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Abstract – SQL is an ISO standard language for querying
relational databases. SQL queries are deceptively sim-
ple to write, but writing semantically correct queries
requires a good understanding of the data model and
SQL constructs. Often, this is a challenging task for
beginners. Automatic generation of SQL queries that
feature specified SQL constructs is useful for both in-
formal self-testing and formal assessment. In this work-
in-progress paper, we describe the automated question
generation problem in a broader context, provide an
overview of the current approaches, and discuss our
approach to automatic generation of SQL queries. Our
approach is based on the notion of grammar graph. We
illustrate the approach using an arithmetic expression
grammar and generalize this approach to SQL query
generation.
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ation; Grammar Graph; Question Generation.

I. Context and Introduction

Recently, there has been tremendous interest in
improving student learning in classrooms through in-
novative and inclusive pedagogy. Research in cognitive
psychology, neuroscience, and biology provides insight
into how humans learn [1]. Contrary to the conventional
study habits such as cramming, re-reading, and single-
minded repetition, techniques such as interleaving the
practice of one skill or topic with another, and self-testing
enable more complex and durable learning outcomes [2].
There is research-based evidence for seven key aspects
of learning including effect of prior knowledge, organiz-
ing knowledge to effect learning, factors that motivate
students, process by which students develop mastery,
self-testing, kinds of practices and feedback that enhance
learning, and the processes by which students become
self-directed learners [3]. Several strategies exist to bring
learning research into classroom environments across
diverse disciplines [4] [5] [6]. In this paper, our focus
is on enhancing learning through self-testing.

The National Academy of Engineering of The Na-
tional Academies has identified advancing personalized
learning as one of the fourteen Grand Challenges for
Engineering in the 21st century [7]. Personalized learning
has multiple dimensions. Providing a wide assortment
of teaching and learning materials to suit the different
learning styles of students is one aspect. Allowing stu-

dents to progress through a course to meet their just-in-
time learning goals is another aspect. More specifically,
each student may potentially choose a different order for
learning the course topics. The only constraints that limit
the topic order are the prerequisite dependencies. A third
aspect of personalization involves providing contextual-
ized scaffolding and immediate feedback to students on
assessment activities. The last aspect involves providing
students authentic questions for self-assessment and
preparation for exams.

Structured Query Language (SQL) is an ANSI and
ISO standard declarative query language for querying
and manipulating relational databases. Though writing
SQL queries appears to be easy at a superficial level,
students tend to make several types of errors [8]. The
goal of this paper is to provide a question generation
tool that automatically generates virtually unlimited SQL
queries to support personalized learning in a database
systems course. The tool will generate SQL queries that
will contain the SQL constructs specified by the user.
Given the complexity of the SQL language, we begin our
investigation of automated question generation on a sim-
pler problem: generation of arithmetic expressions. Once
we understand the generation process and formalize an
algorithm, we apply the algorithm to the generation of
SQL queries.

In Section II, we provide motivation for automated
question generation problem in a broader context and
discuss related work. An automated approach to arith-
metic expression generation is described in Section III.
Extending this work to SQL query generation is outlined
in Section IV. Section V provides conclusions.

II. Motivation and Related Work

The advent of Massive Open Online Courses
(MOOCs), renewed interest in anytime and anywhere
learning, the potential of personalization in revolutioniz-
ing learning, benefits of contextualized scaffolding, and
automated and immediate feedback on learning assess-
ments are the primary drivers for automated question
generation. This is an area of interest to researchers
across multiple disciplines. Approaches to automated
question generation are as diverse as the disciplines
themselves. Furthermore, the goal of question generation
is not necessarily for learning assessment.

We categorize current approaches to question gen-
eration into three broad categories: template-based,
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Natural Language Processing (NLP) based, and hybrid.
Template-based approaches use knowledge structures
such as ontologies and manually crafted templates. NLP-
based approaches analyze natural language text for ex-
tracting semantic information and use that information
for question generation. As the name implies, hybrid
approaches draw upon templates and NLP techniques.

