
Charms and Virtual Network Functions Primitives Experiments using Open Source 

MANO  Framework 

 
Andra Ciobanu ,Cosmin Conțu, Eugen Borcoci   

Telecommunications Department 

University POLITEHNICA of Bucharest – UPB   

Bucharest, Romania  

Emails: andraciobanu90@yahoo.com, cosmin.contu@elcom.pub.ro, eugen.borcoci@elcom.pub.ro   

 

Abstract—Network Function Virtualization (NFV) is a 

strong technology to support the development of flexible and 

customizable virtual networks in multi-tenant and multi-

domain environment. Open issues still exist for architectural, 

interoperability, design and implementation aspects. The 

contributions of this paper consist in introducing Open Source 

MANO OSM framework, present deeper knowledge about 

Virtual Network Function (VNF) charms and primitives. The 

objective of this deeper knowledge is accomplished with a 

proxy charm experiment. Also, a bug fix for proxy charm is 

presented and other capabilities and possible limitations in 

different contexts are going to be examined and sorted out for 

the future works. Towards this aim, this paper continues the 

authors work and develops new functionalities along with the 

previous ones and integrates them in a complex network 

topology using OSM. This work can help the developers 

implementing NFV systems based on OSM 

Keywords—VNF;OSM;Charm;Primitives;Bug 

I.  INTRODUCTION  
Telecommunication infrastructures consist of a myriad of 

technologies from specialized domains such as radio, access, 
transport, and core and (virtualized) data center networks. 
Designing, deploying and operating end-to-end services are 
commonly manual and long processes performed via 
traditional Operation Support Systems (OSS) resulting in 
long lead times (weeks or months) until effective service 
delivery [2]. Moreover, the involved workflows are 
commonly hampered by built-in hazards of infrastructures 
strongly coupled to physical topologies and hardware-
specific constraints.  

Technological advances under the ages of Software 
Defined Networking (SDN) [3] and Network Function 
Virtualization (NFV) [3] bring new ways in which network 
operators can create, deploy, and manage their services. 
SDN, NFV, and cloud computing technologies are powerful 
tools enabling services, and systems to meet certain 
objectives (e.g., a customer requesting a specific network 
service). Altogether, the process shall be timely, consistent, 
secure, and lead to cost reduction due to automation and 
virtualization. We refer to Network Service Orchestration 
(NSO) as the automated management and control processes 

involved in services deployment and operations performed 
mainly by telecommunication operators and service 
providers [4]. 

However, to realize this paradigm, there is a need to 
model the end-to-end (E2E) service and have the ability to 
abstract and automate the control of physical and virtual 
resources delivering the service. The coordinated set of 
activities behind such process is commonly referred to as 
orchestration. 

In this paper, another orchestration framework has been 
studied and used, i.e., Open Source MANO (OSM). The 
reason for this is that SONATA framework and project itself 
it is a part of entire OSM and is not going to be treated alone 
anymore in the future, but as an integrated part of OSM. 

OSM is an ETSI-hosted open source community 
delivering a production-quality Management and 
Orchestration (MANO) stack for NFV, capable of 
consuming openly published information models, available 
to everyone, suitable for all Virtual Network Functions 
(VNFs), operationally significant and Virtual Infrastructure 
Management (VIM)-independent. OSM is aligned to NFV 
ISG information models while providing first-hand feedback 
based on its implementation experience [5]. 

The main purpose of this paper is to continue with 
development of previous experiments [1][9], but which are 
now based on OSM framework in order to understand the 
capabilities of the framework, and to develop and test some 
custom VNFs and service chains. Previous experiments were 
presented in coauthor’s papers [1], and they consist in VNF 
and network services development with SONATA and OSM 
frameworks. 

The paper is organized as follows. Section II is an 
overview of related work and a short high-level   overview of 
the OSM. Section III presents a selective view in explanation 
of “day 0, day 1, day 2 VNF configurations and concepts, 
VNF primitives and charms, all of them integrated with 
OSM framework. Section IV contains the results of the 
charm experiments done with OSM framework and all the 
steps taken. Section V presents conclusions and future work. 

8Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-802-0

AICT 2020 : The Sixteenth Advanced International Conference on Telecommunications



II. RELATED WORK-OSM ARCHITECTURE AND FUNCTIONS 

 
This section shortly presents a selective view on an open-

source solution and some related work dedicated to service 
development and orchestration in virtualized networks and 
its relation to OSM architecture, when applicable.  

