
DFSCC: A Distributed Framework for Secure Computation in the Cloud

Mamadou H. Diallo, Christopher T. Graves, Michael August, Verinder Rana, and Kevin Groarke

Naval Information Warfare Center Pacific, San Diego, CA USA
U.S. Department of Defense

Email: {mamadou.h.diallo, christopher.t.graves, michael.august,
verinder.rana, kevin.groarke}@navy.mil

Abstract—Currently, various advanced data analytic tools based
on machine learning and data mining techniques are available
for performing data analysis in the cloud. However, these tools
are not very secure since the data they operate on must be in
plaintext, thereby leaving the data vulnerable to both insider and
outsider attacks. In this paper, we take a different approach and
propose the Distributed Framework for Secure Computation in
the Cloud (DFSCC), a flexible framework for building secure,
distributed computation and sharing systems. The framework
takes advantage of Homomorphic Encryption (HE) techniques to
enable data analytics to be performed directly on the encrypted
data stored within the nodes of the distributed system. An
advantage of distributing data analytics into the nodes of the
framework is enhanced performance of HE-based computation.
In addition, the framework incorporates a cryptographic key
management infrastructure to enable secure data sharing. To
evaluate the framework, we extended it to implement a system
that analyzes link quality between software defined radios using
a machine learning algorithm. Experiments performed on the
system show performance improvement of the system as the
number of nodes in the cluster is increased.

Keywords–Homomorphic Encryption, Secure Computing, Pri-
vacy, Machine Learning, Distributed Systems

I. INTRODUCTION

Performing data analytics in the cloud is becoming in-
creasingly significant for organizations of all types and sizes.
The cloud provides the scalable infrastructure and resources
needed to efficiently run the analytic tools. Organizations are
taking advantage of these analytic tools to gain powerful
insights out of the ever-growing pools of organizational data.
These analytics are in general based on techniques such as
machine learning, data mining, and statistical analysis [1]–[3].
These cloud based data analytic tools are being developed for
various application domains [4]–[7]. However, there is also
a growing concern about data security and privacy in cloud-
based systems and applications that provide analytic tools [8]–
[11]. In particular, cybersecurity attackers are becoming more
sophisticated, and attacks on data in large organizations are
occurring more frequently [12].

The main issue is how the data is manipulated by analytic
tools in the cloud, which is inherited from the shortcomings
of current cryptographic techniques for securing data. The
recommended randomized encryption schemes, such as the
Advanced Encryption Standard (AES) and Blowfish, provide
strong protection of data in transit and at rest, but do not protect
data in processing. This means that data needs to be decrypted
in memory before processing of the data can take place, which
leaves the data vulnerable to attacks from both internal and
external attackers.

To address this shortcoming of existing standard crypto-
graphic schemes, Homomorphic Encryption (HE) has been
proposed [13]. HE schemes have revolutionized data security,
as they enable computation to be performed directly on the
encrypted data without needing the private decryption keys.
Given ciphertexts as input, HE allows computation to be
performed directly on the ciphertexts to generate encrypted
results. When these encrypted results are then decrypted, they
yield the correct plaintext answer for the computation as if it
were performed entirely in plaintext. However, HE, while sig-
nificantly improving data security in untrusted environments,
comes with significant computation and storage overheads
[14]. In general, the computational complexity of HE is
orders of magnitude higher than that of standard operations
on plaintext. A given ciphertext encoding is also much larger
than its corresponding plaintext.

In this paper, we introduce the Distributed Framework
for Secure Computation in the Cloud (DFSCC), a distributed
framework that enables the development of secure computation
and sharing systems using HE schemes. HE schemes provide
data security not only in transit and at rest, but most impor-
tantly, during processing. The framework is modularized and
extensible to enable the incorporation of different types of
HE schemes. The framework also provides mechanisms for
incorporating data analytic tools that use HE schemes into the
nodes of the distributed framework. This enables data analytic
tools to operate directly on the encrypted data. To enable
data sharing, the framework includes a cryptographic key
management infrastructure based on the approach introduced
in [15]. Using this approach, an organization can analyze data
in the cloud and share the results with other organizations.
Distributing analytic tool execution into the nodes of the
framework speeds up the expensive operations of the HE
schemes to improve the overall performance of the tools.
The framework enables tool developers using various machine
learning and data mining algorithms to use the framework to
build analytic tools, in addition to enabling system developers
to leverage these analytic tools within their applications. The
secure systems developed based on the framework can then
be made available to end-users to analyze their data securely
and privately in the cloud. Having access to different analytics
will enable end-users to trade off between the quality of the
results of the data analysis and the time it takes to perform the
analysis. Furthermore, end-users will have the ability to share
their data with other parties securely and privately.

