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Abstract—Log analysis is the basis for planning maintenance 

operations. It is used to predict software and hardware failures. 

Their costs can be high, ranging from activity blocking to data 

loss, even penalties for late results. In this context, to achieve an 

even better quality of service, we have built a distributed 

application for collecting and analyzing software logs. Key 

properties had to be taken into account such as the number of 

logs per hour, the variety of formats of these logs or the indexing 

of information known in these logs. Our approach responds to 

these properties by using a Big Data cluster and installing a 

custom indexing engine for software log analysis. Our results 

show a reduction in software failures and, therefore, better 

availability of software services under monitoring. This result 

leads to rethinking software maintenance and reviewing the 

sizing of our cluster according to the number of monitored 

applications correlated with the throughput of each one. 

Keywords-Software log; indexing; Big Data; streaming; 

planning maintenance. 

I. INTRODUCTION 

Logs are files hosted on the application servers to be 
monitored, which regularly record their activities such as 
access to resources, requests being processed, etc. The logs 
are used to retrieve information on abnormal behavior, alerts, 
errors and their scheduling, etc. They are full of information, 
including date of an event, the invoked Web address, the 
uniform resource location origin, the response code of the 
page (code 403, code 201, etc.), its payload, etc. The analysis 
of log files is the evaluation of a set of information recorded 
from one or more events that have occurred in an application 
environment. This practice is used to analyze user behavior 
and identify patterns of behavior, or identify and anticipate 
incidents. These same techniques are applied to ensure 
compliance of server behavior with the regulations in place, 
such as government applications. 

Analyzing logs is a challenge and requires tedious work 
for the Software supervision teams because of the volume. 
Other features are crucial such as the diversity of types of logs, 
as well as the proprietary formats, elastic architectures, 
aggregation of time-stamped data, detection of behavior 
patterns, etc. Using log analysis software that leverages 
machine-learning algorithms dramatically reduces the 
workload on supervisory teams who can focus on value-added 
tasks. Such log analysis software allows monitoring, 

aggregation, indexing and analysis of all application and 
infrastructure log data. The tools such as the ELK 
(Elasticsearch, Logstash and Kibana) suite software, become 
a reference in the monitoring domain [1] because of their 
adaptability and polyvalence.   

Log analysis tools provide better visibility into the health 
and availability of applications using dashboards. This allows 
software administrators to monitor critical events from a 
central location. Synthetic situations thus appear where an 
administrator is able to decide to anticipate a maintenance task 
in order to ensure continuity of service. For example, many 
services are written in Java where memory saturation 
problems cause the need to restart a Java Virtual Machine 
(JVM). In Big Data on the edge applications, the use of an 
energy source is often the constraint that leads not to the restart 
but to the migration of a service, from a network node on 
another, having still energy resources. 

Over time, the use of specific indexing techniques has 
enriched log file analysis strategies. The structure of these 
input data is always formatted even though the formats vary. 
In addition, the use of a data schema provides additional 
typing which highlights the meaning of these lines of 
information. It is then useful to separate data storage from data 
indexing. The search for a pattern of behavior is more 
effective and prevention becomes better and more reactive. 

Log analysis solutions incorporate additional data sources. 
Thus, machine learning and other analytical techniques push 
the boundaries of new use cases in application performance 
management, security intelligence, event management and 
behavior analysis. 

The rest of this paper is organized as follows. Section II 
describes the works close to our domain. Section III provides 
a precise description of our use case. Section IV addresses the 
software architecture of our distributed platform. Section V 
goes into finer details on our streaming approach, which 
includes an indexing step. Section VI focuses about on our 
results and the impact on the maintenance task. The 
acknowledgement and conclusions close the article. 

II. RELATED WORKS 

The use of logging has been common practice in IT for 
many years. Its use for intervention prediction is more recent, 
but the interest of this approach has quickly become essential 
in companies and more particularly in any computer system 
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offering services 24 hours a day. Publications have long been 
available in order to present the broad spectrum of log analysis 
techniques [2]. In the context of distributed computing 
systems, Qiang Fu has published some very useful results on 
behavior anomaly detection from logs [3]. W. Xu's work 
focuses on the structure of logs and the impact on the analysis 
strategy [4]. 

