
PRISMA: A Publish-Subscribe and Resource-Oriented Middleware for Wireless

Sensor Networks

José R. Silva, Flávia C. Delicato, Luci Pirmez, Paulo

F. Pires, Jesus M. T. Portocarrero

PPGI-DCC/IM

Federal University of Rio de Janeiro, UFRJ

Rio de Janeiro, Brazil

{jr.joserenato.jr, fdelicato , luci.pirmez, paulo.f.pires,

jesus140}@gmail.com

Taniro C. Rodrigues, Thais V. Batista

DIMAp

Federal University of Rio Grande do Norte, UFRN

Natal, Brazil

{tanirocr, thaisbatista}@gmail.com

Abstract—PRISMA is a resource-oriented publish/subscribe

middleware for WSN, which the main goals are to provide: (i)

programming abstraction through the use of REpresentational

State Transfer (REST) interfaces, (ii) services, encompassing

asynchronous communication, resource discovery and topology

control, (iii) runtime support through the creation,

configuration, and execution of new applications in WSN, and

(iv) QoS mechanisms to meet applications constraints. This

paper describes PRISMA architecture, its implementation in

the Arduino platform, and a preliminary evaluation.

Keywords - middleware; publish/subscribe; topology control.

I. INTRODUCTION

Wireless Sensor Network (WSN) technology has

been evolving fast in recent years. There are currently

several hardware platforms available for WSN, such as the

sensor motes manufactured by MEMSIC (former Crossbow

[1]), Sun Spots [2] (now Oracle) and, more recently,

Arduino platform [3], that is used in this work. Additionally,

WSNs have gained a lot of attention in the research

community and are becoming increasingly popular in the

industry, due to their wide range of potential applications.

Early applications developed for WSN presented simple

requirements and did not demand the use of complex

software infrastructures. Moreover, WSN were typically

designed to meet the requirements of a single target

application. In other words, the source code installed in the

nodes was commonly monolithic, highly tied to the

requirements of a single application and to a specific sensor

platform and the protocol stack for such platform.

Furthermore, the application development was highly

coupled to low-level primitives provided by the WSN

operational system and the design approach was focused on

improving the network energy efficiency, given the limited

resources of nodes. Such dependence between the

application layer and the underlying layers (protocols and

hardware) is not desirable for emergent applications and new

trends in the field, where the same physical infrastructure of

a potentially heterogeneous WSN may be used for various

applications, whose requirements are not known at the

network deployment time [4]. As the number of WSN

physical infrastructure currently deployed is increasing, there

is a trend to share and integrate the sensing data produced by

these networks through different applications, as well as

growing initiatives to include monitoring data as part of Web

applications, integrated to other types of resources available

on the Internet. In such scenario, there must be

interoperability between different WSNs, possibly between

different applications, and between WSNs and external

networks, as the Internet.

In order to meet the emerging trends of WSN scenarios,

there is a need to adopt software platforms at the middleware

level. A middleware can provide abstractions to build

applications and to access data produced by the network, and

offer generic or domain specific services. It can also provide

a uniform API and standardized protocols that allow

interoperability in an environment with high degree of

heterogeneity. Despite of the fact that middleware platforms

are widely used in traditional distributed systems, their

development in the WSN context is relatively recent [4].

A WSN middleware is a layered software that lies

between application code and the communication

infrastructure providing, via component interfaces, a set of

services that may be configured to facilitate the application

development and execution in an efficient way for a

distributed environment [5]. Thus, the main goal of a

middleware is to enable the interaction and the

communication between distributed components, hiding

from application developers the complexity of the underlying

hardware and network platforms, and freeing them from

explicit manipulation of protocols and infrastructure

services. Besides these generic requirements, a WSN

middleware needs to consider some basic features, specific

to this context. According to Wang et al. [4], a WSN

middleware should offer four main features: (i) programming

abstractions, (ii) services, (iii) runtime support, and (iv)

mechanisms for Quality of Service (QoS) provision.

Programming abstractions define the interface of the

middleware for the application developer. Services provide

implementations to achieve the abstractions; thus, services

encompass the functionalities provided by the middleware

and comprise the middleware core. Runtime support acts like

an extension of the embedded operating system to support

the middleware services. Finally, QoS mechanisms are used

to meet quality constraints imposed by applications such as

network lifetime, coverage, accuracy, latency, bandwidth,

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

and others. There are several works [6]–[9] proposing

middleware platforms for WSN addressing issues such as

interoperability between heterogeneous devices, support for

multiple application domains, adaptation and context

awareness, service discovery, management of devices and

other features. However, few of these works address all four

requirements of WSN middleware aforementioned [4].

In this context, this paper introduces PRISMA, a

resource-oriented publish/subscribe middleware for WSN,

which aims to provide the aforementioned main

functionalities required for WSN middleware. PRISMA

programming abstraction for client applications is based on

REpresentational State Transfer (REST) [10]. REST defines

a lightweight communication between applications based on

Web standards to facilitate the access to sensor generated

data. Using a REST-based approach, the WSN, its nodes,

and the sensing units of each node are described and

accessed by end users and client applications as resources, in

the same way as traditional Web resources are accessed

through the Internet. By providing a high level and

standardized interface for data access, PRISMA allows

interoperability of networks from different technologies, thus

aligning to the current trend of building heterogeneous

systems involving multiple networks and applications.

PRISMA functionalities (see Section II) include (i)

mechanisms to facilitate the creation and execution of WSN

applications; (ii) a topology control service aiming at

efficiently managing the energy consumption of nodes; (iii)

capability of configuring applications QoS parameters, such

as network lifetime and maximum delay; (iv) asynchronous

communication via the publish/subscribe paradigm. This last

is a significant feature since several WSN applications are

event-driven; thus, the traditional request-reply

communication model is not proper for most scenarios.