The paper is organized as follows. In Section II, we
describe the challenges in processing data and our proposed
solution. In Section III we describe our overall approach. In

27Copyright (c) IARIA, 2020. ISBN: 978-1-61208-775-7

ALLDATA 2020 : The Sixth International Conference on Big Data, Small Data, Linked Data and Open Data

Section IV we outline the data flow through the system. In
Section V we discuss our implementation of the framework
and sample application. In Section VI we present the results
of experiments performed on the system. In Section VII we
contrast our paper with related works. We end the paper with
a conclusion and future work in Section VIII.

II. BACKGROUND

In this section, we take a look at how organizations make
use of data analytics in the cloud and give an overview of
Homomorphic Encryption, which can be used to address data
security in the cloud.

A. Data Analysis in the Cloud
Machine learning, data mining, and statistical modeling

and analysis techniques are steadily making their way into
enterprise applications in areas, such as customer support,
fraud detection, and business intelligence [4]. The major cloud
service providers are responding to this need for tools that
provide data analysis and business intelligence capabilities
within the cloud by adding these features to their cloud
services [16]. Thus, the trend of organizations outsourcing
their Information Technology operations to the cloud, com-
bined with the trend of cloud service providers adding more
intelligence to their cloud services, indicates that increasingly
organizations will make use of the cloud to analyze their
large and potentially sensitive data sets. However, the cloud
is vulnerable to cyber attacks from both internal and external
attackers. To address these vulnerabilities of the cloud, we use
HE to ensure the confidentiality of the data that are collected,
stored, and processed in the cloud.

B. Homomorphic Encryption
Craig Gentry [13] introduced the first working Fully

Homomorphic Encryption (FHE) scheme in his 2009 PhD
dissertation by taking a Somewhat Homomorphic Encryption
(SHE) scheme and “squashing” the decryption circuit to reduce
the noise in a process called “bootstrapping”. However, this
process was impractical due to the required computation time.
A more practical approach explored within the FHE research
community has been the Learning With Errors (LWE) problem
and its variants, particularly the Ring Learning With Errors
(RLWE) problem. Below, we describe these two approaches.

1) Gentry’s FHE Implementation with Ideal Lattices: A
Point Lattice, or Lattice L, is the set of all integer linear
combinations of a set of linearly independent vectors B ⊆ Rm.
For constants ci ∈ Z and bi ∈ Rm,

L =

n∑
i=1

cibi.

Gentry’s FHE scheme encrypts a plaintext by placing it in
the fundamental region of a lattice with “noise” generated by
several classic, hard lattice problems. After a number of addi-
tions and multiplications, the ciphertext noise risks becoming
so great that the ciphertext is moved outside of the fundamental
region. Therefore, Gentry “squashes” the decryption circuit to
give bootstrapability. An encryption scheme is bootstrappable
if it can homomorphically evaluate its own decryption circuit.
The process of bootstrapping involves providing the secret key
that has been re-encrypted with a new key. In order to keep the

noise at a manageable level, the bootstrapping process is done
before the noise reaches the threshold where decryption is no
longer possible. Because of this limitation, bootstrapping may
be every other operation. In later implementations of Gentry’s
FHE scheme, the performance of the bootstrapping process has
been optimized.

2) FHE Based on Ring Learning With Errors: To describe
RLWE, let n = 2k and choose a prime modulus q such that
q ≡ 1 mod 2n. Let the ring Rq = Zq[x]/〈xn + 1〉, represent
the set of all the polynomials over the finite field Zq for which
xn ≡ −1. Given samples of the form (a,b = a × s + e) ∈
Rq × Rq where s ∈ Rq is a fixed secret vector, an element
a ∈ Rq is chosen uniformly, and e is chosen randomly from
an error distribution in Rq . Given this definition of the RLWE
problem, finding s is infeasible.

Using the RLWE problem described above, a message
m ∈ Rq can be encrypted by using the b element above as
a one-time pad encryption scheme [17]. The ciphertext can
be represented by c = b +m, where c ∈ Rq . FHE schemes
based on the infeasible RLWE Problem have been shown to be
cryptographically secure given an appropriate security level.