In the more specific context of analysis with prediction, 
Chinghway Lim's work is based on the use of individual 
message frequencies to characterize system behavior and the 
ability to incorporate domain-specific knowledge through 
user feedback [5]. Jakub Breier follows the same approach 
based on Apache Hadoop technique to enable processing of 
large data sets in a parallel way [6]. 

T. Li and Y. Jiang propose a platform to facilitate the data 
analytics for system event logs [7]. This work is an end-to-end 
solution that utilizes advanced data mining techniques to assist 
log analysts. They apply learning techniques to extract useful 
information from unstructured raw logs. The parsing 
technique contains an index management. 

Steven Yen published recently a book on the topic of 
intelligent log analysis using Machine and deep learning [8]. 
He explains how deep learning implementation can improve 
the result quality when the data volume achieves a limit. He 
provides a comparison with a K mean model and two distinct 
implementations. This work shows that a global solution does 
not exist and some add-ons are crucial. For instance, the use 
of an indexing process of log messages could lead to a cost 
reduction at runtime. 

In more constrained fields such as real time, log analysis 
systems must be able to detect an anomaly in a limited time. 
Biplob Debnath presents LogLens [9] that automates the 
process of anomaly detection from logs with minimal target 
system knowledge. LogLens presents an extensible index 
process based on new metrics (term frequency and boost 
factors). The use of temporal constraint also intervenes in the 
recognition of behaviour pattern. So, abnormal events are 
defined as visible in a time window while other events are not. 
This allows semi-automatic real-time device monitoring. 

Aspects remain to be covered such as the use of cross 
logging in analysis and log indexing. The reason is the 
separation of storage and indexing. In the previous works, the 
storage is generally done by the use of relational databases 
while the indexing uses rather NoSQL (Not only Structured 
Query Language) databases where the notion of join cannot 
be easily implemented. 

III. USE CASE DESCRIPTION 

A. Historic 

When doing software monitoring, the first thing we want 
to get is a reason for each failure, or even the root cause of the 
problem. The idea is then to automate the creation of an 
intervention request ticket and to follow up this maintenance 
operation until the update operation of the service concerned. 

Many software programs exist for this need, such as Free 
Management of Computer Park (GLPI) [10], and new 
software monitoring needs are appearing in order to improve 
this incident management by anticipating maintenance 

operations. The idea is then to reduce the costs of maintenance 
task, which generally correspond to service interruptions. 
Even if service replication strategies make it possible to lessen 
the effects of a failure, it is preferable to anticipate this 
problem and to research before the event in order to prevent 
it. 

B. Log information 

At the heart of log analysis, there is the collection of 
events, such as the setup of a service, the attempt to connect 
to the system for example, a configuration request, or 
variations in CPU or storage, or the trace of an application 
event (receipt of an order, etc.). 

A log entry contains information such as the date and time 
of the event, on which network node the event occurred, user 
identification, contextual information (configuration, 
security) or even the service at the origin of the event. 

C. Nominal scenario 

The description of our use case is based on our desire to 
monitor the activity of our information system. This includes 
several application servers and data management servers, 
interconnected by a software bus. It enables intelligent 
message routing between applications and provides a first 
level of fault tolerance in the event of a service failure. 

Our servers provide log files, but also our applications 
deployed on the servers. Many formatted files are thus written 
in different directories. To perform a centralized log analysis, 
a preparatory step consists in moving the files to a dedicated 
machine. A second step consists in analyzing the data to keep 
the useful parts on the one hand and to index the key parts on 
the other hand. This pipeline continues with the use of a 
statistical model to predict the actions to be planned (Figure 
1). Finally, the last step concerns the collection of metrics in 
order to evaluate the monitoring process. 

During our first prototypes, the volume of data processed 
exceeded 10 MB per hour and it became evident that such a 
sequential process could not meet our needs. The choice of a 
Big Data cluster for the processing of such volumes of text is 
legitimate, especially since this work relates to the monitoring 
of distributed systems. 

IV. SOFTWARE ARCHITECTURE 

Log analysis tasks often have strict due dates and data 
quality is a primary concern in software monitoring activities. 
This underlines the importance of finely managing the 
sequencing of tasks on the analysis platform. 

