
Proposal for a NETCONF Interface for Virtual
Networks in Open vSwitch Environments

Roberio Gomes Patricio∗, Bruno Lopes Alcantara Batista∗, Joaquim Celestino Junior∗ and Ahmed Patel†
∗ State University of Ceará

Fortaleza, Brazil
Emails: {roberio, bruno, celestino}@larces.uece.br

† University Kebangsaan Malaysia
Selangor Darul Ehsan, Malaysia

Email: whinchat2010@gmail.com

Abstract—The Internet is predominantly viewed as widely
successful for existing users and service providers. But it suffers
from ossification in the underlying infrastructure to exploit and
scale to network virtualization for content providers and third-
party hosting of cloud services through overlay networking by
creating virtual ecosystems that enable and leverage new business
opportunities. This paper proposes a Network Configuration
Protocol (NETCONF) interface, modeled in YANG language, a
data modeling language for networks. It provides standardized,
simple and easy to use interfaces that facilitate the process
of automating the creation of virtual networks using virtual
switches, tested with Open vSwitch (OVS).

Keywords—NETCONF, YANG, VLAN, distributed system.

I. INTRODUCTION

The increase of Internet data traffic and demands for
faster and efficient network to accommodate social networking,
big data and a stream of new virtualized cloud computing
applications together with many different types of business
opportunities is accelerating the tide of the next generation of
the ubiquitous Internet. It scours the necessity of new technolo-
gies and new protocols that can support the creation of new
kinds of networks to facilitate not only Internet evolution but
also end user applications supported by core overlay network
infrastructures. This has created a void that has become known
as the ossification of the Internet.

New architectures and topologies have been proposed to
resolve the Internet ossification problem [1], among them,
Virtual LAN (VLAN) [2], Virtual Private Network (VPN) [3],
and Overlays network [4] together with a series of underlying
management protocols to support them. All of these enable
the building of virtual network, that use the underlying native
network infrastructure, which already exists to transform it
into a new type of overlay network with new topologies and
new management protocols. This allows the building of new
computing based habitats, a kind of micro ecosystems, that
are completely isolated from the nitty gritty of the underlying
network infrastructures and their idiosyncrasies. It enables and
leverages new business opportunities and strongly supports
Cloud-Based Virtual Networks (CVN) [3]. CVNs are on their
way that will transform the way ICT works, the way we
humans and machines works.

To realize the benefits of virtualization, we need an ar-
chitecture for network virtualization that encompasses the

key players and providers such as players insides providers
(PIPs) and service providers (SPs), virtual network providers
(VNPs) for assembling virtual resources from one or multiple
PIPs into a virtual network, and virtual network operators
(VNOs) and virtual network providers (VNPs) for assembling
virtual resources from one or multiple PIPs into desired virtual
network. On the technical side, we need standardized interfaces
between the players to automate the setup of virtual networks,
ie, a common control plane. Moreover, we need ways in which
each player can check if it is being provided with the service
it is paying for (eg in terms of quality of service (QoS) and
quality of experience (QoE).

These related initiatives contribute towards creating and
using of the principles of Software Defined Networking (SDN),
which represents a consolidation of the previously cited virtu-
alization networking models that today are the object of study
both in academia and within the major telecommunication,
networking and ICT companies. They are promising to tide
the next big application level networking wave.

When discussing about SDN and the initiatives of industrial
applicability and related research, it is difficult to find anyone
who does not cite Open vSwitch (OVS), a totally software
based virtual switch that is able to provide a wide range of
network services, such as among them VLAN and VPN. With
OVS it is possible to create new virtual networks using a set
of commands and a Command Line Interface (CLI) [5].