The goal of ETSI European Telecommunications 
Standards Institute (ETSI) OSM is the development of a 
community-driven production-quality E2E Network Service 
Orchestrator (E2E NSO) for telco services, capable of 
modelling and automating real telco-grade services, with all 
the intrinsic complexity of production environments. OSM 
provides a way to accelerate maturation of NFV technologies 
and standards, enable a broad ecosystem of VNF vendors, 
and test and validate the joint interaction of the orchestrator 
with the other components it has to interact with: commercial 
NFV infrastructures (NFVI+VIM) and Network Functions 
(either VNFs, Physical Network Functions- PNFs or Hybrid 
ones). 

OSM’s approach aims to minimize integration efforts 
thanks to four key aspects: 

    A well-known Information Model (IM), aligned with 
ETSI NFV, that is capable of modelling and automating the 
full lifecycle of Network Functions (NF) (virtual, physical or 
hybrid), Network Services (NS), and Network Slices (NSI), 
from their initial deployment (instantiation, Day-0, and Day-
1) to their daily operation and monitoring (Day-2). OSM’s 
IM is completely infrastructure-agnostic, so that the same 
model can be used to instantiate a given element (e.g., VNF) 
in a large variety of VIM types and transport technologies, 
enabling an ecosystem of VNF models ready for their 
deployment everywhere. 

    OSM provides a unified northbound interface (NBI), 
based on NFV SOL005, which enables the full operation of 
system and the Network Services and Network Slices under 
its control. In fact, OSM’s NBI offers the service of 
managing the lifecycle of Network Services (NS) and 
Network Slices Instances (NSI), providing as a service all the 
necessary abstractions to allow the complete control, 
operation and supervision of the NS/NSI lifecycle by client 
systems, avoiding the exposure of unnecessary details of its 
constituent elements. 

    The OSM extended the concept of “Network Service” , 
so that an NS can span across the different domains 
identified like virtual, physical ones or technological like 
Radio access network (RAN) core, and transport networks. 
Therefore, it is possible to control the full lifecycle of an NS 
interacting with VNFs, PNFs and Hybrid Network Functions 
(HNFs) in an undistinguishable manner along with on 
demand transport connections among different sites. In 
addition, OSM can also manage the lifecycle of Network 
Slices, assuming when required the role of Slice Manager, 
extending it also to support an integrated operation [6]. 

III. VNF CONFIGURATIONS AND CONCEPTS, VNF 

PRIMITIVES AND CHARMS  

 

         The OSM’s approach aims to minimize integration 

efforts, so a well-known Information Model (IM), aligned 

with ETSI NFV is capable of modelling and automating the 

full lifecycle of Network Functions. 

         Virtual Network Function Descriptor [VNFD] defines 

the resources required for realizing the VNF. The descriptor 

includes various components that are part of the VNF. In 

addition, it also defines the VNF level configuration 

information. 

        The VNFD connects Virtual Deployment Units (VDUs) 

using the internal Virtual Links (VLs). Each VDU represents 

a Virtual Machine (VM)/Container. The following diagram 

from Figure 1 illustrates the internal structure of VNFD. 

 
Figure 1 Virtual Network Function Descriptor [7] 

 

The VDUs attach to the internal VLs using the internal 

Connection Points (CPs). So, the VNFD captures the list of 

VDUs and the internal VLs that connect the VDUs [7]. 

NFV promises to go from traditional network management 

to native NFV management, with highly efficient 

automation and operation. 

In order to fulfill the complete onboarding process, a 

VNF Package will be produced and it will be part of the 

OSM catalogue for its inclusion in a Network Service. The 

onboarded VNF should aim to fulfil the lifecycle stages. It 

requires to function properly, for the NFV MANO layer to 

be able to automate. To accomplish the lifecycle stages, the 

resulting package includes all the requirements, instructions 

and elements which are: basic instantiation (a.k.a. “Day0”), 

service initialization (a.k.a. “Day1”) and runtime operations 

(a.k.a. “Day2”) – see Figure 2. 

 
Figure 2 High Level Overview Day 0, 1 , 2 VNF [7] 

 

9Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-802-0

AICT 2020 : The Sixteenth Advanced International Conference on Telecommunications



In Day0 stage, the VNF is instantiated and the 

management access is established so that the VNF can be 

configured at a later stage. Furthermore, cloud-init files can 

be used to inject this minimal configuration to the VNF.  

  The main objective of the Day1 stage is to configure 

the VNF so it starts providing the expected service. The 

service is defined in the initial configuration which will run 

automatically after the VNF in instantiated. 

The main objective of Day2 is to be able to re-

configure the VNF so its behavior can be modified during 

runtime. In Day2, main Key Performance Indicators KPIs 

and their run scaling actions can be monitored. 