The Hadoop ecosystem offers a set of software to process 
huge data sets. It was originally designed to run on clusters of 

 
Figure 1. Log file lifecycle. 
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physical machines. Distributed analytical frameworks, for 
example MapReduce, evolve into resource managers that 
gradually transform Hadoop into a very versatile data 
operating system. With these frameworks, one can perform a 
wide range of data manipulation and analysis operations by 
connecting them to Hadoop Distributed File System (HDFS) 
as a document storage system [11]. 

Hadoop is highly scalable; it is easy to add a new service 
such as a search engine. As it includes the Zookeeper 
clustering tool, it is able to deploy on a set of nodes a search 
engine to manage a large volume of text-oriented data. 

We have made the choice to use Apache Solr to index, 
search a large amount of business data, and provide relevant 
content based on a search query [12]. 

A. Big Data platform 

A part of our work is based on Solr framework 8.1 and the 
integration with all other components in Hortonworks Data 
Platform Virtual Machine (HDP VM), such as Apache HBase, 
Apache Spark, Apache Kafka, in addition to some other open 
source tools. A part of our work relies on specific 
configurations of the tools; another part is the development of 
specific components for customizing the behavior of the 
Hadoop tools. 

Our article outlines our approach and a simplified 
architecture for analyzing software-generated logs to detect 
functional-related issues. Our architecture is a batch analytics 
system analyzing Solr query logs. 

The diagram from Figure 2 illustrates the high level of our 
software architecture. 

We use shell scripts to collect log files destined for a 
remote directory (named "log file folder source"). With a 
common data ingestion path, the logs go from an Apache 
Flume source, then to a Kafka channel and are transmitted to 
a first Spark consumer (named "Spark SQL consumer"). Its 
essential task is to recognize and process the contents of the 
file and load them into an SQL table in memory, perform filter 
operations and put them in common format. Then, the route 
continues with a backup of these data in HBase tables. The 
role of this Flume route is to store structured information in a 
column-oriented database (the blue route in Figure 2). 

In parallel, another route has the role of indexing the data 
from the logs (red route in Figure 2). From the same Kafka 
source, a second Spark consumer (named "Spark Solr 
consumer") takes care of data indexing while respecting the 

Solr schema. The index is updated for the query steps and then 
we use of a model for the prediction of maintenance tasks. 

In this architecture, HBase is a highly reliable data store, 
supporting disaster recovery and cross-datacenter replication. 
Solr Cloud is the indexing and search engine. It is completely 
open and allows us to personalize text analyzes. It allows a 
close link with HBase database so the schemas used by both 
tools are designed in a closely related way. 

The Jasper Report tool allows us to build a report from 
data automatically and regularly. Suitable cross tables help to 
give priorities to software maintenance tasks. 

B. Configuration 

1) Via operating system 
Several elements of this architecture support ad hoc 

configuration. We have defined specific configuration scripts 
for routing log files to the "log file folder" directory, source 
Flume. We use entries in cron tables to ensure regular data 
collection. 

2) Via event streaming-tools. 
We have described two Flume routes within our Big Data 

cluster. Flume configurations correspond to the creation of 
routing agents so that information reaches the programs that 
use them. 

The Flume and Kafka tools are both event-streaming tools. 
While their roles are comparable, the developments in these 
two projects are very different and there are now more Kafka 
connectors. Thus, the popularity of Apache Kafka is currently 
higher than that of Flume. We have kept software routes with 
Flume for event routing, but we define Kafka topics to ensure 
decorrelation between components. This makes it possible to 
simplify the management of components, among other things 
for updates. In addition, the Kafka API allows more controls 
on the management of messages associated with a topic; for 
example time management. We have added rules to ensure 
that a received message is processed within an hour. In that 
case, we raise an alert and the data is saved in the local file 
system. 

3) Via persistent storage. 
We wrote the script for creating tables structured in 

families of columns to keep the information from the log files. 
The column families are logical and physical groups of 
columns. The columns in one family are stored separately 
from the columns in another family. Because we have data 
that are not often queried, we assign that data to a separate 
column family. 

