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Abstract—Software developers, researchers, and industrial com-
panies from all sectors such health, transportation, water treat-
ment, etc., use and deal with big data in order to conduct their
research and find better solutions that improve our way of life.
Data scientists and software engineers are using generated big
data to get accurate information and to extract the maximum
value from the data available to them. Big data is applicable
in many domains and can help solve many problems. However,
analyzing such data is not easy due to its complexity that is
resembled by the 6Vs of big data: volume, velocity, value, variety,
variability, and veracity. Thus, big data reduction methods and
tools are used in order to enhance the data and make it
easier to analyze. This paper presents a big data complexity
reduction tool called GraphJ. The proposed tool converts a
rational database into a graph database, which makes unlocking
knowledge patterns much easier than dealing with ordinary
rational databases. A case study has been conducted to assess
the usefulness and effectiveness of the proposed tool.

Keywords–Big data; Reduction; Complexity; Graph; Relational
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I. INTRODUCTION

The term of big data was originated in 1997 and was
introduced by two NASA researchers, Michael Cox and David
Ellsworth [1]. So far, there is no formal definition for big data,
although it is referred to as complex data that are characterized
by the well-known Vs properties: huge volume, high value,
much variety, low veracity, and big variability that are collected
from multiple data streams [2]. The world’s data volume
keeps growing because the data is continuously produced
using numerous data streams (e.g., mobile devices, cameras,
microphones, wireless sensor networks, etc.) [3]. Hence, such
growth in data makes traditional data processing applications
useless and requires huge efforts for analysis and processing
[4].

Researchers and data scientists working with big data
face many challenges, such as: capturing data, data storage,
data analysis, search, sharing, transfer, visualization, querying,
updating and information privacy [5]-[6]. Moreover, big data
inherits the curse of dimensionality, meaning that the data has
a massive set of dimensions, which also makes analysis and
processing harder [7][8]. One of the ways to overcome such
issues is big data reduction. The term ‘reduce’ can relate to
either the complexity or the volume of the data. By reducing
the complexity and/or the volume of the data, it becomes
more manageable, hence easier to analyze. Big data reduction
methods can be categorized into five groups, as follows:

• Network Theory: or graph theory is one of the
significant techniques that are used in reducing

high-dimensional unstructured big data into low-
dimensional structured data [9]. Trovati et al. [10] pro-
posed a network theory-based approach to extract the
topological and dynamical network properties from
big data.

• Dimension reduction: the dimensions of the data
are the attributes of that data (i.e., id and name
of a student, color and speed of a car, etc.). The
dimensionality can be reduced by either features’
selection or features’ extraction. Feature selection is
done by only considering the important dimensions
of that data, as all the dimensions will not be needed.
Feature extraction is done by merging multiple sets of
dimensions to derive new ones [11]-[12].

• Deduplication: the data collected may contain redun-
dancies. Redundancy is not necessarily a duplicate
row in the database. Redundancy in the data can be
the order of bits or block of memory that is exactly
identical to another one. In such case, the original one
is kept, and the copy is replaced with a pointer to the
original in order to reduce the volume in use [13]-[14].

• Graph theory: to reduce the complexity of the data,
the topological and dynamical network properties are
extracted. To construct topological networks, relation-
ships between data points are established [15]-[16].

• Compression [9] such methods are good to handle
data reduction in terms of size by maintaining the
whole data streams. Compression-based methods in-
volve complex computations that affect the reduction
process efficiency and add compression overhead cost.
Many big data compression techniques are proposed
by academics and researchers, including spatiotem-
poral, Anamorphic Stretch Transform (AST), parallel
compression, sketching, and adaptive compression.

Research showed that these methods cannot be used single-
handedly by considering all the Vs properties of big data [15],
which motivates the need for more reliable data reduction
approaches that combine multiple methods together.

Motivated by knowledge graphs [17]-[18], this paper
presents a tool and an approach to reduce big data complexity
using graphs. In graphs, data is presented using nodes and
edges instead of using an ordinary relational database (see
Figure 1), where each row is presented by a node (an object),
and relationships between the entities are replaced with edges
between the nodes. Presenting the database using a graph
database makes the act of unlocking knowledge patterns easier
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Figure 1. A sample of graph database.

[15], and is most useful when one must deal with highly
interconnected data [19].

GraphJ uses MySQL database [20] to convert its schema
and data into Neo4J graph database [21]. The reason for choos-
ing MySQL because it is well known and widely used. The
reason for choosing Neo4J is because of its high performance
[22]-[23]. GraphJ is built using Java, because of its suitability
and connectivity support for Neo4J.

The rest of this paper is organized as follows: Section
II describes related work; Section III describes the tool and
used approach; Section IV presents an experimental evaluation;
Section V presents the conclusion.

II. RELATED WORK

There are a lot of tools and approaches for big data re-
duction. Some of these methods are based on Network Theory
[10], Compression [24]-[25] and others based on Dimension
Reduction [11][12][26].