Although its logic architecture is agnostic regarding the

underlying sensor platform, PRISMA physical design and

implementation were tailored to Arduino-based platforms.

The main motivation for using Arduino is the fact it is open-

hardware, still poorly explored by the academic community

of WSN, mainly in the middleware field. Moreover, this

platform provides a high-level language that can be

leveraged to facilitate the application development.

The rest of this paper is structured as follows: Section II

presents PRISMA specification and logic architecture;

Section III describes the implementation for Arduino

platform; Section IV discusses related work; Section V

presents performed evaluations, and finally, Section VI

contains conclusions and future work.

II. PRISMA

This section presents an overview of PRISMA, its logic

and physical architecture, the system operation, and the

available services.

A. OVERVIEW

PRISMA assumes a heterogeneous and hierarchical

WSN, with three levels: (i) Gateway, (ii) Cluster Head, and

(iii) Sensor Node. The top level is represented by Gateways

that are responsible for managing the network from a high

level viewpoint, taking the global decisions on the system

operation. In the intermediate level, Cluster Heads locally

manage their respective clusters in the network. Each cluster

encompasses a set of sensor nodes and one cluster leader (the

Cluster Head). Cluster Heads require higher computational

power than ordinary nodes since they are in charge of

managing functions for a part of the network. This additional

computational power is required to store information about

the nodes in each cluster. Finally, in the lower layer a huge

number of sensor nodes (also called as ordinary nodes) are

responsible for collecting environmental data and taking

local decisions. This hierarchical approach was adopted to

promote scalability and facilitate network management.

PRISMA adopts REST design pattern to facilitate the

access to WSN data and to support interoperability with

other networks. PRISMA communication service

encompasses the communication with the WSN nodes and

between the middleware and external networks (as the

Internet). The communication is provided by a Web Server

and a broker to provide asynchronous communication. In

the development of the middleware communication service,

we adopted REST to communicate with client applications.

In REST-based Web services, the uniform interface for

accessing resources is given by Hypertext Transfer Protocol

(HTTP) methods. The middleware designer has the

responsibility of defining the granularity of the provided

REST resource: (i) the entire WSN can be seen as a unique

resource; (ii) each individual node can be exposed as a

resource; and (iii) there may be many resources in each

node, for example, each sensing capability (temperature,

light, etc.) deployed in one single sensor node.

Besides using REST interfaces to interact with client

applications, PRISMA adopts the publish-subscribe

paradigm to notify its clients about events of interest. To

receive notification messages, a client application must be

subscribed in a publish-subscribe topic. A publish-subscribe

topic is an asynchronous communication channel used by the

middleware to publish interest messages to client application.

This topic will be created if the application requirements can

be satisfied with the WSN resources. If the WSN can meet

the requirements, the client will receive the topic in response

to the REST request; otherwise, will receive an error

message. With this response information the client will

subscribe to the desired topic in PRISMA broker and receive

the data of interest whenever it is available.

B. ARCHITECTURE

PRISMA design follows a layered architecture, shown in

Fig. 1, composed of three layers (i) Access, (ii) Service, and

(iii) Application, described as follows. A brief description of

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

the services provided by PRISMA software components will

be presented after the description of the three layers.

 - Access layer: consists of four components:

Communication, Data Acquisition, Context Monitor and

Topology control. The Communication component is

responsible for receiving and extracting data from messages

transmitted by the WSN nodes. This component includes

drivers for translation and composition of messages that

travel in the WSN and a listener to capture messages. The

Data Acquisition component manages the data collection

via sensing units of the nodes. The Context Monitor

component is in charge of monitoring the network

execution context in order to verify if QoS requirements are

being fulfilled. An example of monitored context is the

energy level of devices, which directly relates to the QoS

requirement of network lifetime. The Topology control

component is responsible for the network logical

organization. This component performs the initial network

configuration and a reconfiguration whenever (ii) a new

application arrives, (ii) the network energy level is lower

than a critical parameter, or (iii) a device failure occurs.

- Service layer: consists of three components: Event,

responsible for managing and notifying requested events

from applications in execution; Publish and Discovery,

responsible for registering and publishing new services to be

offered by the network (providing PRISMA resource

discovery service); and Decision, responsible for analyzing

arriving applications in order to verify available devices that

satisfy the specified applications requirements. Decision is

the decision-making center of the middleware (further

described later).

- Application layer: consists of two components:

Application Control, Publish and Subscribe Proxy and

the Web Server. The first is responsible for receiving and

managing applications sent to the WSN through a REST

interface in a configuration file. Upon a parse of the file, its

content is forward to the Decision component. The Proxy

Publish and Subscribe allows asynchronous

communication with client applications through the publish-

subscribe paradigm. This component acts as a broker that

manages the queues of PRISMA publish-subscribe

implementation [11]. The Web Server is responsible for

providing the REST interfaces that PRISMA offers, such as:

(i) Create interface that receives new applications to be

executed on the WSN; (ii) GetServices interface responsible

for advertising the services available in the WSN; (iii)

GetData interface, responsible for querying the data

collected by the WSN (historical or current data).
 These software components are divided into three

subsystems, each one corresponding to a different level of

the physical components considered in our architecture: (i)

Gateway (ii) Cluster Head and (iii) Sensor Nodes. At the

Gateway subsystem all components of the architecture are

deployed, except the Data Acquisition component. At the

Cluster Head subsystem all components of the Service

Layer and Access Layer are deployed, except the Data

Acquisition component that is specific to the Sensor Node

subsystem. At the Sensor Node subsystem all components

of the Service Layer and Access Layer are deployed. The

only subsystem that communicates with client applications

is the gateway subsystem for being the one that includes all

the components of the Application Layer.