 
Figure 2.  Big Data workflow for log analysis. 
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Because the column families are stored in separate HFiles, 
we keep the number of column families as small as possible. 
We also want to reduce the number of column families to 
reduce the frequency of mem-store flushes, and the frequency 
of compactions. Moreover, by using the smallest number of 
column families possible, we improve the load time and 
reduce disk consumption. 

4) Via indexing engine. 
Apache Solr is an open source search engine and Solr 

index can be considered as an equivalent of a SQL table. A 
standalone instance maintains several indexes. However, on 
our Big Data cluster, the Solr installation is also distributed. 
In that context, we have four shards with a replication rate 
equals to three. This allows us to distribute operations by 
reducing blockages due to frequent indexing. We have 
configured not only the schema, but also the data handlers 
(schema.xml and solrconfig.xml files). 

Our schema defines the structure of the documents that are 
indexed into Solr. This means the set of fields that they 
contain. We also define the datatype of those fields. It 
configures also how field types are processed during indexing 
and querying. This allows us to introduce our own parsing 
strategy via class programming. 

C. Component architecture 

1) Based on Spark framework. 
To implement this architecture, we have developed several 

components using the Spark framework version 2.4.7. These 
components are at the heart of Flume routes, so their 
sequencing is based on the Spark-streaming module. In other 
words, when log data are available, the scheduler creates 
micro batches to process these data during a fixed duration 
window. In order to keep the results of the processing, the 
components save their results in a HBase database installed on 
the Hadoop cluster [15]. 

We have two consumers of the data associated with the 
Kafka topic. Spark SQL consumer uses the Spark SQL 
module to store data in an HBase database whose schema is 
structured in family of columns. The labels of these families 
of columns are involved in the data schema of the second 
Spark consumer. 

HBase is a database distributed on the nodes of our 
Hadoop cluster, which allows having a persistence system 
where the data are highly available because the replicated rate 
on separate nodes is set to three. 

2) Based on Spring Data. 
Spark Solr consumer uses the Spring Data and SolrJ 

library to index the data read from the Kafka topic. It splits the 
data next to the Solr schema where the description of each 
type includes a "docValue" attribute, which is the name of the 
HBase column family. For each Solr type, our configuration 
provides a given analyzer. We have developed some of the 
analyzers in order to keep richer data than simple raw data 
from log files. Finally, the semantic additions that we add in 
our analysis are essential for the evaluation of Solr query. 
Likewise, we store the calculated metrics in HBase for 
control. 

SolrCloud is deployed on the cluster through the same 
Zookeeper agents. Thus, the index persistence system is also 

replicated. We therefore separate the concepts of backup and 
search via two distinct components. This reduces the 
blockages related to frequent updates of our HBase database 
[14]. 

3) Based on SolrJ library. 
At the beginning of our Solr design, we have built our 

schema based on our data types. Some of them were already 
defined, but some others are new. In addition, we have 
implemented new data classes for the new field types. For 
example, we used RankFieldType as a type of some fields in 
our schema. Then, it becomes a sub class of FieldType in our 
Solr plugin. 

We have redesigned Solr filters so that they can be used in 
our previous setups. Our objective was to standardize the 
values present in the logs coming from different servers. 
Indeed, the messages provide information of the form 
<attribute, value> where the values certainly have units. 
However, the logs do not always provide the same units for 
the same attribute calculation. The analysis phase is the place 
to impose a measurement system in order to be able to 
compare the results later. 

The development pattern proposed by SolrJ is simple 
because it proposes abstract classes like TokenFilter and 
TokenFilterFactory then to build inherited classes. Then we 
have to build a plugin for Solr and drop it in the technical 
directory agreed in the installation of the tool [13]. 

4) Based on Spark-MLlib. 
In Artificial Intelligence, Support Vector Machine (SVM) 

models are a set of supervised learning techniques designed to 
solve discrimination and regression problems. SVMs have 
been applied to a large number of fields (bioinformatics, 
information research, computer vision, finance, etc.) [16]. 
SVM models are classifiers, which are based on two key ideas, 
which allow to deal with nonlinear discrimination problems, 
and to reformulate the ranking problem as a quadratic 
optimization problem. In our project, SVMs can be used to 
decide to which class of problem a recognized sample 
belongs. The weight of these classes if linked to the Solr 
metrics on these names. This amounts to predicting the value 
of a variable, which corresponds to an anomaly. 