A. Template-based Approaches

Khalek and Khurshid present an approach to gener-
ating syntactically and semantically correct SQL queries
[9]. The context for their investigation is testing of re-
lational database engines. They translate the problem of
generating SQL queries into a Satisfiability (SAT) problem.
More specifically, they translate SQL query constraints
into Alloy models, which generate SQL queries. They also
generate data to populate databases and test database
engines using the generated SQL queries.

Binnig et al. propose an approach to query-aware
database for testing a Database Management System
(DBMS) [10]. The purpose of this research is to ensure the
availability of appropriate data in the database to enable
matching the data returned by a query to the expected
result. If the database does not contain the appropriate
data, the query will execute but does not return any
results.

An integrated Exploratorium for database courses
is developed as a platform to investigate the technical
problems and the pedagogical benefits of using diverse
interactive learning tools in [11]. It provides personalized
access to three types of interactive learning tools: anno-
tated examples, self-assessment questions, and SQL lab.
Over 400 self-assessment SQL questions are generated
from 50 templates.

Do et al. propose an approach to SQL query genera-
tion using manually crafted templates and SQL ontology
[12]. A major limitation of this approach is that the gen-
erated queries are limited to the pre-defined templates.
Another approach to testing database applications using
automatically generated test cases is discussed in [13].

Siddiqi et al. describe the development and evalua-
tion of IndusMarker, a short-answer grading system for
an object-oriented programming course [14]. IndusMarker
targets factual answers and uses structure matching for
determining correctness of students’ responses. Lastly,
Li and Sambasivam developed a template-based approach
to automated question generation for intelligent tutoring
applications [15, 16]. Template-based approaches are also
used to generate both questions and expected answers to
evaluate retrieval algorithms for unstructured data [17].

B. NLP-based Approaches

Automatic generation of factual WH -questions from
texts with potential educational value is investigated in
[18]. WH-questions are those that contain an interrogative
pro-form. For example, words that begin wh-questions are

who, what, when, where, why, and how. An automated
system is developed for automated question generation,
which uses natural language processing techniques, man-
ually encoded transformation rules, and a trained statis-
tical question ranker.

To assist the task of automatically assigning texts
for students to read, vocabulary assessment must be
performed first. A system for vocabulary assessment is
discussed in [19]. It generates six types of vocabulary
questions using WordNet data. Evaluation of the system
performance indicates that the vocabulary skill mea-
sured using the generated questions correlates well with
the same measured on independently developed human
written questions. An extension of this system for the
Portuguese context is discussed in [20]. Another approach
to language learning and assessment is discussed in
[21]. This system semi-automatically generates questions
for testing grammar knowledge using manually-designed
patterns and natural language processing techniques.

Three workshops were held on question genera-
tion [22]. The third workshop on Question Generation
included a question generation shared task and evalua-
tion challenge, which featured question generation from
sentences and question generation from paragraphs [23].
A special issue of Dialog & Discourse journal featured
NLP-based question generation topics [24].

C. Hybrid Approaches

Ontologies are knowledge structures which depict
entities in a domain and relationships among the entities.
Automated inference and reasoning were the two primary
and original drivers for ontologies. Al-Yahya developed a
system for multiple choice question (MCQ) generation us-
ing ontologies [25]. The system is called OntoQue and has
been evaluated on two domain ontologies. The evaluation
findings indicated a limited success of the approach and
revealed a number of shortcomings from the perspective
of educational significance of MCQs. This study also
suggests a holistic approach, which incorporates learning
objectives and content, lexical knowledge, and scenarios
into a single cohesive framework.

III. Generation of Arithmetic Expressions

Our approach to question generation is based on
Context-Free Grammars (CFG). Conceptually, a CFG is
specified by a set of rules or productions. The use of CFG
to describe grammars of natural languages traces back
to Panini (6th - 4th century BCE), a Sanskrit grammarian.
The mathematical formalism of CFGs was developed by
Noam Chomsky in mid 1950s. CFGs became a standard
formalism for describing the grammars of computer
programming languages in late 1950s. A parser is a
computer program which determines, given a string and
a CGF, whether the string can be generated from the CFG.
In other words, the parser determines whether or not the
string is valid element in the language defined by the CFG.
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Table I. A Context-Free Grammar (CFG) for arithmetic
expressions

<expr> ::= <term> [ <expr1> ]*
<expr1> ::= (+ | -) <term>
<term> ::= <factor> [ <expr2> ]*
<factor> ::= <base> [ <expr3> ]*
<base> ::= ( <expr> ) | <number>
<expr2> ::= (* | /) <factor>
<expr3> ::= ∧ <exponent>
<exponent> ::= ( <expr> ) | <number>
<number> ::= <digit> [ <digit> ]*
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Efficient parsers exist to determine whether a program
written a programming language such as Java conforms
to Java CFG.