PRISMA provides four services: (i) communication; (ii)

topology control; (iii) resource discovery; and (iv) context

monitoring. The communication service is responsible for

the communication among middleware components and the

WSN nodes, and with external entities (client applications

or the Internet). This service is provided by the following

Figure 1. UML component diagram illustrating the PRISMA architecture

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

components: communication component to exchange

messages with the WSN; Web Server to communicate with

external networks and Proxy Publish and Subscribe to

communicate asynchronously with client applications. The

topology control service is responsible for selecting the

clusters and nodes that will participate in the sensing tasks

for a given application; this service is provided by the

topology control component. The resource discovery service

is provided by the Publish and Discovery component. This

service is responsible for identifying new nodes in the

network and publishing new available services to the

decision maker center of the middleware. The context

monitor service is provided by the Context Monitor

component and it is responsible for monitoring the energy of

WSN/Cluster/Node (depending on the subsystem) and

detecting conditions of lacking of energy.

C. System Operation

This subsection presents PRISMA operation from the

sensor nodes deployment to the creation and configuration

of applications on WSN nodes. The UML diagram activity

of Figure 2 depicts the main steps of this operation and

following we briefly describe these steps.

Initially, the middleware (software) components are

installed on physical devices according to their functionality

(Cluster Heads or Sensor Nodes). Information about the

geographical area of deployement and the Cluster Head

assigned for each node are “hard-coded” into the code of the

nodes. Then, considering that the nodes are distributed in

their respective target areas, the Resource Discovery

service starts. This service is responsible for identifying

each sensor node that is active in a specific geographic area

as well as its sensing capabilities (the provided

services/resources). The process starts with the sensor node

sending a message to their respective Cluster Head. Then,

the Cluster Head updates its node list and sends a message

to the Gateway containing the description of the set of

sensing capabilities managed by the (new) nodes to the

decision-making center of the middleware. This message

includes, for each sensor node, the following information:

Figure 2. UML Activity diagram of PRIMA operation

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

(i) address defined in the sensor node radio (MAC address),

(ii) cluster to which it belongs (Cluster ID), (iii) available

resources (sensing units, as for example, temperature,

humidity) and (iv) residual energy. The Gateway then

updates its database with this information using the

Publication and Discovery component. The Context

Monitor is responsible to identify when a node’s energy is

almost depleted and notify the Resource Discovery service

to advertise the Cluster Head and Gateway of its low energy

in the same process described above.

Once the network is organized, all its resources are listed

and made available through the Gateway, applications can

be created in the WSN. The Gateway receives new

applications to be deployed in WSN through a REST

interface. Hence, in PRISMA all access to the WSN

resources and creation of new applications follows a

RESTful approach. Configuration files are submitted via a

REST interface to create applications and each file is

translated in parameters to configure the network. These

parameters are sent to specific clusters, which are

responsible for organizing themselves in order to provide

required data and services. This organization comprises the

selection of the nodes to actively participate in data

collection following the requirements sent by the application.

Applications can be created through the Create REST

interface (one of the REST interfaces available on PRISMA

by the Web Server component). Such interface receives an

eXtensible Markup Language (XML) [12] file through a

HTTP POST message [13], in the following url:

http://ServerAddress:8080/prisma/rest/applications/create. Figure

3 depicts an example of a configuration file.

The process to create a new application starts by

receiving a XML configuration file (Figure 3) that specifies

the application requirements to execute into the nodes (sent

by the client application); this XML file is translated in one

Java object by the Application Control component and,

after that, these requirements are verified to define whether

the required services (specific ability of every sensor node)

may be attended by one or a set of available sensor nodes,

the Decision component query the Publish and Discovery

component to check the available services to verify this.

After that, requirements are translated to parameters to be

configured in the selected nodes to meet the specified

requirements. A configuration file may have many services

where each one defines a sensing task. A XML configuration

file defines: (i) a periodic application, for instance, to

monitor temperature of an environment every 5 minutes; (ii)

an event-driven application, for instance, to monitor

temperature in an environment and to notify the client

whenever a sensor detects a value of 50ºC or more; or (iii)

both types of applications, for instance, to monitor

temperature of an environment every 5 minutes and to notify

when a temperature achieve 50ºC in order to detect fire.

PRISMA middleware supports multiple applications by

reusing WSN data or allocating new nodes to be active.

 Figure 3. New application configuration file

Figure 3 describes an application ready to be executed in

the network. It is possible to define the following

requirements for an application: (i) data collection rate (in

milliseconds), (ii) maximum delay (in milliseconds), and

(iii) the application lifetime, which can be set in hours or

days. In addition to these requirements, this configuration

file also defines which services are required and in which

geographical area these services should be located. The

target areas are statically configured (at pre-deployment

time) by the WSN administrator in the sensor nodes.

Between lines 7 and 10 of the example we define the service

to monitor humidity data in the area. This data should be

collected from the Lab. 1 (a symbolic region) and respect

the collection rate set in line 4 (1 second).

We can also define events that will be monitored by

setting the service, target geographic area, upper/lower limit

when applicable and the comparison operator being used.

The Event component is responsible for recording these

events and checks them each time new data is received.

Lines 11 to 20 specify to collect temperature data and

notify (send data messages) only when they are higher than

35 degrees in the geographical area named Lab 2. The

publish-subscribe topic for this application is created by the

Proxy Publish and Subscribe after receiving this

configuration file. The access information to the topic (the

topic name) is sent as a response through the REST

interface accessed by the client. The client subscribes this

topic to receive the asynchronously requested data.