All filtered log entries are potentially useful input data if it 
is possible that there are correlations between informational 
messages, warnings, and errors. Sometimes the correlation is 
strong and therefore critical to maximizing the learning rate. 
We have built a specific component based on Spark MLlib It 
supports binary classification with linear SVM. Its linear 
SVMs algorithm outputs an SVM model [18]. 

We applied prior processing to the data from our HBase 
tables before building our decision modeling. These processes 
are grouped together in a pipeline, which leads to the creation 
of the SVM model with the configuration of its hyper-
parameters such as weightCol. Part of the configuration of 
these parameters comes from metrics calculated by our 
indexing engine (Figure 2). Once created and tested, the 
model goes into action to participate in the prediction of 
incidents. We use a new version of the SVM model builder 
based on distributed data augmented. This comes from an 
article written Nguyen, Le and Phung [19]. 

5) Based on Jasper Report library. 
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This reporting library allows us to build weekly graphical 
reports on indexing activity. This information is a help to 
check the suitability of the SVM model, which supports 
prediction requests following pattern recognition. The 
representations are documents in pdf format; we did not 
automate the impact of this data extraction on the use of our 
decision-making model. 

V. BIG DATA STREAMING 

We use Apache Kafka as queue system for our logs. Then 
we use spark streaming library to read from Kafka topic and 
process logs on the fly. Spark Streaming is a real-time 
processing tool that runs on top of the Spark engine. The 
scheduler exploits all the computation resources of our cluster. 
Each node runs several executors, which run tasks and keeps 
data in memory or disk storage across them. 

In our program, the Spark context sends all the tasks for 
the executors to run. 

A. Filtered log strategy 

1) Asynchronous reading. 
Our component called Spark SQL Consumer contains a 

Kafka receiver class, which runs an executor as a long-running 
task. Each receiver is responsible for exactly one input 
discretized stream (called DStream). In the context of the first 
Flume route, this stream connects the Spark streaming to the 
external Kafka data source for reading input log data.  

Because the log data rate is high, our component reads 
from Kafka in parallel. Kafka stores the data logs in topics, 
with each topic consisting of a configurable number of 
partitions. The number of partitions of a topic is an important 
key for performance considerations as this number is an upper 
bound on the consumer parallelism. If a topic has N partitions, 
then our component can only consume this topic with a 
maximum of N threads in parallel. In our experiment, the 
Kafka partition number is set to four. 

2) Normalized form. 
Since log data are collected from a variety of sources, data 

sets often use different naming conventions for similar 
informational elements. The Spark SQL Consumer 
component aims to apply name conventions and a common 
structure. The ability to correlate the data from different 
sources is a crucial aspect of log analysis. Using normalization 
to assign the same terminology to similar aspects can help 
reduce confusion and error during analysis [17]. This case 
occurs when log messages contain values with different units 
or distinct scales. The log files are grouped under topics. We 
apply transformations depending on the topic the data come 
from. The filtered logs are cleaned and reorganized and then 
are ready for an export into an HBase instance. 

3) Stuctured data storage. 
Next step, the Spark SQL Consumer component inserts 

the cleaned log data into memory data frames backed to a 
schema. We have defined a mapping between HBase and 
Spark tables, called Table Catalog. There are two main 
difficulties of this catalog. 

a) The row key definition implies the creation of a 

specific key generator in our component. 

b) The mapping between table column in Spark and the 

column family and column qualifier in HBase needs a 

declarative name convention. 

The HBase sink exploits the parallelism on the set of Region 
servers, which are under control of the HBase master. The 
HBase sink treats both Put operation and Delete operation in 
a similar way, and both actions are performed in the executors. 
The driver Spark generates tasks per region. The tasks are sent 
to the preferred executors collocated with the region server, 
and are performed in parallel in the executors to achieve better 
data locality and concurrency. By the end of an exportation, a 
timed window of log data is stored into HBase tables. 