One major effort in FHE using this approach is Microsoft’s
Simple Encrypted Arithmetic Library (SEAL), which utilizes
the BFV FHE scheme based on RLWE [18]. The BFV scheme
allows for modular arithmetic to be performed on encrypted
integers. The SEAL library also implements the CKKS FHE
scheme, which supports approximate arithmetic over complex
and real numbers [19]. Another major FHE library which
implements these schemes is the PALISADE library [20].

III. FRAMEWORK

In this section, we describe the architecture of the proposed
framework, how HE schemes and data processing algorithms
are integrated into the architecture, and a mechanism for data
sharing.

A. Architecture
The DFSCC framework is designed using a hybrid client-

server/distributed model, where clients send requests to the
server, and the server sends the client’s requests to the
distributed system for processing. The high-level design of
the framework is presented in Figure 1. The architecture is
composed of two main components: Trusted Client and Un-
trusted Cloud Environment. We adopt the honest-but-curious
adversarial model. We assume that the client-side is trusted
while the cloud environment is untrusted. Therefore, all the
private keys for decrypting the data remain with clients, and
only public keys are sent to the cloud.

The Trusted Client comprises three main sub components,
Client Manager, HE Manager, and Configurations Manager.
The Client Manager coordinates the activities of the client and
manages the interactions with the server. The HE Manager
provides support for HE operations including generation and
storage of public and private keys, encryption and decryption
of data, and keys revocation. The Configurations Manager
keeps track of the cloud resources for the clients, which change
dynamically as the system is being used. Note that system
developers will need to extend the framework to build concrete
systems for specific application domains. In addition to the
above core components, system developers need to implement
a user interface for end-users to interact with the system.

28Copyright (c) IARIA, 2020. ISBN: 978-1-61208-775-7

ALLDATA 2020 : The Sixth International Conference on Big Data, Small Data, Linked Data and Open Data

The Untrusted Cloud Environment is composed of an
Untrusted Server and an Untrusted Distributed System. All
the data sets sent by the clients to the Untrusted Cloud
Environment will remain encrypted at all times. The sub-
components of the Untrusted Server include a Service Engine
for coordinating all the activities related to distributing data
and operations into the Untrusted Distributed System; an HE
Manager for managing HE libraries stored in the HE Libraries
storage; an Analytics Manager for managing the analytic
algorithms persisted in the Libraries storage; a Sharing Man-
ager for sharing encrypted data between the clients; and a
Configurations storage for storing various cloud configura-
tions and metadata. The Service Engine communicates with
the Untrusted Distributed System to coordinate its activities,
including sending workloads and partitioning the nodes within
the cluster.

The Untrusted Distributed System provides the infrastruc-
ture for distributing analytics algorithms. The inputs to the
Untrusted Distributed System include the set of data to be
processed and the software program to be executed on the
nodes of the distributed system that will process the data. At
the core of the distributed system is a Distribution Manager,
which provides the mechanisms for generating the clusters of
distributed nodes. The nodes are generated by the Distribution
Manager on demand based on the configurations provided by
developers. In addition, the Untrusted Distributed System pro-
vides an interface to enable interaction with other distributed
systems.

Figure 1. Distributed Framework Architecture

B. HE Scheme Integration
At the core of DFSCC are the mechanisms for incorporat-

ing HE schemes with distributed data processing algorithms.
DFSCC also provides a key management infrastructure to
enable sharing of data processed by the distributed system.
Additionally, by abstracting out the core functionality that is
commonly found in HE schemes, DFSCC is designed to facili-
tate the incorporation of different HE libraries. These common
operations include key generation, encryption, decryption, and
parameter selection. These operations are abstracted out into
an interface that can then be used to integrate a given HE
library.

C. Data Processing Integration
Machine learning algorithms are being used in the cloud

to analyze data stored in the cloud and to enhance the cloud’s
capabilities. DFSCC provides an extensible interface to enable

developers to extend or customize DFSCC to add new machine
learning and data mining algorithms into the framework.
Considering the complexity of using existing HE libraries, the
first machine learning algorithm we considered for the DFSCC
framework is the linear Support Vector Machine (SVM). In the
future, we plan on adding more machine learning algorithms
into the framework.