The Decision component is responsible for analyzing the

arriving sensing applications, extract its requirements and

query the Topology Control component to verify the

existence in the WSN of devices (nodes) that meet the

requirements specified in the received configuration file. If

any device meets the requirements specified, the Decision

component will create a message and the Communication

component will send the application requirements to the

Cluster Head(s) of the respective devices. Only clusters that

are selected for the execution of the application will receive

91Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

these requirements. Each cluster is only assigned with tasks

that can be met by its currents resources, thus avoiding

sending unnecessary messages. In PRISMA, a task

corresponds to the act of executing a service (for instance, a

temperature sensing task) and a service corresponds to a

given capability of a node (for instance, the capability of

sensing temperature values).

When the requirements are received in the Cluster

Head the local process of selecting active nodes is started

(more details in Section D). After the Topology Control

component selects the nodes that will participate in the data

acquisition for the application, the received task

requirements are then translated into parameters by the

Decision component to be configured and sent to the

selected nodes. These parameters are directly extracted from

the configuration file: sensing capabilities required,

collection rate, maximum delay, application lifetime and

threshold for sending data (representing the detection of an

event of interest). The selection of active nodes takes into

account the residual energy of nodes, information that is

updated whenever a message is sent by the node.

D. Topology Control

A major goal in the management of nodes in WSNs is to

rationalize the use of energy resources of the network in

order to prolong its lifetime and consume energy evenly

across the nodes. One way to achieve this goal is by

adopting a scheme of rotation of the work performed by the

network nodes, changing their operating mode (active or

sleep mode), where the subset selected to remain active

should be able to meet the requirements requested by the

application.

The problem of selecting active nodes can be expressed

as the algorithm that decides which sensors must remain

active for a given application task. In PRISMA, this is the

responsibility of the topology control algorithm, the core of

the middleware topology control component. The algorithm

proposed in this paper is based on [14], where the time is

divided into j rounds during which the selected subset of

nodes remains constant. A task starts running at the

beginning of a round and can last for a time equal to an

integer multiple of p, where p is the length of a round.

The mechanism of topology control is first executed

when the requirements of an application are sent to the

network. These requirements contain a description of the

application that will run on the WSN and the desired QoS

requirements. After the execution of the topology control

mechanism the first round for the application in question

starts. The selection algorithm can be run again in the

following cases: (i) on demand by the application to change

any parameters of QoS if needed, (ii) in a proactive way by

the network, for the purpose of energy conservation, for

instance, and (iii) reactively by the network, when the

Context Monitor component detects a QoS requirement is

not being met.

Unlike the proposal of the algorithm described by

Delicato et al. [14], that is based on a flat network of

homogeneous sensors, and where the process of selecting

active nodes is centralized, in PRISMA the network is

heterogeneous, and a hierarchical selection is performed in

two levels: the first level corresponds to the global view of

the network and second level corresponds to the local view

of the network, within each cluster. PRISMA approach has

the potential of allowing greater scalability since it is

performed at two levels, thus being more suitable for

scenarios of large-scale and shared WSNs. The algorithm

does not need to flood the network to determine active

nodes for every application to be executed.

By adopting a hierarchical approach, in PRISMA the

topology control mechanism runs on two physical

components: (i) Gateway, and (ii) Cluster Head, where

each component performs the algorithm on a different level.

The first level corresponds to the global view of the network

(Topology Control Component of the Gateway) where the

Gateway is responsible for a pre-selection of clusters that

contain sensor nodes potentially useful for an application.

At this level, the Gateway runs the steps of the topology

control algorithm to determining the clusters to be used for a

given application: clusters that do not have resources or

capabilities to suit a given application will be excluded from

active nodes selection process. The exclusion of these

clusters is based on a simple set of rules, for example,

exclusion of clusters not having the necessary services or

those outside the desired geographical area. The second

level, local within each cluster, will run in the Cluster

Heads that have a higher processing power than the

ordinary sensor nodes. The higher processing power and

memory capacity is desired to maintain in the Cluster Head

the list of nodes that are in its coverage area and information

about these nodes, such as available services, energy level

and its state (sleep or active). The process of changing the

operating mode of the node is implemented through

configuration/control messages responsible to set the duty

cycle of each node.

After the pre-selection executed by the Gateway, the

algorithm for selecting active nodes is triggered in a Cluster

Head (selected in the first level of the topology control

mechanism) whenever it receives a request to create a new

application, or when the energy level of any node is below a

minimum threshold for the execution of their tasks. Such

algorithm running at the cluster heads receives as input the

application requirements (data from the XML file) and the

set of available services on its cluster, and produces as

output the set of nodes to be used by the application.

The process of selecting active nodes begins with a

query to retrieve the energy levels of the cluster nodes,

maintained by the Cluster Head responsible for a given

area. After running the algorithm for the selection of active

nodes a message is sent to each node in the cluster to

determine whether the node is active or in sleep mode. If it

is in sleep mode, the next time the node wake up it will

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

query its cluster head to check pending messages and then

receive a control message. Information about energy stats is

collected and sent along with the data collected by the

sensors in order to supply its Cluster Head with the

information on current energy levels of the network.

III. IMPLEMENTATION

The components of the Gateway subsystem were

developed on J2EE 1.4 platform and implemented using:

Apache TomEE [15] as application server, Jersey for the

creation of REST interfaces; Log4J for handling logs (for

debugging purposes), Hibernate to implement the

persistency layer, and MySQL relational database

management system [16] as the data repository. The project

was developed following the design pattern Data Access

Object (DAO) [17]. Asynchronous communication was

developed using ActiveMQ [18] which is included in

Apache TomEE. The source code can be found in the URL:

http://ubicomp.nce.ufrj.br/ubicomp/projetos/prisma/.