Within the last five years, end system virtualization, eg
via Xen or VMware, has revamped server business. Router
vendors such as Cisco and Juniper offer router virtualization,
and existing techniques such as MPLS (Multiprotocol Label
Switching) [6], GMPLS (Generalized MPLS) [7] and VPNs
(Virtual Private Networks) [8] offer some coarse grained link
virtualization. Overlays such as peer-to-peer (P2P) networks
over the Internet (e.g., BitTorrent) can also be seen as a virtual
network, but they suffer from a lack of sufficient isolation.
VPNs (e.g., realized via MPLS), can also be seen as virtual
networks. Open vSwitch is a production quality, multilayer
virtual switch that attempts automation but is stuck with
traditional forms of network interfaces. However, they suffer
from a lack of node programmability using the latest software
engineering tools.

Virtual networks can be tailored to meet a specific set
of service provider and customer requirements that satisfy

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

specific user groups under either public or private configuration
management. While OVS as a tool goes some way to manage
the configuration of theses environments, it lacks mechanisms
of more versatile automation because, in particular, of the cum-
bersome and restrictive CLI that is out of phase with today’s
advanced software development and deployment technologies.

This paper proposes a Network Configuration Protocol
(NETCONF) [9] interface, modeled in YANG language [10], a
data modeling language for networks. It provides standardized,
simple and easy to use interfaces that facilitate the process
of automating the creation of virtual networks using virtual
switches, tested with Open vSwitch (OVS).

The remainder of this paper is organized as follows: section
II presents an overview of network configuration management
using NETCONF and YANG; section III describes the related
works done by other authors in this area; section IV describes
the requirements and the modeling process used in this paper;
section V presents a set of tests and results to evaluate and
validate the proposed data model and section VI concludes
the work with some conclusions and providing new ideas about
future works.

II. THEORICAL REFERENCE

A. NETCONF

The configuration management of a wide number of net-
work elements and devices is still a major problem nowadays
because of their complexities and vendor specific proprietary
style of interactions. The mechanisms to retrieve and modify
the configuration data are largely something specific of each
device provider, and the configuration interfaces are difficulty
to maintain and quite costly to achieve a high level of efficiency
and reliability through automation especially when dealing
with issues of maintenance and version control [11].

According to Case el al., [12] the NETCONF exceeds the
deficiency of Simple Network Management Protocol (SNMP)
and emerges as a promising approach to standardizing the
mechanism of network management based in eXtensible
Markup Language (XML). NETCONF provides a better con-
figuration interface for network devices due to the effective use
of technologies like XML and others. The philosophy behind
NETCONF is the necessity of an interoperable programmable
interface between the different network equipment vendors
to manipulate the devices’ configuration state of the entire
network into a systematic whole [11].

B. YANG

The NETCONF protocol describes a communication model
between network devices that need to be configured and
managed. However, the specification of this protocol does not
describe how the manipulated information in the data layer
must be represented. This issue is taken up and addressed
by the YANG data modeling language, that emerged from
the working group called Netmod Standard Working Group
(Netmod WG) [10] [11].

The fact of using XML messages, many other options of
data representation emerged to work with NETCONF protocol,
like XML and RelaxNG [2]. Despite the great power of
expression of these languages and their wide adoption by

the community, the Netmod WG chose to define their own
data modelling language, aiming to have total control of
it to achieve total independence from proprietary vendors.
This is to avoid having to cater for specific formats and
meanings that require data mapping transformation to achieve
interoperability.

Thus, the YANG language as a data modeling language
permits describing network elements. It covers not only infor-
mation about the data configuration parameters and options,
but allows handling data that describes the current state of the
device and providing important and relevant data pertaining to
network management. This goes way beyond just configuration
management. It also allows tunneling the data and information
to other aspects of network management such as accounting,
security, performance and fault, in ISO parlance for network
management, FCAPS [13].

Conceptually, according to McCloghrie et al. [14], YANG
can be compared with Structure of Managed Information
(SMI) [14], the language used by SNMP protocol [12] to define
and construct network.