1) Support Vector Machines: SVMs are supervised learn-
ing models that can be used to analyze data based on clas-
sification and regression analysis. The SVM serves as a non-
probabilistic binary linear classifier.

Consider a set S of sample data elements, and two subsets
SA and SB of S, where SA ∪ SB = S, and each element of
S (S1 ∈ S) is annotated as belonging to SA or SB . The SVM
training algorithm generates a mathematical model that can be
used to categorize new elements of S as belonging to SA or
SB .

First, we are given a labeled training dataset of n points of
the form (~x1, y1), . . . , (~xn, yn). This training dataset contains
both the inputs and the desired outputs. Given the training
dataset, we then compute the SVM model to be used for
classification. This model then separates the elements of S
into two classes, SA and SB , based on the classifier that was
generated from the training data. The internal operations of
the linear SVM include the dot product of vectors, addition,
and subtraction. To demonstrate the utility of the DFSCC
framework, we implemented an SVM classifier on top of our
distributed framework using the PALISADE library.

D. Key Management Infrastructure
We use a key management system based on Public Key

Infrastructure (PKI) to provide clients with mechanisms to
generate, store, distribute, and revoke public/private keys in
the distributed system. Overall, the key management system is
based on the simple approach proposed in [15], which doesn’t
require a central authority for managing the keys. The approach
is to exchange private keys using an email infrastructure, where
each client is equipped with a built-in email server.

The protocol for exchanging public keys is as follows.
1) Exchanging Public Keys: The first time two clients, ci

and cj , interact in the distributed system, they exchange their
public keys as follows. The client ci sends a message to cj
containing the tuple (Idci , pkci) and the client cj replies with
a message containing the tuple (Idcj , pkcj).

2) Data Partitioning: To facilitate data sharing, each client
needs to partition their data based on sharing policies. Each
partition will be encrypted using a different public/secret key
pair. For instance, let’s assume the user data d is divided
into a set of partitions {d1, d2, . . . , dn}. Then, for each di,
a public/secret key pair, (pki, ski) will be generated to encrypt
di. This will give the client a flexible approach for sharing
their data in the cloud at a fine-grained level.

3) Sharing Data: When a sender wants to share a
piece of data di with a receiver in the distributed sys-
tem, the sender needs to provide the receiver with the
secret key ski corresponding to pki used to encrypt the
data di in order to decrypt it. To protect the secret key,
the sender encrypts it using the receiver’s sharing public
key. The sender replies with the following message contain-
ing the tuple (Idreceiver, Enc(sksender, pkreceiver)), where

29Copyright (c) IARIA, 2020. ISBN: 978-1-61208-775-7

ALLDATA 2020 : The Sixth International Conference on Big Data, Small Data, Linked Data and Open Data

Enc(sksender, pkreceiver) means that the sksender is en-
crypted using the pkreceiver. This will guarantee that only the
intended receiver can decrypt the message containing the secret
key. Note that, in this approach of data sharing, we assume that
the distributed system includes an access control enforcement
mechanism to give access to data based on sharing policies
defined by the users. The description of the access control
mechanism is beyond the scope of this work.

IV. DFSCC OPERATIONAL FLOWS

The architecture of the DFSCC framework comprises a
number of components that interact to support the function-
alities of the framework from the perspective of both devel-
opers and end-users. It abstracts out the complexity related
to building a web-based client-server application, building a
cloud-based distributed system, and connecting the two. In
the following sections, we describe the operational flows of
the framework, focusing particularly on how developers can
extend the core components of the framework and instantiate
it to build concrete systems, and then discuss how end-users
can use those concrete systems.

A. Extending the Framework
For developers extending the framework, there are two

main features: adding a new HE library, and adding a new
data processing algorithm based on machine learning or data
mining techniques. At the design level, the framework employs
a modular design to isolate the HE libraries and data processing
algorithms. At the implementation level, the framework uses
containers to enable each HE library and each data processing
algorithm to be self-contained. To add an HE library, the
developer needs to deploy the HE library in a container and
expose an API to enable the HE manager to make use of
it. Similarly, a new data processing algorithm needs to be
implemented and made available to the analytics manager,
which will distribute it to the nodes at runtime. In addition
to the SVM implementation, other data processing algorithms
will be included in the framework to serve as a guideline
for developers to incorporate their own algorithms into the
framework.