As stated in Section I, the target sensor platform for

PRISMA implementation is Arduino. The main motivation

for this choice is that this is a recent platform (launched in

2005), open hardware, not explored by the academic

community of sensor networks, especially in the area of

middleware. To the best of our knowledge, there is currently

no WSN middleware implementation in this platform

reported in the literature up to date. Furthermore, the

platform has a high level language which facilitates

development of applications.

TABLE 1. COMPARISON TABLE OF ARDUINO MODELS

 Arduino UNO Arduino MEGA

Microcontroller ATmega328 ATmega1280

Operating Voltage 5V 5V

Recommended input

voltage
7-12V 7-12V

Input voltage limit 6-20V 6-20V

Digital input and

output pins

14 (6 can provide

power)

54 (15 can provide

power)

Analog input pins 6 16

Current output for I /

O pins
40mA 40mA

Pin 3.3V current

output
50mA 50mA

Flash memory
32KB (0.5KB is
used by the

bootloader)

128KB (4KB are
used by the

bootloader)

SRAM 2KB 8KB

EEPROM 1KB 4KB

Clock speed 16MHz 16MHz

The components of the Cluster head and Sensor node

subsystems were developed using the Arduino IDE

development that is available at Arduino official web site.

The nodes were programmed in Arduino Programming

Language [19] (based on Wiring programming language

[20]). This language has three main categories of code

constructs: structures, values (variables and constants) and

functions. Such a language is based on C / C++ [21]. Given

this fact, any function of these languages can be used in

Arduino programming. As previously mentioned, PRISMA

works with a heterogeneous network, where the Cluster

Heads need more computing power. Therefore, Arduino

MEGA was chosen for this function since it has higher

computational power. The sensor nodes use the Arduino

UNO model. Additional hardware details of these models

can be found in Table 1. The platform offers the concept of

shields, which are cards that can be added to the Arduino

board to increase its functionality. There are Arduino shields

for connecting with Bluetooth, Ethernet modules, among

others. The shield used in this work, called XBee Shield

allows the interconnection of the Arduino XBee radio

module [22].

PRISMA has a set of libraries representing the following

features of the middleware: topology control, services

discovery, and a library for message handling. In addition to

the libraries specifically developed to implement PRISMA,

the following existing libraries are used: XBee-Arduino

[23], responsible for communicating with the XBEE radio

and PString [24] to facilitate the use of the API functions

and so reduce the complexity of handling messages.

XBee radio works with two operating modes for data

transmission and reception. In the first mode, called

Transparent Operation or AT, the data is sent and received

directly through the node serial port. In order to send data

and use AT commands, the application code installed on

nodes needs to connect to the serial port of the XBee

module. Through AT commands it is possible to modify the

XBee configuration of the node. This mode although simple

is not scalable to send data to multiple recipients and in

order to change the XBee radio configuration it is necessary

to access to the physical device directly.

The second mode, which is used in this work, is the

Application Programming Interface (API) mode, based on

sending and receiving data frames by specifying how

commands, command responses and messages about the

operating status of the XBee module are sent and received.

This mode allows remotely sending settings (AT

commands) for the XBee radio of the nodes. By using the

API mode, new nodes can be inserted in the WSN and

configured on the fly, thus facilitating scale up the network.

AT commands can also be sent and received via the API

mode, allowing the coexistence of the two modes in one

network. By using the Arduino in conjunction with the

XBee radio for wireless communication it is possible to

encapsulate the data exchanged over the network in packets

that follow the IEEE 802.15.4 standard [25].

IV. RELATED WORK

This section analyzes existing publish-subscribe

middleware platforms for WSN and compares them with

PRISMA. In [26], TinyDDS is described as a

(re)configurable and open source middleware, developed

using design patterns, and aimed at offering interoperability

of publish-subscribe WSN applications. TinyDDS addresses

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

most of the features mentioned in Section I, except the QoS

mechanism. Moreover, TinyDDS does not consider

adaptation issues and does not include a topology control

mechanism. In this sense, PRISMA provides is a more

comprehensive middleware solution.

MiSense [27] is a service-oriented and component-based

middleware designed to support distributed applications

running in sensors with different performance requirements.

MiSense covers all the features described in Section I, but

the services offered by MiSense are simple, e.g., (i) the

topology control mechanism merely elects cluster heads

based on their energy levels and makes these nodes

responsible for forwarding all messages originated within

that cluster to the sink node, overloading the cluster heads

and depleting the energy quickly in a high workload

condition. On the other hand, the algorithm used in

PRISMA considers the application requirements to build the

WSN logical topology, thus its solution tries to balance

between optimization of the networks resources and the

needs of final users. Also, in [27] (ii) there is an

asynchronous communication service where each node has

its own Broker that manages the topics and subscriptions.

However, this approach based on Broker can overload nodes

with high workloads because each node consumes most of

its available battery transmitting the new collected data for

all subscribed applications/nodes. In PRISMA, the Gateway

takes those responsibilities and works as an intermediary

between applications and sensor networks, avoiding

excessive exchange of messages by the use of the publish-

subscribe mechanism.

MufFIN [9] (Middleware For the Internet of thiNgs) is a

IoT middleware that uses SOA principles and Sensor Web

Enablement (SWE) to provide an abstraction layer to client

applications. The main contributions of MufFIN are: (i)

providing programming abstraction to applications and (ii)

management of collected data and its broadcast to

applications via Web services respecting the SWE

specifications. MufFIN provides abstraction of code

deployment, communications and hardware of smart

objects. The authors have chosen to accommodate the

differences between the heterogeneous devices at the

middleware level. From the perspective of the application,

all devices are reprogrammable and can communicate.