Fig. 1: The YANG and NETCONF integration

Management Information Base (MIB) that can be easily
manipulated by the YANG data modeling language where such
data are distributed and accessible only through NETCONF
protocol. Figure 1 shows how to use the YANG language, its
applicability and iteration with the NETCONF protocol.

III. RELATED WORKS

The Open Networking Foundation [15] discusses about the
OpenvSwitch implementation and compares its performance
with the Linux Bridge, which is the de facto reference imple-
mentation in the open source world with this purpose.

The drawback is that they do not offer sufficient in depth
scenarios and examples of how to accommodate NETCONF
or other essential forms of network management. One positive
aspect of OpenvSwitch is, it offers centralized management
control in a distributed environment, creation of VPNs and
virtualized mobility between IP subnets.

Pfaff and Davie [5] proposed an OpenvSwitch’s database
management protocol based in JSON-RPC calls. They pre-
sented and discussed about insufficient details in the database

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

schema and the Application Programming Interface (API) of
calls to configuration management of instances of OVS, with
their names, parameters and return types.

However, with the adoption of API based in JSON-RPC for
integrating the activities of distributed systems and managing
the configuration tasks of multiples instances in the absence of
more robust and secure mechanisms for allowing transactional
configurations, it actually ends up limiting the scope and
horizons of virtualization applicability.

Furthermore, the granularity of exported services via
JSON-RPC exposes the database in a way that violates the
encapsulation of data and increases the demand of coupling
of any clients who want to consume such services. It directly
affects the evolution of the model by preventing inclusions of
new requirements in the information model or updating the
MIB.

In addition, none of the current APIs are able to present
OVS with sufficient granularity in defining and accessing
of their services from the point of view of the basic setup
operations necessary for their proper functioning.

IV. THE YANG MODELING PROCESS

By using the OVS in real scenarios, we realized that we
required an agile way of interaction with it. This was necessary
to allow automated programmability of the configuration of
OVS and its utilization in order to create virtual networks using
VLANs as comprehensively as possible.

Initiating from a well known managed network environ-
ment concept, using the NETCONF protocol and data mod-
eling language YANG, resulted in an innovative protocol that
would offer a new communications interface in addition to
the existing CLI and JSON-RPC. This also facilitated the
OpenFlow specification [15], which states that the NETCONF
protocol must be used for the most basic function of manage-
ment and configuration in OpenFlow switches.

The following subsection shows the most important aspects
of the proposed information model together with its major
requirements. It also provides additional scenarios as visions
of this model for a better understanding of its programmability
and potential operational behavior. Beyond this, the data struc-
tures necessary to store the configuration data, the operations
used via CLI for creating VLAN are also present in this model.

A. Multiple switch instances

We envisage to have inside of the one OVS process several
other instances of virtual switches. This opens the possibilities
to provisioning a specific instance for each client, starting from
the same instance. In other words, a given OVS process shall
actuate as several virtualized switches simultaneously, where
each switch can be responsible for a distinct VLAN operation.
To make this possible, for this to be functional ,we propose
the following additions to our policy:

1) Strategy: The information model must anticipate/con-
template an object of a bridge type, which is contained within
a collection called bridges as shown in Figure 2.

2) Vision: Figure 2 also shows the structure of the infor-
mation model supporting multiple instances.

Fig. 2: The YANG and NETCONF integration

3) Normative Considerations: Following a document-
based approach, the objects of the bridge type are grouped
into a superior entity called bridges. This approach prevents
such objects from being scattered inside the model. These may
unnecessarily and considerably increase the NETCONF calls
when the manager’s function wants to obtain an overview of
the whole, part, or only to access the instances of the OVS at
once.

In this multiple switch instances case, using any other
approach other than YANG would require unnecessary data
normalization. Also using YANG over more traditional mod-
eling approaches of MIBs in ASN1, which generally works
with data structures that tie closely to standard Data Base
Management Systems (DBMS), gives greater flexibility and
independence of data types and DBMSs.