       Juju is a generic Virtual Network Function Manager 

(VNFM) in the ETSI NFV architecture [7]. Juju is a 

universal service modelling system; it models services, their 

relationships and scale, independent of substrate (cloud, 

virtualized or physical). Juju is an open source modeling 

tool, composed of a controller, models, and charms, for 

operating software in the cloud. It can handle configuration, 

relationships between services, lifecycle and scaling, which 

ensures that common elements such as databases, messaging 

systems, key value stores, logging infrastructure and other 

‘glue’ functions are available as charms for automatic 

integration, reducing the burden on vendors and integrators. 

A charm is a collection of actions and hooks that 

encapsulate the operational logic of an application. A charm 

is a piece of software that runs scripts over some targets. 

Traditionally the charms wrote in Juju are used inside an 

application or in the same machine as an application.. 

Charms make it easy to reliably and repeatedly deploy 

applications, and then scale them as required with minimal 

effort.  

Charmed OSM is an Open Source MANO distribution, 

developed and maintained by Canonical, which uses Juju 

charms to simplify its deployments and operations. 

Charmed OSM enables Telecommunication Service 

Providers (TSPs) to easily deploy pure upstream Open 

Source MANO in highly available, production-grade and 

scalable clusters. Hooks manage the lifecycle events of an 

application, from installation, configuration (day-0), and 

scaling, in a repeatable and reliable way. Actions are on-

demand functions that can handle day 1 and day 2 

configuration. Type of charm depends on type of Network 

Function, as it can be seen in Figure 3. 

 

 
Figure 3. Generation of Network Function with OSM [7] 

 

Types of Charms: Proxy – the focus on this paper 

• Used for Physical and Virtualized Network 

Functions 

•  Runs in a Linux LXD container, separate from the 

VNF 

• Only handles day 1 and day 2 configuration 

• Usually communicates with VNF via SSH 

Types of Charm: Machine 

• Used for Cloud-native Network Functions (CNF) 

CNFs are like VNFs, but they run on lighter-

weight containers, providing greater agility and 

ease of deployment compared with VMs 

• Runs on the same machine as the VNF 

Types of Charm: KNF 

• Used for Kubernetes Network Functions 

•  Charm runs as Operators in Kubernetes and manages 

lifecycle and day 0, day 1 and day 2 configuration. 

VNF primitives in OSM are declared in the VNF 

Descriptor and their initial-config-primitive (Day-1) is 

invoked by the LCM at instantiation time. This is where the 

special 'config' primitive is invoked, setting ssh credentials. 

The config-primitive (Day-2) is invoked by the LCM at 

operator demand (or demanded through the NBI e.g., from 

an OSS). These primitives are a 1:1 map to a charm action 

or the 'config' hook. 

IV. PROXY CHARM BUILD EXAMPLE IN OSM AND BUG FIX 

EXAMPLE 

 

As opposed to classical “Native charms”, Proxy 

charms run from outside the application. In particular, it run 

within a model instantiated in a LXC container that 

configures the VNFs through their management interface, as 

it can be observed in Figure 4.  Proxy charms cover day-1 

and day-2 configuration [8]. 

 

 
Figure 4. Proxy Charms [8] 

 

The steps needed to build a proxy charm are the 

following: 

1. 1) Setting up a charming environment (sudo snap install charm --

classic  # already installed in using shared OSM) 

a) Create needed directories for building the charm 

b) Juju and charms environment variables 

10Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-802-0

AICT 2020 : The Sixteenth Advanced International Conference on Telecommunications



 

2) Creating a Proxy charm layer 

  a) Metadata.yaml includes all the high level information of 

our charm 

  b) Layer.yaml states all the layers on which our layer is 

based 

  c) Actions.yaml contains the high level description of the 

actions that will be implemented in the charm 

 d) Reactive/simple.py contains the actual code of the Proxy 

charm 

3) Implementing the action 

a) Append the implementation of the action to 

reactive/simple.py 

Further on, the objective is to provide the guidelines for 

including all the necessary elements in the VNF Package 

and to provide the guidelines for including all the necessary 

elements in the VNF Package for its successful instantiation 

and management setup, so it can be further configured at 

later stages. The way to achieve this in OSM is to prepare 

the descriptor so that it accurately details the VNF 

requirements, prepare cloud-init scripts (if needed), and 

identify parameters that may have to be provided at later 

stages to further adapt to different infrastructures. 

 

 
 

Figure 5. Practical example of adding charm [8] 

 

The initial-config-primitive section takes care of  

Day-1 

• The seq section states the order in which the initial config 

primitives will be called. 

• The  Proxy  charm  has  ssh  access  to  the VNFs thanks to 

the config primitive. 