MufFIN allows all its connected devices to be

reprogrammable even though the device does not have this

capability natively. In order to enable this feature, the

middleware creates a filter (called Data-Flow) to process the

information received from the WSN. For the application

such approach works as if the device is running the code,

but in fact the data collected pass through the Data-Flow

provided by the middleware and only after such process it is

delivered to the client. Differently from PRISMA, MufFIN

does not provide any support for QoS management. By

encompassing a topology service that also works as a QoS

mechanism, PRISMA aims at providing a more complete

solution, at the middleware level, for WSNs.

Mires [28] is a middleware based on both service and

publish-subscribe paradigms that operates above the

TinyOS layer encapsulating its interfaces and providing

high-level services to applications. Internally, Mires consists

of a publish-subscribe service, a routing component and

additional services. Although Mires adopts a service-based

design and provides asynchronous communication, it does

not offer programming abstraction, runtime support or QoS

mechanisms. The only mechanism to save energy included

in Mires consists in reducing the number of messages sent

in the network. This is accomplished by sending only

messages related to subscribed topics. In PRISMA the

energy is saved by the topology control algorithm. In

PRISMA algorithm the requirements of client applications

are checked and only target clusters and nodes within the

interest area and able to provide useful service for the

application will receive messages. The configuration

message to subscribe to a topic will not be broadcast over

the network but will be forwarded only to nodes that are

active and relevant to the topic.

MARINE [29] is a component-based middleware

specifically designed for WSNs, which adopts REST and

microkernel architectural patterns in its design. MARINE

provides a communication service based on REST and, to

deal with the dynamic environment and the need for

resource optimization in WSNs, it provides inspection,

adaptation and configuration services. New services can be

specified by third parties and incorporated using the

component model and programming interfaces provided by

MARINE. The asynchronous communication service is

provided by the PubSubHubbub protocol. MARINE creates

a Hub on each sensor node so that every request to the node

is taken directly to it, creating a high energy consumption

since nodes are directly accessed. MARINE provides all the

functionality required by a middleware for WSN. The main

difference for PRISMA is that all requests pass through the

gateway that is responsible for forwarding the request to a

node that can provide the data and that has enough energy to

complete the task avoiding the large energy consumption

mentioned above. The gateway is responsible for

determining which node should answer the request.

V. EVALUATION

In all experiments performed with PRISMA, the WSN

comprised of Arduino Uno sensor platform that have 2KB

RAM and 32KB of flash memory for program storage. This

platform is powered by four AA (1.5V, 1500mAh) batteries

that provide approximately 32 kJ of energy. The PRISMA

was implemented using Arduino programming language.

Experiments with real sensors were performed in the

Ubiquitous Computing Laboratory of PPGI-UFRJ.

Considering the objectives of this work and following

the methodology goal, question, metric (GQM) [30], we

defined two goals. Goal 1 (G1): Analyze PRISMA with the

purpose of evaluating its effectiveness with respect to

meeting the programming abstraction feature for WSN

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

middleware in the context of application development and

implementation. Goal 2 (G2): Analyze PRISMA with the

purpose of evaluating its scalability in terms of the increase

of application requests.

These goals were refined in four questions. Question Q1

is related to goal G1 and questions from Q2 to Q4 are

related to goal G2. Q1: How expensive is it to build an

application using PRISMA, in terms of lines of code? Q2:

Does PRISMA scale well to serve a growing number of

application requests? Q3: What is PRISMA overhead in

terms of control/configuration messages? Q4: What is

PRISMA overhead in terms of required RAM for its

operation within WSN nodes?

The following metrics were defined to answer the

questions considered in the evaluation. Each metric is

denoted by Mij, where i correspond to the question

identifier, and j is a counter when there is more than one

metric per question. The number of lines of code (M11,) is

a metric used to evaluate how simple it is to create a sensing

application using the abstractions provided by PRISMA

(Q1). For computing this metric, we collected the number of

lines of code required to create an application: (i) directly

using Arduino programming and (ii) using PRISMA

approach. The Maximum number of requests supported

(M21): is a metric used to assess whether PRISMA is

scalable with respect to its programming abstraction

approach, namely the use of REST (Q2). The Time spent to

deploy a new applications when PRISMA Web Server is

overloaded (M22): is a metric used to assess the Gateway

response time when a new configuration file is sent via the

Create REST interface in a situation where many requests

are made simultaneously. An increasing number of requests

per second for the middleware interfaces were generated to

determine the maximum number of requests supported and

the delay expected to create new applications by varying the

number of requirements sent to the middleware and thereby

generating messages of varying size sent to the WSN. The

size of control message transmitted inside the WSN

(M31) is a metric is used to evaluate the overhead introduced

by the control messages disseminated in the WSN (Q3). The

RAM metric (M41) is used by sensing applications: this

metric is used to evaluate the overhead introduced by

PRISMA (Q4). It verifies the RAM consumption when we

use PRISMA to configure a sensing application.

A. Evaluation Methodology and Scenarios

To collect data to answer the questions an experimental

evaluation was conducted. In the experiment, the network

was planned so that it had two (2) clusters, each one

containing a set of three (3) sensor nodes with different

sensing capabilities, enabling the use of the topology control

service at different times. A circular topology was organized

where the sink node was at the center of the region, so that

the sensor nodes and clusters remain equidistant from the

center, thereby reducing the distance factor in latency and

power consumption of both clusters. The radios of the

sensor nodes were configured in order to respect the

aforementioned topology. Nodes were hard-coded

associated to their respective cluster heads and the

transmission power was set as the same for all of them.