Tables would be costly in terms of operational efficiency
and programmability. The YANG model is used as a container
element to represent the bridges’ objects and a list of elements
for the bridges’ objects. This approach is far more efficient than
the traditional table approaches.

B. Multiply Ports in the same Switch Instance

Any virtual switch to add and configure more ports will
be possible, with its respective network interfaces and VLAN
tags when applicable. In this proposed policy the following are
essential.

1) Strategy: The switch ports are to be mapped onto a port
object, which are contained in a collection called ports.

2) Vision: Figure 3 shows the hierarchical root structure of
the information model of how multiples ports can be supported
in the same switch instance.

3) Normative Considerations: Group the port objects into
a superior entity called ports. So it is possible to obtain
information of all ports of a switch instance with a minimum
of NETCONF calls.

Furthermore, the process of batch configuration of ports
on a switch occurs in a much more rapid fashion, once all

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

Fig. 3: The vision of multiples ports model

ports are under one entity. In terms of YANG, the container
element represents the set of ports object and the list element
represents the individual port object.

C. Configuration Data Must Not Be Exposed to Any User

The configuration data of a given entity, whether it is an
OVS instance or a VLAN, is to be inaccessible in the model.
The NETCONF protocol proposes a clear separation between
all the configuration data and the state data.

Furthermore, it will be possible to access and retrieve
statistical data of an object as well as configuration. In this
proposed policy:

1) Strategy: The configuration data and the state data of a
given element must be separated in distinct branches, opening
the possibility to restrict the data access through defined rules
on the NETCONF server.

2) Vision: Figure 4 shows a data model element containing
two objects: config and status. The element called config
contains the related data about the configuration of the device,
while the element status stores the state data of the parent
object, which can be used for statistical purpose.

Fig. 4: The vision of config and status container model

3) Normative Considerations: The data separation is done
through of two YANG containers. The definition of these
containers is based on the kind of information that should be
labeled with the YANG instructions, config true or config false.

Elements that have the YANG instruction config true must
be stored in a config container and this data have read and
write permissions. On the other hand, elements that have the

YANG instruction config false must be stored in state container
and this data have read-only permission. It is easy to associate
access profiles to these elements in the Network Configuration
Protocol (NETCONF) server and thus obtain more control over
the access of these elements.

D. VLAN support

To create VLANs and associate them to the ports of a given
switch instance, they must be properly identified by a tag or an
ID, which should be provided during the creation of a virtual
network. The policy for this case is:

1) Strategy: Each port of a given switch must be associated
to an object called interface and can still be linked to a VLAN.
This construction puts under one port all needed data for total
VLAN support.

2) Vision: Figure 5 below shows the configuration of (1)
above where the VLAN elements are connected in a given port
of a given switch instance.

With this type of structure it is easy to configure a VLAN to
a given port, since the data needed for this are easily accessible
from the same branch in the tree of objects.

Fig. 5: The vision of VLAN support model

3) Normative Considerations: Here, two YANG containers
which are nested and associated to a port container are used.
The VLAN element is marked as optional, and may well
be having the switch ports that are not being used in the
construction of VLANs.

E. Well Defined API

A well defined API with a set of RPC operations could
be used to manipulate the information model without the
NETCONF client having the need to interact directly with the
information model.

The granularity of these operations should not be much
different to other user interfaces, such as, CLI to which the user
is already accustomed. It also allows for making it easy to learn
and take advantage of the previously obtained experiences
working with other interfaces.

1) Strategy: Since the main operations are already sup-
ported by CLI, they become easily exportable to the NET-
CONF RPC call function. This can be executed in the context
of an application of the network management system (NMS)
in the standard programmable manner.