B. Instantiating the Framework to Build A Concrete System
The framework provides building blocks that can be used

to build concrete distributed systems where analytic tools
can be run in the encrypted domain. The application domain
will determine the specific analytic tools to be applied using
one of the available HE-enabled machine learning or data
mining algorithms. For instance, in the application we built to
evaluate the framework, SVM was determined to be suitable
to implement a tool to analyze radio data to optimize the link
quality between Software Defined Radios (SDRs). Analyzing
radio link quality requires classifying the data into two classes,
high quality and low quality. During the analysis, each data
point falls in one of those two classes. The application domain
will also dictate the type of data that needs to be encoded
appropriately to ensure compatibility with the data format
of the underlying HE library. Recall that the current HE
libraries support only low level operations, such as addition
or multiplication of numbers. It is the task of the developer to
figure out how the specific data types of the application domain
can be transformed in such a way that the basic operations of
HE can be applied on the data.

C. Using the Concrete System
Once the system is completed, then it can be made available

to end users. There are two main workflows of the system for
the end user: 1) analyzing data using an analytic tool, and 2)
sharing data with other users. At a high-level, the following
operational workflow depicts the process for analyzing data in
the distributed system.

• The User opens the Client web-based GUI.
• From the Client GUI, the user uploads the raw data

to the Client local storage.
• The User selects the analytic tool to be used to process

the raw data.
• The User requests the data to be encrypted.
• The Client Engine selects the appropriate HE library,

and uses it to encrypt the data.
• The Client Engine sends the encrypted data along with

the user parameters to the Untrusted Server.
• The Untrusted Server selects the number of nodes to

use in the distributed system.
• The Untrusted Server partitions the data according to

the parameters selected by the user and pushes it to
the nodes.

• The Untrusted Server notifies the User after the data
has been distributed.

• The User requests data to be processed and forwarded
to the Untrusted Server.

• The Untrusted Server delegates the workload to the
Distribution Manager.

• The Distribution Manager initiates the data processing
throughout the Untrusted Distributed System.

• After the execution is completed, the Untrusted Server
gathers the results from the Distribution Manager, and
sends them to the User.

• The Client Engine decrypts the results and displays
them on the GUI.

The following operational workflow summarizes the pro-
cess for sharing data in the distributed system. The Sharing
Manager on the Untrusted Server is responsible for sharing
encrypted data and encrypted secret keys between parties
sharing data with each other. If the recipient doesn’t already
have the secret key to decrypt the data, then the Sharing
Manager will request the secret key from the sender, and the
sender will encrypt the secret key using the recipient’s sharing
public key and send it to the Sharing Manager, which serves
as the proxy between sender and receiver. We assume that
the user possesses a public/secret key pair to be used by the
underlying sharing protocol. We assume that each party has the
sharing public key of the receiver. We also assume the data to
be shared is stored with the Distribution Manager component.

• From the Client GUI, the sender selects the set of data
to be shared, the recipients and their sharing public
keys.

• The User sends the request to share the data to the
Untrusted Server.

• The Sharing Manager on the Untrusted Server passes
a message to the recipient containing a reference to
the stored encrypted data.

30Copyright (c) IARIA, 2020. ISBN: 978-1-61208-775-7

ALLDATA 2020 : The Sixth International Conference on Big Data, Small Data, Linked Data and Open Data

• The Sharing Manager notifies the recipients about the
availability of the data.

• The Recipients retrieve the shared data and use their
secret keys to decrypt the data.

V. IMPLEMENTATION

We implemented the overall DFSCC framework and the
Software Defined Radio link quality analysis application to
evaluate the framework. We leveraged a number of open-
source projects for the implementation including the Django
web framework, PALISADE HE library [20], Apache Hadoop,
Apache Spark, and Xen hypervisor.

A. Framework

The implementation is broken down into three main subsys-
tems: client, server, and distributed system. We use the Django
web framework to develop a web-based system to connect
the client and server subsystems and to provide web service
capability to DFSCC.

As mentioned previously, we selected the PALISADE HE
library as the first library to be integrated with the DFSCC
framework. PALISADE is implemented using C++ and pro-
vides a simple interface to access its basic functionality. The
integration of this HE library into our framework required
building a C++ wrapper to interact with the Django web
server written in Python as well as the Spark interfaces used
for the distribution. We used Apache Spark as the basis to
implement the distributed system. Spark is highly modularized,
which simplifies its integration with other systems. Spark is
an ideal distribution framework for DFSCC, as it enables the
distribution of data as well as programs for execution on the
cloud nodes. REST APIs allow developers to extend DFSCC
to build concrete applications, such as adding new HE libraries
and data processing algorithms.