Initially, all nodes had the same duty cycle. This cycle will

only be changed by requests from client applications. Four

client applications were developed, one producing periodic

data requests and the other event-based data requests in

order to collect the metrics specified. Each application

represents a scenario. In the first scenario the application

requests a periodic sample of temperature in the room

“Lab1”. The samples are to be collected every 15 seconds

and the application will remain active for 5 minutes. The

second scenario specifies an application that will execute for

5 minutes and collect periodic samples of the temperature,

humidity and photo sensors. These samples will be collected

every 15 seconds. The third scenario specifies an application

that will execute for 10 minutes and collect samples of

temperature every 15 seconds. However, in this case data

will be sent only if the temperature exceeds 30ºC; moreover,

the application requests a maximum delay of 200ms. The

fourth scenario specifies an application that will execute for

10 minutes and collects temperature and photo samples

every 15 seconds. Data will be sent only if the temperature:

either exceeds 40ºC or is below 15ºC. The photo data will

be sent by the nodes if the luminosity of the room exceeds

600 lumens. The maximum delay for this application is

defined as 300ms.

B. Analysis of results

This section discusses the results obtained by extracting

the metrics. The results are presented in Table 2. Regarding

goal 1 (G1), the results of the metric M11 indicate, as

expected, that the programming abstraction provided by

PRISMA (creation of applications via an XML file and

submission through REST interfaces) makes it simple to

create new applications. In addition to reducing the number

of lines needed to create an application, the client uses a

higher-level language to specify the requirements. It is

noteworthy that the difference in the number of lines

increases with the complexity of the application created. In

the table, A denotes Arduino and P mean PRISMA.

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

As for goal 2 (G2), the result of M21 metric indicates the

maximum number of simultaneous requests before PRISMA

Web Server component stops responding or demonstrates an

unacceptable response time. We considered any response

time above 800 milliseconds as unacceptable, following

literature recommendations for typical Web applications.

The result of M22 metric indicates the response time for

deploying new applications through the Create REST

interface provided by PRISMA. The response time was 246

milliseconds on average. Such response time in the literature

is considered an imperceptible time from the point of view

of typical Web applications. The response time for the

creation of event-based applications is greater than the

response time for creating periodic applications due to the

higher number of transactions in the database. M31 and

M41 metrics assess the overhead introduced by PRISMA.

M31 measures the number of bytes transmitted in WSN

nodes to create an application in each of the scenarios

presented. We observed that the amount of bytes sent to the

WSN to configure a new application increases according to

its complexity. This increase is related to the number of

messages that must be exchanged for the configuration of

this new application. In the worst case, one message for

each event/service requested is required. This happens due

to the need of sending configuration messages to the cluster

head that will select nodes that participate in the application

and send this new configuration for these nodes. With

respect to metric M41, the table shows the RAM

consumption when using PRISMA on the Arduino UNO

and Arduino MEGA. We can verify that the RAM

consumption did not change between the scenarios and

changed only between models. The variation between the

models is due to the size of the bootloader of each model. It

is worth noting that PRISMA consumed less than 50% of

the available RAM on the Arduino UNO (32Kb) indicating

that new services and features can be added to PRISMA.

Analyzing the results, we conclude that the complexity

of the application affects the size of the XML necessary to

create this application and the size of messages that are

transmitted on the WSNs to configure this application. In

contrast, PRISMA allows creating applications on the fly.

This avoids redeploying the source code on the sensor nodes

each time a new application arrives. The maximum number

of supported requests and delay perceived by the customer

are mainly affected by the characteristics of the hardware

that was used to test and to implement the gateway.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented PRISMA, a resource

oriented, publish/subscribe middleware for Wireless Sensor

Networks. Results of a preliminary evaluation demonstrated

the feasibility of implementing PRISMA in real sensor

nodes and shown that it provides a suitable programming

abstraction for WSN application development. This result

points out that our approach is a "ready to use" middleware

for an easy access, recent and open-hardware WSN

platform. Moreover, the use of PRISMA architecture and

REST interfaces allows future developers to continue

evolving this approach by creating new services or clients to

access data published by a WSN using PRISMA. For future

works, we intent to evaluate the remaining features of

PRISMA; in particular, its QoS mechanism that is basically

provided by the topology control, as well as the

asynchronous communication model introduced in this

paper. We also plan to perform a comparative analysis with

results obtained by Mires, and to analyze the impact of

various parameters on PRISMA performance (e.g., number

of sensor nodes, topology and application requirements).

Finally, we intend to add support for actuators to cover a

wider range of possible applications to use PRISMA.

ACKNOWLEDGMENT

This work was partially supported by Brazilian Funding
Agencies FAPERJ, CNPq and CENPES.

REFERENCES

[1] TinyOS, “TinyOS.” [Online]. Available:

http://www.tinyos.net/. [retrieved: May, 2014].

[2] Oracle, “Oracle.” [Online]. Available:

http://www.oracle.com/br/index.html. [retrieved: May,

2014].

[3] Arduino, “Arduino.” [Online]. Available: http://arduino.cc/.

[retrieved: May, 2014].