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

TABLE I: Current Supported Actions

Operation Description Params
add-bridge This RPC call adds a bridge (virtual switch) bridge name
del-bridge This RPC call deletes a virtual swicth bridge name
add-port This RPC call adds a port in the specified switch bridge name, interface name
del-port This RPC call deletes a port in the specified switch bridge name, interface name

add-vlan-port This RPC call adds a port in the specified switch with a vlan tag bridge name, interface name, vlan tag

Table I shows the currently supported operations by this
model with their respective parameters.

V. RESULTS

A YANG model, as described above, for the OVS is created
to attend to the requirements already mentioned previously.
We use the Yuma Server [16]. In our implementation of the
NETCONF protocol, the Yuma Server is used to load the data
model created by the YANG model by using the yangcli tool,
that allows a NETCONF client to populate the data model in
the associated MIB.

In the first test, we create two instances of OVS within the
data model using the yangcli and as we can see in Listing 1.
The model fulfills the requirements of multiple bridges. For
reasons of simplicity, only the switches index are filled in the
model, but in a real scenario all the other associated fields
must be filled as well.

Listing 1: Multiple bridges on the NETCONF data model

1 rpc-reply{
data{

3 openvswitch{
bridges{

5 bridge 1 {
index 1

7 }
bridge 2 {

9 index 2
}

11 }
status{

13 }
}

15 }
}

The YANG model allows us to create several ports for
a given switch instance, and according to the requirements,
to have multiple ports in the same switch instance. Listing 2
shows a switch instance with two ports.

Listing 2: Multiple ports in the switch on the NETCONF
data model

rpc-reply{
2 data{

openvswitch{
4 bridges{

bridge 1{
6 index 1

ports{
8 port 1{

index 1
10 interface{

config{

12 name eth0
}

14 status{
status up

16 }
}

18 }
port 2{

20 index 2
interface{

22 config{
name eth1

24 }
status{

26 status up
}

28 }
}

30 }
}

32 }
}

34 }
}

In Listing 2, it can be observed that the configuration data
and status data are separated into their respective containers,
since the configuration data must be used exclusively by that
process without exposure to any process.

In port 1 of switch 1 we have a container interface that has
two sub containers, config and status, where the configuration
data is within the config container (in this case the leaf name)
and in the status container is the status data (in this case the
leaf status).

Other requirement discussed in the previous section regard-
ing VLAN support, follow the data modelling which allows
determining the port of a given switch belonging to a VLAN.
Listing 3 shows how a port is associated with a VLAN within
the data model.

Listing 3: VLAN configuration in the switch port on the
NETCONF data model

1 rpc-reply{
data{

3 openvswitch{
bridges{

5 bridge 1{
index 1{

7 ports{
port 1{

9 index 1
interface{

11 config{
name eth0

13 }
status{

15 status up

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

}
17 }

}
19 vlan{

config{
21 valn-id 10

}
23 status{

}
25 }

}
27 }

}
29 }

}
31 }

}

The implemented model also has defined operations spec-
ified as requirements that make the appropriate API easily
accessible in remote configuration using the NETCONF proto-
col. Besides implementing the data model in YANG, the API
is written in C programming language that invokes the OVS
operations.

Listing 4 shows an example of a virtual switch creation
within the data model that is simple!.

Listing 4: Creating a switch and a port using API on the
NETCONF data model

yangcli root@localhost> add-bridge bridge-name=sw01
2
RPC OK Reply 25 for session2:

4
yangcli root@localhost>

VI. CONCLUSION AND FUTURE WORKS

This work proposed a NETCONF interface for the config-
uration management of virtual switches that should be used to
create virtual networks based on VLAN.

The proposed information model and the currently sup-
ported operations were modeled in the YANG data modelling
language, utilizing OVS as a reference of virtual switches.
The interface currently supported by OVS may not be the
most appropriate when one has to automate the process of
configuring this type of switch, but it is sufficient to allow
further work to be performed to overcome this deficiency.