• The touch primitive is our Day-1 action created in the 

simple charm 

 

The config-primitive section contains the available on-

demand actions for Day-2. 

Day-2 primitives are actions invoked on demand, so the 

config-primitive block is used instead of the initial-config-

primitive block at the VNF or VDU level. 

Proxy charms for implementing Day 2 primitives are 

built exactly in the same way as when implementing Day 1 

primitives. In this stage, at day2 different monitoring 

parameters can be added: 

• Collecting NFVI metrics 

• Collecting VNF indicators 

• Adding scaling operations 

During  charm implementation, some problems or bugs 

may occur. A common one can appear when the proxy 

charm presented above has been added at day-1 stage at the 

ssh access. The contribution of the paper has been to 

develop a python script in order to ensure that the workload 

status is set to active only when SSH proxy is properly 

configured. 

The main principal flow is that charms would set their 

own workload status. The flow for status is the following: 

• the charm start out and sets “maintenance” 

• during its scope, it stuff up in “active” when the 

workload is ready 

• or if there is any probem which needs intervention, 

it sets “blocked” status. 

Charms, in general provide layers so that someone can 

build a proxy charm and evaluate a risk. A piece of software 

is valid for a charm and it can be reused-that is why layers 

are used. One of the layers is the “sshproxy” layer that 

includes ways to connect automatically to any VNF through 

SSH. 

The implemented script scope is to set the proxy 

charm’s state to active so the LCM knows it is ready to 

work only when SSH proxy is ok configured.  

As it can be seen in Figure 6, the first part invokes the 

“reactive/simply.py” code, then it sets active status when 

ssh is configured, then, the last step is to map the action to 

the commands to be run. 

11Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-802-0

AICT 2020 : The Sixteenth Advanced International Conference on Telecommunications



 
Figure 6. Fixed typo in simple proxy charm 

 

CharmHelpers provides an opinionated set of tools for 

building Juju charms. This script imports actions from 

charmHelpers, reactive and ssh.proxy,then creates a 

function that  mentains the workload status of the proxy 

charm when SSH is configured. 

V. CONCLUSIONS AND FUTURE WORK  

 
This paper continued the work from our previous one [9] 

and got deeper into the structure of a VNF and network 
service from descriptors creation until management setup 
and instantiation. The chosen framework is OSM, which is 
an ETSI-hosted project to develop an Open Source NFV 
Management and Orchestration software stack aligned with 
ETSI NFV.  The reason why SONATA wasn’t used in this 
case is that it belongs to OSM community and is not so 
modular as OSM framework is. 

As future work, new experiments will be done in OSM 
and contact with OSM community will be maintain in order 
to adjust and address possible other bugs or issues with 
charms and primitives. 

REFERENCES 

 
[1] A. Țapu, C. Conțu and E. Borcoci, “Multiple Chained Virtual 

Network Functions Experiments with SONATA Emulator”, 
The 12th International Conference on Communications 2018. 

[2]  http://www.blueplanet.com/products/ 

multi-domain-service-orchestration.html accessed 2020- 

10/09 

[3] D. Kreutz et.al.,“Software-Defined Networking: A 
Comprehensive”, Survey. Proceedings of the IEEE 103, 
14{76. 

URL: http://ieeexplore.ieee.org/document/6994333/, 

doi:10.1109/JPROC.2014.2371999,2015. 

[4] R. Mijumbi et.al., “Network Function 

Virtualization: State-of-the-Art and Research Challenges”, 

IEEE Communications Surveys & Tutorials 18, 236{ 

262. URL: http://ieeexplore.ieee.org/document/7243304/, 

doi:10.1109/COMST.2015.2477041,2015. 

[5] https://osm.etsi.org/wikipub/index.php/OSM_Release_FIVE.   

[6] https://osm.etsi.org/docs/user-guide/02-osm-arhitecture-and-
functions.html, retrived on 2020. 

[7] https://osm.etsi.org/wikipub/images/0/07/Introduction_to_OS
M_Zero_Touch_Carrier_Autmation_Congress_FJ.pdf, 
retrived on 2020. 

[8] http://osm-download.etsi.org/ftp/osm-6.0-six/8th-
hackfest/presentations/8th%20OSM%20Hackfest%20-
%20Session%207.1%20-
%20Introduction%20to%20Proxy%20Charms.pdf, retrived on 
2020. 

[9] A.Tapu, C.Conțu and E. Borcoci  “ Study on Use-Cases of 
Open Source Management and Orchestration Framework in 
5G Projects”, The Nineteenth International Conference on 
Networks ICN 2020. 

 

 

 

 

 

12Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-802-0

AICT 2020 : The Sixteenth Advanced International Conference on Telecommunications