B. Index construction and query 

1) The index pipeline 
The strategy of the Spark Solr Consumer component deals 

with the ingestion of the log data into Apache Solr for search 
and query. The pipeline is built with Apache Spark and 
Apache Spark Solr connector (Figure 3). Spark framework is 
used for distributed in memory compute, transform and ingest 
to build the pipeline. 

The Apache HBase role is the log storage and the Apache 
Solr role is the log indexing. Both are configured in cloud 
mode Multiple Solr servers are easily scaled up by increasing 
server nodes. The Apache Solr collection, which plays the role 
of SQL table, is configured with shards. The definition of 
shard is based on the number of partitions and the replicas rate 
for fault tolerance ability. 

 

 

Figure 3.  Overall high-level architecture of the index pipeline. 

The Spark executors run a task, which transforms and 
enriches each log message (format detection). Then, the Solr 
client takes the control and sends a REST request to Solr 
Cloud Engine. Finally, depending on the Solr leader, a shard 
is updated. 

2) The query process. 
We also use Solr Cloud as a data source Spark when we 

create our ML model. We send requests from spark ML 
classes and read results from Solr (with the use of Solr 
Resilient Distributed Dataset (SolrRDD class). The pre 
statement of the requests is different from the analysis of the 
log document. Their configuration follows another analysis 
process. 

With Spark SQL, we expose the results as SQL tables in 
the Spark session. These data frames are the base of our ML 
model construction. The metrics called TF (Term Factor) and 
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IDF (Inverse Document Frequency) are key features for the 
ML model. We have also used boost factor for customizing 
the weight of part of log message. 

VI. RESULTS AND ACTIONS 

We have several kinds of results. A part is about our 
architecture and the capacity to treat log messages over time. 
Another part is about the classification of log messages. The 
concepts behind SVM algorithm are relatively simple. The 
classifier separates data points using a hyperplane with the 
largest amount of margin. In our working context, the margin 
between log patterns is a suitable discriminant. 

A. Data features 

1) Architecture measurement 
For our tests, we used previously saved log files from 20 

days of application server and database server operations. We 
were interested in the performance of the two Spark 
consumers, the Spark SQL Consumer and the Spark Solr 
Consumer. 

For Spark SQL Consumer, the volume of data to analyze 
is 81.7 M rows in HBase. To exploit this data, we used a 
cluster of eight nodes on which we deployed Spark and 
HBase. The duration of the tests varies between 24 minutes 
and 2 hours and 1 minute. 

For Spark Solr Consumer, the volume of data indexed is 
87.2M rows indexed in about an hour. The number of 
documents indexed per second is 28k. 

We only installed Solr on four nodes with four shards and 
a replication rate of three. We have seen improved results by 
increasing the number of Spark partitions (RangePartitioner).  
At runtime for our data set based on a unique log format, the 
cost of Spark SQL consumer decreases when the partitioning 
of dataset increases, an illustrated in Figure 4. The X-axis 
represents the partition number as an integer and the Y-axis 
represents the time consumed (minute unit). We have to 
oversize the partitions and the gains are much less interesting. 

2) Model measurement 

SVM offers very high accuracy compared to other 
classifiers such as logistic regression, and trees. There are 
several modes of assessment. The first is technical; it is 
obtained thanks to the framework used for the development 
(Spark MLlib). The second is more empirical because it 
relates to the use of this model and the anomaly detection rate 
on a known dataset. 

The analytical expressions of the features precision and 
recall of retrieved log messages that are relevant to the find 
are indicated below. 

Precision is the fraction of retrieved log messages that are 
relevant to the find: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}  ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|
 

Recall is the fraction of log messages that are relevant to the 
query that are successfully retrieved: 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}  ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|
 

𝐹𝛽 = (1 + 𝛽2) ∗  
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
 

In Table 1, we have four classes and for each class we 
compute three numbers: true positive (tp), false positive (fp) 
and false negative (fn). For instance, for the third class, we 
note these numbers tp3, fp3 and fn3. From these values, we 
compute precision by label, recall by label and F-score by 
label. 