In this paper, we listed the basic requirements that a virtual
switch must meet to support virtual networks for VLAN. Each
one of those requirements was attended to in the information
model based on YANG and the solution was presented in a
simple visual way using a XML Schema Definition (XSD)
models. In addition, other policy considerations devolving into
strategies used in the modeling were also presented.

The proposed information model was not intended to ex-
haust all the possibilities to take all the necessary requirements
to a virtual switch, but, however to illustrate the information
requirements and data modeling together with the set of the
operations to realize in building virtualized networks based in
VLAN with virtual switches. It is a principle that has huge
potentials in creating the next generation of virtual networks
supporting a variety of virtual content based applications in

virtualized cloud computing. Simply put, it is putting up the
ante for the next generation of the Internet that offers huge
technical and business possibilities.

Further improvements can be implemented in this model,
certainly the support of other approaches used to build virtual
networks (such as OpenFlow for instance) are already being
studied and can be easily incorporated in the proposed mod-
eling.

Thus, using a NMS it will be possible to complete the
configuration management of programmable virtual switches
through a robust interface standards based that is consolidated
every day as a great alternative to traditional managed network
interfaces.

REFERENCES

[1] G. N. Rouskas, “Tutorial on network virtiualization,” Presented at
OFC/NFOEC, pp. 1393–1398, March 2012.

[2] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Comput. Netw., vol. 54, no. 5, pp. 862–876, Apr. 2010.
[Online]. Available: http://dx.doi.org/10.1016/j.comnet.2009.10.017

[3] T. Choi, K. Nodir, T.-H. Lee, D. Kim, and J. Lee, “Autonomic
management framework for cloud-based virtual networks.” in
APNOMS. IEEE, 2011, pp. 1–7. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/apnoms/apnoms2011.html#ChoiNLKL11

[4] O. vSwitch, “Open vSwitch: a open virtual switch,” [accessed April
2014], 2013. [Online]. Available: http://openvswitch.org/

[5] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,
“Extending networking into the virtualization layer,” in HotNets’09,
2009, pp. –1–1.

[6] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture,” RFC 3031 (Proposed Standard), Internet
Engineering Task Force, Jan. 2001, updated by RFCs 6178, 6790.
[Online]. Available: http://www.ietf.org/rfc/rfc3031.txt

[7] E. Mannie, “Generalized Multi-Protocol Label Switching (GMPLS)
Architecture,” RFC 3945 (Proposed Standard), Internet Engineering
Task Force, Oct. 2004, updated by RFC 6002. [Online]. Available:
http://www.ietf.org/rfc/rfc3945.txt

[8] L. Andersson and T. Madsen, “Provider Provisioned Virtual Private
Network (VPN) Terminology,” RFC 4026 (Informational), Internet
Engineering Task Force, Mar. 2005. [Online]. Available: http:
//www.ietf.org/rfc/rfc4026.txt

[9] R. Enns, “NETCONF Configuration Protocol,” RFC 4741 (Proposed
Standard), Internet Engineering Task Force, December 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4741.txt

[10] Ietf, “RFC 6020: YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” Oct. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc6020.txt

[11] H. Xu and D. Xiao, “Data modeling for netconf-based network man-
agement: Xml schema or yang,” pp. 561–564, 2008.

[12] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple network
management protocol (snmp),” United States, 1990.

[13] H. Zimmermann, “Osi reference model–the iso model of architecture
for open systems interconnection,” pp. 425–432, 1980.

[14] K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Structure of
Management Information Version 2 (SMIv2),” RFC 2578 (Standard),
Internet Engineering Task Force, April 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2578.txt

[15] O. N. Foundation, “OpenFlow ,” [accessed April 2014], 2013. [Online].
Available: https://www.opennetworking.org/index.php?option=com_
content&view=category&layout=blog&id=57&Itemid=175&lang=en

[16] YumaWorks, “NETCONF ,” [accessed April 2014], Jan. 2014. [Online].
Available: https://www.yumaworks.com/netconfd-pro/netconf/

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