The topological properties of the networks have been used
to model big datasets and study their structure that faced
challenges due to the datasets complexity and dependencies
between their parts. Defining the models based on such data
properties makes it hard to understand the data and to pro-
duce useful information due to their complexity and the data
inconsistencies. Trovati [10] introduced a big data analytics
tool which allows to extract useful data and to obtain in-depth
intelligence from such different big datasets.

Jalali and Asghari [24] introduce a lossy image compres-
sion that reshapes the image. It depends on the idea that if the
image is sampled in a way that is the same in all cases and
at all times, then the sharp features have a higher sampling
density than the rough ones. This method is claimed to be
applicable for big data compression.

Yang et al. [27] present a solution that makes it possible
for the compression method to compress the data efficiently.
The solution is based on applying the clustering method to the
datasets (input data). It divides the data into several different

TABLE I. GRAPHJ ENVIRONMENT VARIABLES.

Key Data Type Default Value

MYSQL HOST String localhost

MYSQL PORT Integer 3306

MYSQL USER String root

MYSQL PASS String root

MYSQL DB String null

QUERY LIMIT Integer 1000

clusters(groups), and then compress the data according to the
assigned clustering information.

Dynamic Quantum Clustering (DQC) is a method that
works with big and multi-dimensional data. Weinstein et al.
[11] conduct studies that show how DQC works for big real-
world datasets that come from five different domains, namely
“x-ray nano-chemistry, condensed matter, biology, seismology,
and finance”. These studies show how DQC help at extracting
meaningful data that contain important information. They
claimed that this method establishes important results that
show how complex datasets contain various different structures
that might be missed by the other clustering techniques.

To our knowledge, there are currently no tools or ap-
proaches to reducing big data complexity using a graph
database or knowledge graphs.

III. GRAPHJ TOOL

GraphJ is a standalone GUI based application written in
JavaFX [28] and based on Spring Framework [29] for resource
management. It is built to convert a MySQL database [20] into
a Neo4J graph database [21]. To convert the database, GraphJ
performs the following activities (see Figure 2):

1) MySQL host
GraphJ requires a live MySQL host to read the
database schema from. There is no need to specify
a database in that host because GraphJ will inspect
all the databases. The connection is established to
the host using MySQL Java database connectivity
(JDBC) driver [30]. JDBC may not work on remote
hosts due to remote direct access regulations, as most
of the databases do not allow direct access to the
database.
The connection is made using an interface called DB-
Connection. DBConnection contains abstract meth-
ods that allows to extract(host, port, username, pass-
word, and database). The database is used only to
define the default database for the connection. To set
all the required data, GraphJ reads these properties
from the environment variables (see Table I).

2) Inspect the schema
GraphJ uses a module called SchemaInspector, which
provides all the details about a schema under inspec-
tion. SchemaInspector requires an object of DBCon-
nection in order to decide which host, port, username,
and password that it will be dealing with. However, it
does not require a database from the DBConnection
object. It inspects all the databases on that host, as
database selection is done later.
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Figure 2. GraphJ flow chart.

SchemaCrawler[31] is used to read the structure of
all databases on the provided host. SchemaCrawler
is used, although schema can be inspected using
java.sql.DatabaseMetaData, because it gives a full
description of each table, name, columns, primary
keys, foreign keys.

3) Select association tables
Association or join tables are tables that represent
many to many relationships between two tables, by
using the primary key of each table as foreign keys in
an association table. Such tables should be referenced
by the user, as they can not be identified program-
matically. These tables should be referenced because
they will be treated in a different way than one to one
or one to many relationships, since association tables
should be omitted and replaced with the original
tables.

4) Select schema
A single schema should be selected with association
tables referenced.

5) Label the relationships
Each relationship, including many to many, between
the tables should be labeled in order to name the
relationships between the nodes of the graph.

6) Query and nodes generation
GraphJ uses a module called MySqlConnector
which requires a DBConnection in order to establish
a connection and execute queries. The queries
are executed using java.sql.Statement. The reason
behind using it instead of Hibernate [32] is
because HQL Queries suffer from performance
degradation (because it should convert HQL to
SQL [33], although the performance degradation is
trivial, it becomes more tangible when executing
queries repeatedly). However, even with SQL, the
performance degrades if the database has massive
records. To overcome this issue, the queries retrieve
limited results. The limitation is read from an
environment variable with the key QUERY LIMIT.
Inside MySqlConnector there are 3 main queries:

• SELECT * FROM table
table is the table under processing.

Select all the rows from that table, in order
to create a node for each row. After the query
is executed, all the attributes are inserted into
the node being created. These attributes can

be mapped because it is possible to know
each column in each table with the help of
SchemaInspector, each column name is the
key. Attributes with a value of null are ig-
nored.

