 100% as the maximum achievable rate for the respective 
event pattern. For the simplest patterns, we could achieve a 
throughput of ~170.000 events per second; with enabled 
multi-processing this was even higher, in the magnitude of 
500.000 events per second. However, with multiple CPU 
cores, the result data showed some irregularities that we 
attribute to the multi-CPU features. For the sake of clarity 
we, therefore, disabled the multi-CPU support via the 
operating system. For the average complexity pattern, the 
maximum achievable throughput in our test setup is about 
125.000 events per second. Meaningfully processing the 
most complex pattern was not possible at all; even at a rate 
of 5000 input events per second it was not possible to get a 
event processing rate near 100%. Still, this shows that even a 
general purpose CEP engine on consumer class commodity 
hardware CEP can generally perform with Gigabit Ethernet 
speed with a packet rate of roughly 82000 events per second. 
Yet, the actual performance strongly depends on the 
respective event patterns. With increasing event pattern 
complexity the performance degrades until it becomes 
impossible to meaningfully process the input data. However, 
this strongly depends on the applied event patterns. 
Furthermore, we purposely used packet capturing as data 
acquisition approach as it has the highest rate of emitting 
data. Other approaches like connection tracking or netflows 
emit data at a much lower speed. Additional ways for 
compensating performance issues are additional pre-
processing and filtering steps. 

Also, note that the CEP engine we used for 
benchmarking is a general-purpose implementation, which is 
intended to run on a large variety of platforms. In the field of 
CEP, there is also work and research on highly optimized 
CEP engines that leverage hardware acceleration. 

VII. CONCLUSION AND FUTURE WORK 

Computer networks are crucial for the operation of 
nowadays IT infrastructures. Failures in computer networks 
very often directly impact the functionality of the 
corresponding IT with possibly severe consequences. Thus, 
maintaining operational computer networks is highly 
important. 

Modern data processing paradigms, modern IT 
infrastructures and architectures, and increased performance 
open up new possibilities for gathering, processing, 
combining, and using data. We take advantage of this and 
propose an improved approach for network analysis and 
surveillance. 

Based on an overview of existing approaches for network 
analysis and surveillance, we defined and explained desirable 
properties for a modern network analysis and surveillance 
system. Our approach on addressing these requirements is to 
leverage the CEP and EDA paradigm of data processing. 
Based on these technologies, we could successfully 
implement a distributed network analysis and surveillance 
system prototype that operates in near realtime and offers 
powerful functionality for processing, filtering, and enriching 

Figure 4: CEP Performance Comparison for Events with Different 

Complexity. 
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information. We tested our system in real world networking 
scenarios and with benchmarks. The results, so far, show that 
our approach works and is suited to fulfill the requirements 
we stated. 

In future, we are going to further extend our system. We 
are currently working on integrating machine learning and 
anomaly detection techniques into the system. This way, we 
will further improve the capability of the system for 
deducing meaningful information and detecting important 
situations. We will also test the system in more scenarios and 
will optimize the performance. 
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