Though the CFG for a programming language is
finite, one can generate an infinite number of programs
in the language. However, these programs are manually
constructed by programmers. Writing useful programs
is an intellectual task and requires knowledge and skill.
The problem we address in this paper is the automatic
generation of strings from a given CFG, which contain
user specified keywords or constructs. The latter are
literals in the CFG. This problem is challenging because
strings with certain combinations of keywords may not
exist in the language defined by the CFG. The first step
is to determine whether a string that contains the user
specified keywords exists. If such a string exists, we then
generate it. We demonstrate our approach on a simple
grammar first and then generalize the approach to SQL
query generation.

The CFG we use for generating arithmetic expres-
sions is shown in Table I. Using CFG, we generate arith-
metic expressions of arbitrary complexity. Operands in
the expressions are integers and operators include addi-
tion (+), subtraction (-), multiplication (*), division (/), and
exponentiation (∧).

We propose a graph-based representation for effi-
ciently generating arithmetic expressions from CFG gram-
mars. We refer to this as the grammar graph and is
shown in Figure 1. This is similar to Deterministic Finite
State Automata (DFSA) but the semantics are different.
The grammar graph consists of a set of vertices and
edges. The color coding, line types, and other markers
capture critical information to aid the generation of
arithmetic expressions. Each vertex in the graph corre-
sponds to a terminal or non-terminal in the grammar.
In Figure 1, there is only one terminal designated by the
vertex labeled <digit>. Note the color of the vertex.

The graph node labeled <expr> is the start ver-
tex for expression generation. The directed edge from
<expr> to <term> indicates a substitution — the non-
terminal <expr> is replaced by another nonterminal
<term>. Next, consider the red-dashed directed edge
from <term> to <expr1>. This denotes an optional edge
and does not involve replacing <term> with <expr1>.

Figure 1. Graph representation of a Context-Free Grammar

The optional edge semantic is that whatever is generated
through the optional edge gets appended to the <term>.
In other words, instead of replacement something gets
appended to the <term>.

The loop on the vertex labeled <expr1> denotes
that zero or more copies of <expr1> are appended to
<expr1>. Next, consider the red-dotted directional edge
from <expr1> to <term>. Notice the edge label: plus (+)
or minus (-). The semantic is that each copy of <expr1>
is replaced by prefixing <term> with plus (+) or minus
(-). For example, <expr1> can be replaced by either +
<term> or - <term>. Lastly, consider the thick-lined
directed edge from <base> to <expr> and notice the
edge label: ( ). The semantic of this notation is that
<base> is replaced by <expr> enclosed in parenthesis.
That is, <base> is replaced by ( <expr> ).

Consider generating an arithmetic expression of the
form: 32 + 65 − 173. As noted earlier, the generation
process always starts at the vertex named <expr>. Next,
since there is an edge from <expr> to <term>, we
replace <expr> by <term>. Traversal of the edge from
<term> to <expr1> is optional. If this path is chosen,
we append to <term> rather than replacing it. We choose
this optional edge and visit <expr1>. The loop indicates
zero or more repetitions and each repetition generates
one <expr1>. Let us generate two copies – <expr1>
<expr1>. Next, consider the edge from <expr1> to
<term>. Each copy of <expr1> will be replaced by a
plus (+) or a minus (-) followed by the <term>. As-
sume that we chose plus in the first case and minus
in the second case. Now we have the string <term> +
<term> - <term>. Next, using the edge from <term> to
<factor>, each copy of <term> is replaced by <factor>
yielding <factor> + <factor> - <factor>. Similarly, we
traverse from <factor> to <base> yielding <base> +
<base> - <base>. Repeating this one more time using
the edge from <base> to <number>, we get <number>
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+ <number> - <number>. Using the <number> –
<digit> directed edge and looping on the <digit>, each
<number> in <number> + <number> - <number> can
be replaced by a desired integer number, which yields
32 + 65 - 173. Using a similar procedure, we can
generate any number of arbitrarily complex arithmetic
expressions such as 9∧((8*9)∧5*(8*((5*(7∧(09/95)/9))+(9-
(4∧(((6∧9)+2)+((81/877)∧5)∧9)))+8)∧3+8))/8.