• SELECT * FROM r table WHERE f k=o pk
r table is the foreign key table.
f k is the foreign key in r table.
o pk is the primary key in the table that has a
relationship with r table.

Select all the rows from that table that match
the foreign in the original table.

• SELECT * FROM j table INNER JOIN
r table on r pk=r fk WHERE o fk = o pk
j table is the association table
r table is the foreign key table.
r pk is the primary key in the original table under
processing.
r fk is the foreign key in r table.
o fk is the foreign key reference to the original
table under processing.
o pk is the primary key in the table that has a
relationship with r table.

Select all the rows from that table that match
the foreign in the original table.

Queries are generated based on the selected schema
and the relationships between the tables.

7) Graph generation
Once the nodes with their relationships are created,
the last step is to flush these nodes into the Neo4J
database. GraphJ tries to connect to an already instan-
tiated Neo4J database. It read the database path from
an environment variable with key NEO4J DB. This
database’s host should be stopped in order to establish
a connection, as it cannot establish two connections
at the same time.

IV. EXPERIMENTAL EVALUATION

In this section, experimental evaluation details, goals, and
results of GraphJ are presented.
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TABLE II. SUBJECT DATABASES.

Database # tables # all relationships # M2M relationships # records

World X 3 2 0 5411

Sakila 16 22 2 47271

Employees 6 6 2 3911245

TABLE III. AVERAGE TOTAL EXECUTION TIMES.

Query LimitDatabase
500 1000 1500 2000 2500 3000

World X 16 s 26 s 33 s 40 s 50 s 60 s
Sakila 1.5 m 4 m 5.9 m 7.8 m 9.8 m 11.8 m

Employees 17 s 49 s 1.7 m 3.1 m 4.5 m 6.6 m

A. Goals

The goal was to evaluate the performance of GraphJ.
Hence, and to cover all the possible cases, GraphJ has been run
on two different databases, with different run configurations.
In the end, the total execution time of each one of the run
configurations has been compared.

B. Subject Databases

For the evaluation, MySQL sample databases [34] were
used. Those databases are well known and widely used for
testing MySQL queries. Three of the databases were used(see
Table II):

• World X [35]: Provided by Oracle [36], it has a set
of tables containing information on the countries and
cities of the world.

• Sakila [37]: Provided by Oracle [36], it is designed to
represent a DVD rental store. This database borrows
film and actor names from the Dell sample database
[38].

• Employees [39]: Originally developed by Patrick
Crews and Giuseppe Maxia and provides a large set
of data that consists of 4 million records.

C. Configuration

GraphJ ran on 64-bit Linux machine with Intel Core i5-
4200M and 8 GBs of memory. The MySQL and Neo4J
databases were located on localhost on ports 3306 and 7474.
The performance can be affected by the nature of the database
and the query limitations, for that, the study tried to simulate
real-life cases.

D. Results

The node generation and relationship mapping are done
correctly. However, the performance is questionable, thus,
GraphJ ran on the three databases with query limited from
500 to 3000 increasing by 500 each time. After running the
tool on the three databases (10 times for each query limitation
value). The results showed that the performance is significantly
affected by the number of tables and relationships, however,
the number of rows does not have much effect. The average
total execution times are shown in Table III.

V. CONCLUSION

This paper presents a big data complexity reduction (called
GraphJ). GraphJ reads a MySQL database and maps its records
to nodes in order to insert them into a Neo4J database. The
tool converts a relational database into a graph database, which
reduces the complexity, as graph databases facilitate the act of
unlocking knowledge patterns [40].

Conversion is done by inspecting the schema of a provided
relational database, including table names, column names, and
column types. Then the relationships between existing tables
are inspected, and the user is asked to label these relationships.
After that, the queries are generated using the schema data
inspected earlier. Finally, the queries are executed to generate
nodes in order to be inserted into the graph database using
the retrieved data. The relationships between these nodes are
created based on the names the user provided. This results in a
set of nodes connected together. These nodes are then inserted
into a provided graph database.

To assess the effectiveness of the proposed tool, a case
study was conducted. Three MySQL sample databases (World
X, Sakila and Employees) were used. GraphJ ran with query
limitation starting with 500 records and increasing by 500 each
time until reaching 3000 records. Each relational database ran
10 times for each query limitation value. The tool was able to
convert all databases into graph databases correctly. However,
the results showed that the performance is significantly affected
by the number of tables and relationships in the relational
database.

Following are various opportunities in order to improve the
proposed tool:

• Experiment: larger experiments can be performed on
the proposed tool to further assess and evaluate its
effectiveness.

• Database support: there are a lot of databases available
and are widely used. However, the current implemen-
tation of GraphJ only supports MySQL and Neo4j.
The tool can be extended to support more database
implementations.

GraphJ is built using JavaFX with Spring Framework. The
tool with the source code is available on GitHub repository:
https://github.com/AbdullahAsendar/GraphJ.
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