We used the Xen hypervisor to deploy a local instance of a
cloud infrastructure as a service (IaaS). This local cloud serves
as the testbed to generate virtual machines for the distributed
system. We used this local cloud instance to deploy and test
our distributed framework.

B. Framework Use Case: SDR Link Quality Analysis

For the test application, we implemented two Graphical
User Interfaces (GUI), one for the administrator, and another
for the user. Through the admin GUI, among other functional-
ities, the admin can create nodes (VMs) and list the resources
available on the distributed system. Likewise, through the user
GUI, users can upload data, encrypt and decrypt data, and send
encrypted data to the cloud for processing. Once the data has
been uploaded, there is a library of standard machine learning
algorithms that the user can select to run on the uploaded
data. Once selected, the distributed machine learning algorithm
with the HE implementation will be run on the distributed
system that will then return the answer in encrypted form to
be decrypted when needed. We used this process to analyze
the quality of Software Defined Radio signals to determine
the best way to tune the radios. This was done using a simple
SVM on the data to classify good versus bad link quality of the
radios. Note that, in this paper, we focus only on analyzing the
performance and overhead of the underlying HE operations.

VI. EXPERIMENTS

As part of the experimental setup, we deployed two Soft-
ware Defined Radios, a sender and a receiver, and established a
connection between the two. Then, we initiated a video stream
from the sender to the receiver and extracted the data packets
in the stream using the network packet capture feature of Snort.
The most relevant features in this dataset are the bit error ratio,
signal level, noise level, distortion level, and signal-plus-noise-
plus-distortion to noise-plus-distortion ratio. Due to the limited
number of features in this dataset, we generated synthetic radio
data to analyze the performance of the system with a larger
number of features. In the synthetic dataset, the number of
features ranges from 8 to 256. We also varied the number of
nodes in the distributed system from 4 to 64.

Based on the above setup, we performed a number of
experiments to analyze the performance of the DFSCC frame-
work in running the SVM based analytic tool against the
encrypted dataset. Specifically, we looked at the overhead
incurred by the framework due to the expensive HE operations.
During the experiment, the data was grouped into varying
numbers of features as follows: 8, 16, 32, 64, 128, 256. The
distributed system was configured with varying numbers of
nodes as follows: 4, 8, 16, 32, 64. Note that both of these
scales are logarithmic as represented by the y-axis in each of
the figures below. Then, we ran the analytic tool with each
feature size on each node configuration.

A. Features Comparison

In this experiment, we ran all the feature sizes on 1-node,
8-node, and 16-node configurations, and recorded the running
time of the computations. In both, Figure 2 and Figure 3, each
of the points represents a single run of the SVM algorithm for
a feature size specified on the y-axis. The x-axis represents the
running time of the algorithm, where the blue circle represents
a computation distributed across 8 or 16 nodes, and the red
triangle represents running on a single node.

As can be seen in Figure 2, with low numbers of features,
there isn’t a significant difference between the two setups.
However, as the number of features gets larger, the speed
improvement becomes clear. Note that the outlier seen in each
of the runs was an initialization of the distributed system that
was exacerbated in the distributed setting but can also be seen
in the single node setting. This outlier is only on the first run
of the algorithm so will be less significant over many runs of
the algorithm.

B. Nodes Comparison

In this experiment, we look at the comparison of running
the tool with 64 and 256 features while varying the number
of nodes as described earlier. We can see in Figure 4 and
Figure 5 that by increasing the number of nodes there is a
performance improvement. Given this, we can determine the
optimal number of nodes needed for a dataset, for a given
workload on the system. There is still a significant performance
improvement resulting from distribution across multiple nodes,
but care should be taken to balance the workload evenly
throughout the distributed system in order to minimize the
amount of downtime waiting for dependent computations to
complete before the results of the overall computation can be
delivered.