In the grammar graph, we distinguish between two
types of paths: simple and complex. All paths start at the
special vertex <expr> and end at a terminal vertex (e.g.,
<digit>). A simple path is one that does not involve any
loops or optional edge traversals. For example, <expr> →
<term> → <factor> → <base> → <number> → <digit>
is a simple path. Simple path traversals yield simplest
arithmetic expressions such as 4 and 6. Complex paths
are generated from simple paths by adding optional
traversals, single- and multi-vertex loops. For instance,
adding a single vertex loop, we can generate expressions
such as 15 and 5674. An example of a multi-vertex loop
is <expr> → <term> → <factor> → <base> → <expr>.

In our expression generation algorithm, a user can
specify the complexity of the generated arithmetic ex-
pression. An user may use the terms simple, moderate,
and complex to denote expression complexity. The algo-
rithm quantifies the level of complexity using the length
and the number of operators in the expression generated.

Our goal is to generate expressions of arbitrary
complexity, which feature specified arithmetic operators
from the set {add, subtract, multiply, divide, exp}. Given
the size of the grammar, this task is not complex. As the
size and complexity of the grammar increases, generating
a query that features given operators is non-trivial. We
address these issues in the context of generating SQL
queries that contain specified SQL constructs.

IV. Generating SQL Queries

ISO/IEC 9075:2011 is the standard for the SQL
database query language. The SQL language elements
include operators, clauses, predicates, expressions, state-
ments, and queries. Operators include the traditional
mathematical ones such as ≤ and >, as well as database-
specific ones such as Between, In, Exists, Is Not Dis-
tinct From, and Avg. Clauses are components of state-
ments and queries. Predicates are conditions that evalu-
ate to three-valued logic (true, false, unknown). Expres-
sions, when evaluated, produce either scalar values or
tables. Statements enable specifying a wide range of
actions on the database. Lastly, queries enable retrieving
data from the database. Queries do not change database
contents and operate in read-only mode. SQL queries
comprise a principal component of the ISO/IEC standard.
Table II shows the generic structure of SQL queries.
Only the first two components are mandatory. However,
the components must occur in the order indicated. For
example, a SQL query may have Select, From, and Group

Table II. General structure of SQL queries

Select <column names and transformations on column
values>

From <table names> and <join conditions>
Where <row restrictions>
Group By <column names for grouping rows in the result

set>
Having <condition specifying which groups to keep>
Order By <sorting specification for displaying results>

By without the Where clause. Likewise, we can have
Select, From, and Order By without the Group By and
Having clauses.

Drawing upon our experience in generating arith-
metic expressions, we will first create a grammar graph
using the SQL grammar. We subset the SQL grammar to
include only rules that are associated with the Select
statement. Next, using the grammar graph we will deter-
mine if it is feasible to generate a query which contains
the user-specified SQL constructs. This requires deter-
mining a path in the graph which encompasses, starting
at the vertex which corresponds to the start symbol of
the grammar (e.g., <expr)> in Figure 1), vertices and
edges corresponding to all the SQL constructs specified
by the user. Furthermore, the string traced by this path
either contains only terminals or non-terminals that can
be replaced with terminals.

V. Conclusions and Future Work

In this work-in-progress paper, we have presented
a novel approach to automatic generation of SQL queries
that feature user-specified SQL constructs. Our approach
uses the notion of grammar graph to determine whether
or not such a query exists, and to generate the query.
We have demonstrated the validity of the approach on
arithmetic expression generation. As a logical next step,
we will apply the approach to the actual generation of
SQL queries.
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