TABLE 2. EVALUATION OF RESULTS USING GQM

Periodic Event

Goal Question # Services

Metric 1 3 1 3

G1 Q1
M11

(lines)

A P A P A P A P

15 11 37 19 20 16 50 34

G2

Q2
M21 (# requests) 1200 950 1100 890

M22 111 ms / 114 σ 190 ms / 172 σ 186 ms / 153 σ 486 ms / 239 σ

Q3 M31 74 Bytes 171 Bytes 82 Bytes 195 Bytes

Q4
M41

(bytes)

Uno Mega Uno Mega Uno Mega Uno Mega

13332 14918 13332 14918 13332 14918 13332 14918

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

[4] M.-M. Wang, J.-N. Cao, J. Li, and S. K. Dasi, “Middleware

for Wireless Sensor Networks: A Survey,” J. Comput. Sci.

Technol., vol. 23, no. 3, 2008, pp. 305–326.

[5] S. Hadim and N. Mohamed, “Middleware: Middleware

Challenges and Approaches for Wireless Sensor Networks,”

IEEE Distrib. Syst. Online, vol. 7, no. 3, Mar. 2006.

[6] X. Koutsoukos, M. Kushwaha, I. Amundson, S. Neema, and

J. Sztipanovits, “OASiS: A service-oriented architecture for

ambient-aware sensor networks,” Compos. Embed. Syst. Sci.

Ind. Issues, vol. 4888, 2007, pp. 125–149.

[7] A. Taherkordi, Q. Le-Trung, R. Rouvoy, and F. Eliassen,

“WiSeKit: A Distributed Middleware to Support

Application-level Adaptation in Sensor Networks,” in

Proceedings of 9th IFIP Int. Conf on Distributed

Applications and Interoperable Systems (DAIS), 2009, vol.

5523, pp. 44–58.

[8] P. Boonma and J. Suzuki, “BiSNET: A biologically-inspired

middleware architecture for self-managing wireless sensor

networks,” Comput. Networks, vol. 51, no. 16, Nov. 2007,

pp. 4599–4616.

[9] B. Valente and F. Martins, “A Middleware Framework for

the Internet of Things,” Conf. Adv. Futur. Internet, no. c,

2011, pp. 139–144.

[10] R. T. Fielding, “Architectural Styles and the Design of

Network-based Software Architectures,” PhD Thesis

University of California, Irvine, 2000.

[11] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.

Kermarrec, “The Many Faces of Publish/Subscribe,” ACM

Comput. Surv., vol. 35, no. 2, 2003, pp. 114–131.

[12] XML, “XML.” [Online]. Available:

http://www.w3.org/XML/. [retrieved: May, 2014].

[13] HTTP, “HTTP.” [Online]. Available:

http://www.w3.org/Protocols/. [retrieved: May, 2014].

[14] F. Delicato, F. Protti, L. Pirmez, and J. F. de Rezende, “An

efficient heuristic for selecting active nodes in wireless

sensor networks,” Comput. Networks, vol. 50, no. 18, Dec.

2006, pp. 3701–3720.

[15] Apache TomEE, “Apache TomEE.” [Online]. Available:

http://tomee.apache.org/apache-tomee.html. [retrieved: May,

2014].

[16] MySQL, “MySQL.” [Online]. Available:

http://www.mysql.com/. [retrieved: May, 2014].

[17] Data Access Object, “Data Access Object.” [Online].

Available:

http://www.oracle.com/technetwork/java/dataaccessobject-

138824.html. [retrieved: May, 2014].

[18] ActiveMQ, “ActiveMQ.” [Online]. Available:

http://activemq.apache.org. [retrieved: May, 2014].

[19] Arduino Programming Language, “Arduino Programming

Language.” [Online]. Available:

http://arduino.cc/en/Reference/HomePage. [retrieved: May,

2014].

[20] Wiring, “Wiring.” [Online]. Available: http://wiring.org.co/.

[retrieved: May, 2014].

[21] D. M. Ritchie, “The development of the C language,” in The

second ACM SIGPLAN Conf. on History of programming

languages - HOPL-II, 1993, vol. 28, no. 3, pp. 201–208.

[22] Digi International, “XBee.” [Online]. Available:

http://www.digi.com/xbee/. [retrieved: May, 2014].

[23] A. Rapp, “XBee-Arduino.” [Online]. Available:

https://code.google.com/p/xbee-arduino/. [retrieved: May,

2014].

[24] M. Hart, “PString.” [Online]. Available:

http://arduiniana.org/libraries/pstring/. [retrieved: May,

2014].

[25] IEEE, “802.15.4.” [Online]. Available:

http://www.ieee802.org/15/pub/TG4.html. [retrieved: May,

2014].

[26] P. Boonma and J. Suzuki, “TinyDDS: An Interoperable and

Configurable Publish/Subscribe Middleware for Wireless

Sensor Networks,” in Wireless Technologies: Concepts,

Methodologies, Tools and Applications, A. M. Hinze and A.

Buchmann, Eds. IGI Global, 2011, pp. 819–846.

[27] K. K. Khedo and R. K. Subramanian, “A Service-Oriented

Component-Based Middleware Architecture for Wireless

Sensor Networks,” J. Comput. Sci., vol. 9, no. 3, 2009, pp.

174–182.

[28] E. Souto et al., “Mires: a publish/subscribe middleware for

sensor networks,” Pers. Ubiquitous Comput., vol. 10, no. 1,

Oct. 2005, pp. 37–44.

[29] F. C. Delicato et al., “MARINE : MiddlewAre for Resource

and mIssion oriented sensor NEtworks,” Mob. Comput.

Commun. Rev., vol. 17, no. 1, 2013, pp. 40–54.

[30] V. Basili, G. Caldiera, and H. Rombach, “The goal question

metric approach,” Encyclopedia of software Engineering,

vol. 2, 1994, pp. 528–532.

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-360-5

AICT2014 : The Tenth Advanced International Conference on Telecommunications