31Copyright (c) IARIA, 2020. ISBN: 978-1-61208-775-7

ALLDATA 2020 : The Sixth International Conference on Big Data, Small Data, Linked Data and Open Data

Figure 2. Overhead for 8 Nodes Setup

Figure 3. Overhead for 16 Nodes Setup

VII. RELATED WORK

Using HE to enable machine learning algorithms, including
deep learning, to process data securely has gained attention in
the research community in recent years. Many of the proposed
approaches focus on using a given HE scheme to implement a
specific machine learning algorithm. In [21], the authors show
that it is possible to use a SHE scheme to implement a linear
SVM to classify images for facial recognition. They extended
Gentry’s SHE scheme to work with low-degree polynomial
functions, which are not limited by Hamming distance or linear
projection. In [22], the authors went further by proposing an
approach for implementing a non-linear SVM for classifying
images in general using a SHE scheme. CryptoNets [23]
uses the Microsoft SEAL HE library to implement deep
learning algorithms. HE parallelization is limited to SIMD
operations provided by the HE scheme. Faster CryptoNets
[24] improves the performance of CryptoNets by leveraging
the sparse representations throughout the neural network to
optimize the HE operations and improve their performance.
MSCryptoNet [25], based on multi-scheme FHE, protects the
evaluation of the classifier, where the inputs can be encrypted

Figure 4. Overhead of 64 Features Comparison

Figure 5. Overhead of 256 Features Comparison

with different encryption schemes and different keys. Unlike
the above approaches, we are proposing a general framework
for secure machine learning in the cloud. Furthermore, we are
using distributed processing to improve the performance of
machine learning computations and HE based computations.

HE schemes have also been considered as a means for
securing statistical computations. In [26], the authors demon-
strate the feasibility of using HE in approximating conventional
statistical regression methods. This approach takes advantage
of the fact that estimation and prediction can both be performed
in the encrypted domain; bootstrapping can be avoided even for
moderately large problems; and scales linearly with the number
of predictors. In [27], HE is used to develop a secure system
that protects both the training and prediction data in logistic
regression. Despite the non-linearity of both the training and
prediction in logistic regression, this paper showed that it is
feasible to use HE since only the addition operation is needed,
which significantly improves performance compared to FHE.
Our approach differs in that it provides a framework to enable
developers to use a variety of analytic tools which can be based
on statistical analysis or other analytic techniques.

Privacy-preserving data splitting is another approach pro-
posed to preserve data privacy in the cloud. In this approach,

32Copyright (c) IARIA, 2020. ISBN: 978-1-61208-775-7

ALLDATA 2020 : The Sixth International Conference on Big Data, Small Data, Linked Data and Open Data

sensitive data is split in such a way that any partition by itself is
not sensitive, and is stored separately. However, the techniques
proposed are not very secure as they either don’t support
encryption or they support only limited operations to take
place in the encrypted domain [28], [29]. Furthermore, these
techniques are focusing more on preserving privacy of the data
at rest rather than in processing. Other proposed techniques
for securing machine learning algorithms are based on MPC
[30]. Fundamentally, MPC requires interactive communica-
tions among the different nodes to perform the computations,
whereas our approach using HE allows computations to be
performed independently by the nodes.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose DFSCC, a distributed framework
for secure computing in the cloud, to enable the development
of secure distributed systems. A secure distributed system
developed using this framework allows for analytic tools to be
implemented using HE and distributed throughout the nodes of
the distributed system. Systems developed using the framework
provide a high level of data security for the analytic tools since
data will remain encrypted during transit to and from the cloud,
and during storage and processing in the cloud. In addition,
the framework provides a simple but flexible technique for
sharing encrypted data among users. This approach of using
HE to provide data security during data processing addresses
the shortcomings of standard cryptographic schemes, and
addresses some of the vulnerabilities of outsourcing data to the
cloud. This will enable organizations of all types and sizes to
take advantage of large pools of computing resources available
in the cloud without giving up the privacy of their data.

The challenge with the existing HE schemes resides in the
computation and storage overheads they incur. We addressed
the computation overhead by distributing the HE computations
across multiple nodes to reduce the computation time. For
future work, we plan on combining the high level distribution
of HE libraries and the low level parallelization of the HE
operations themselves proposed in the literature. For instance,
one proposed technique is to use GPGPUs to speed up the
underlying operations of the libraries [31]. Combining these
two approaches has the potential to significantly speed up the
HE operations executed within the DFSCC framework.

REFERENCES

[1] S. Kumar, F. Morstatter, and H. Liu, Twitter data analytics. Springer,
2014.

[2] A. Alexandrov et al., “The stratosphere platform for big data analytics,”
The VLDB Journal—The International Journal on Very Large Data
Bases, vol. 23, no. 6, 2014, pp. 939–964.