TABLE I.  SVM MODEL MEASURES 

Class 

number 

Metrics 

Precision by label Recall by label F1 score by label 

0,000000 0.884615 0.920000 0.901961 

1,000000 1.000000 1.000000 1.000000 

2,000000 0.846154 0.785714 0.814815 

3,000000 0.854462 0.7914858 0.842529 

 
Our prediction models are similar to a multiclass 

classification. We have several possible anomaly classes or 
labels, and the concept of label-based metrics is useful in our 
case. Precision is the measure of accuracy on all labels. This 
is the number of times a class of anomaly has been correctly 
predicted (true positives) normalized by the number of data 
points. Label precision takes into account only one class and 
measures the number of times a specific label has been 
predicted correctly normalized by the number of times that 
label appears in the output. The last observations are: 

 Weighted precision = 0.917402 

 Weighted recall = 0.918033 

 Weighted F1 score = 0.917318 

 Weighted false positive rate = 0.043919 

 
Figure 4.    Spark consumer runtime versus number of partitions 
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Our results for four classes are within acceptable ranges of 
values for the use of the model to be accepted. 

The test empirical phase on the SVM model was not 
extensive enough to be conclusive; however, our results 
suggest that increasing the number of log patterns deteriorates 
the performance. In addition, we defined a finite set of log 
patterns for a targeted anomaly detection approach. 

B. Reporting 

We have created a custom data source to connect to 
Apache Solr, therefore, we are able to retrieve data and 
provide them back in following the JRDataSource interface 
of Jasper Report. With this access point, we have extracted 
metrics about the document cache and Query result cache. 
Both give an overview of the Solr activities and is meaningful 
for the analysts. 

We have deployed the CData JDBC Driver on Jasper 
Reports to provide real-time HBase data access from reports. 
We have found that running the underlying query and getting 
the data to our report takes the most time. When we generate 
many pages per report, there is overhead to send that to the 
browser. 

For the reporting phase, we have developed two report 
templates based on the use of a JDBC adapter. With system 
requests, we collect data about the last events (Get, Put, Scan, 
and Delete). From these HBase view, we have designed the 
report templates with cross tables. For the storage phase, we 
compute and display the number of Put events per timed 
window or grouped over a period. 

We periodically updated the data across report runs and 
export the PDF files to the output repository where a web 
server manages them. 

VII. CONCLUSION AND FUTURE WORK 

We have presented our approach on log analysis and 
maintenance task prediction. We showed how an index engine 
is crucial for a suitable query engine. We have developed 
specific plugins for cutomizing the field types of our 
documents, but also for filtering the information from the log 
message.  

Because indexing and storage are the two sides of our 
study, we have separated the storage into a Hadoop database. 
We have stressed the key role of our Spark components, one 
per data source. The partition management is the key concept 
for improving the performance of the Spark SQL component. 
The data storage into data frames during the micro batches is 
particularly suitable for the management of flows originating 
from Kafka files. We observed that our approach supported a 
large volume of logs. 

From the filtered logs, we presented the construction of 
our SVM model based on work from the Center for Pattern 
Recognition and Data Analytics, Deakin University, 
(Australia). We were thus able to classify the recognized log 
patterns into classes of anomalies. This means that we can 
identify the associated maintenance operations. Finally, to 
measure the impact of our distributed analysis system, we 
wanted to automatically build reports based on templates and 
highlight indexing and storage activity. 

Our study also shows the limits that we want to push back, 
such as the management of log patterns. The use of an AI 
model is not the guarantee of an optimal result. We want to 
make more use of indexing metrics to give more weight to 
some information in the analyzed logs. We are, therefore, 
thinking of improving the classification model of log data. 

A first perspective will be to improve the indexing process 
based on a custom schema. We think that the use of DisMax 
query parser could be more suitable in log requests where 
messages are simple structured sentences. The similarity 
detection makes DisMax the appropriate query parser for 
short structured messages.  

The log format has a deep impact on the Solr schema 
definition and about the anomaly detection. We are going to 
evolve our approach. In the future, we want to extract 
dynamically the log format instead of the use of a static 
definition. 

We think also about malicious messages, which can 
perturb the indexing process and introduce bad requests in our 
prediction step. The challenge needs to manage a set of 
malicious patterns and the quarantine of some message 
sequences. 
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