[3] F. Zulkernine et al., “Towards cloud-based analytics-as-a-service
(claaas) for big data analytics in the cloud,” in 2013 IEEE International
Congress on Big Data. IEEE, 2013, pp. 62–69.

[4] D. Talia, “Clouds for scalable big data analytics,” Computer, no. 5,
2013, pp. 98–101.

[5] S. K. Sharma and X. Wang, “Live data analytics with collaborative edge
and cloud processing in wireless iot networks,” IEEE Access, vol. 5,
2017, pp. 4621–4635.

[6] R. Ranjan, “Streaming big data processing in datacenter clouds,” IEEE
Cloud Computing, vol. 1, no. 1, 2014, pp. 78–83.

[7] J. L. Asenjo et al., “Industrial data analytics in a cloud platform,” Sep. 6
2016, uS Patent 9,438,648.

[8] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, vol. 16, no. 1, 2012, pp. 69–73.

[9] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,”
Future Generation computer systems, vol. 28, no. 3, 2012, pp. 583–592.

[10] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth International Joint Conference on
INC, IMS and IDC. Ieee, 2009, pp. 44–51.

[11] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security & Privacy, vol. 8,
no. 6, 2010, pp. 24–31.

[12] N. Gruschka and M. Jensen, “Attack surfaces: A taxonomy for attacks
on cloud services,” in 2010 IEEE 3rd international conference on cloud
computing. IEEE, 2010, pp. 276–279.

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp.
169–178.

[14] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” CoRR,
vol. abs/1704.03578, 2017.

[15] M. H. Diallo, B. Hore, E. Chang, S. Mehrotra, and N. Venkatasubrama-
nian, “Cloudprotect: Managing data privacy in cloud applications,” in
2012 IEEE Fifth International Conference on Cloud Computing, June
2012, pp. 303–310.

[16] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of “big data” on cloud computing: Review and
open research issues,” Information systems, vol. 47, 2015, pp. 98–115.

[17] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages,” in Proceed-
ings of the 31st Annual Conference on Advances in Cryptology, ser.
CRYPTO’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 505–524.

[18] S. S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S. Bhat-
tacharya, “A review of homomorphic encryption libraries for secure
computation,” CoRR, vol. abs/1812.02428, 2018.

[19] J. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” 11 2017, pp. 409–437.

[20] K. Rohloff and G. Ryan, “The palisade lattice cryptography library,”
2017, retrieved: 01, 2020.

[21] J. R. Troncoso-Pastoriza, D. González-Jiménez, and F. Pérez-González,
“Fully private noninteractive face verification,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 7, 2013, pp. 1101–1114.

[22] A. Barnett et al., “Image classification using non-linear support vector
machines on encrypted data.” IACR Cryptology ePrint Archive, vol.
2017, 2017, p. 857.

[23] R. Gilad-Bachrach et al., “Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy,” in International
Conference on Machine Learning, 2016, pp. 201–210.

[24] E. Chou and Others, “Faster cryptonets: Leveraging sparsity for real-
world encrypted inference,” arXiv preprint arXiv:1811.09953, 2018.

[25] P. Li et al., “Multi-key privacy-preserving deep learning in cloud
computing,” Future Generation Computer Systems, vol. 74, 2017, pp.
76–85.

[26] P. M. Esperança, L. J. Aslett, and C. C. Holmes, “Encrypted accelerated
least squares regression,” 2017.

[27] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang, “Scalable and secure
logistic regression via homomorphic encryption,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’16. New York, NY, USA: ACM, 2016, pp. 142–144.

[28] D. Sánchez and M. Batet, “Privacy-preserving data outsourcing in the
cloud via semantic data splitting,” Computer Communications, vol. 110,
2017, pp. 187–201.

[29] N. Kaaniche and M. Laurent, “Data security and privacy preservation
in cloud storage environments based on cryptographic mechanisms,”
Computer Communications, vol. 111, 2017, pp. 120–141.

[30] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 2.

[31] M. Diallo, M. August, R. Hallman, M. Kline, H. Au, and S. Slayback,
Nomad: a framework for ensuring data confidentiality in mission-critical
cloud-based applications, 10 2017, p. 19–44.

33Copyright (c) IARIA, 2020. ISBN: 978-1-61208-775-7

ALLDATA 2020 : The Sixth International Conference on Big Data, Small Data, Linked Data and Open Data

