
Distributed Search on a Large Amount of Log Data

Full text index in a Big Data architecture

Fabrice Mourlin, Charif Mahmoudi

Algorithmic, Complexity and Logic Laboratory

UPEC University

Creteil, France

Email : fabrice.mourlin@u-pec.fr, charif.mahmoudi@lacl.fr

Guy Lahlou Djiken

Applied Computer Science Laboratory

Douala University

Douala, Cameroon

Email : ldjiken@fs-univ-douala.cm

Abstract—Log analysis is the basis for planning maintenance

operations. It is used to predict software and hardware failures.

Their costs can be high, ranging from activity blocking to data

loss, even penalties for late results. In this context, to achieve an

even better quality of service, we have built a distributed

application for collecting and analyzing software logs. Key

properties had to be taken into account such as the number of

logs per hour, the variety of formats of these logs or the indexing

of information known in these logs. Our approach responds to

these properties by using a Big Data cluster and installing a

custom indexing engine for software log analysis. Our results

show a reduction in software failures and, therefore, better

availability of software services under monitoring. This result

leads to rethinking software maintenance and reviewing the

sizing of our cluster according to the number of monitored

applications correlated with the throughput of each one.

Keywords-Software log; indexing; Big Data; streaming;

planning maintenance.

I. INTRODUCTION

Logs are files hosted on the application servers to be
monitored, which regularly record their activities such as
access to resources, requests being processed, etc. The logs
are used to retrieve information on abnormal behavior, alerts,
errors and their scheduling, etc. They are full of information,
including date of an event, the invoked Web address, the
uniform resource location origin, the response code of the
page (code 403, code 201, etc.), its payload, etc. The analysis
of log files is the evaluation of a set of information recorded
from one or more events that have occurred in an application
environment. This practice is used to analyze user behavior
and identify patterns of behavior, or identify and anticipate
incidents. These same techniques are applied to ensure
compliance of server behavior with the regulations in place,
such as government applications.

Analyzing logs is a challenge and requires tedious work
for the Software supervision teams because of the volume.
Other features are crucial such as the diversity of types of logs,
as well as the proprietary formats, elastic architectures,
aggregation of time-stamped data, detection of behavior
patterns, etc. Using log analysis software that leverages
machine-learning algorithms dramatically reduces the
workload on supervisory teams who can focus on value-added
tasks. Such log analysis software allows monitoring,

aggregation, indexing and analysis of all application and
infrastructure log data. The tools such as the ELK
(Elasticsearch, Logstash and Kibana) suite software, become
a reference in the monitoring domain [1] because of their
adaptability and polyvalence.

Log analysis tools provide better visibility into the health
and availability of applications using dashboards. This allows
software administrators to monitor critical events from a
central location. Synthetic situations thus appear where an
administrator is able to decide to anticipate a maintenance task
in order to ensure continuity of service. For example, many
services are written in Java where memory saturation
problems cause the need to restart a Java Virtual Machine
(JVM). In Big Data on the edge applications, the use of an
energy source is often the constraint that leads not to the restart
but to the migration of a service, from a network node on
another, having still energy resources.

Over time, the use of specific indexing techniques has
enriched log file analysis strategies. The structure of these
input data is always formatted even though the formats vary.
In addition, the use of a data schema provides additional
typing which highlights the meaning of these lines of
information. It is then useful to separate data storage from data
indexing. The search for a pattern of behavior is more
effective and prevention becomes better and more reactive.

Log analysis solutions incorporate additional data sources.
Thus, machine learning and other analytical techniques push
the boundaries of new use cases in application performance
management, security intelligence, event management and
behavior analysis.

The rest of this paper is organized as follows. Section II
describes the works close to our domain. Section III provides
a precise description of our use case. Section IV addresses the
software architecture of our distributed platform. Section V
goes into finer details on our streaming approach, which
includes an indexing step. Section VI focuses about on our
results and the impact on the maintenance task. The
acknowledgement and conclusions close the article.

II. RELATED WORKS

The use of logging has been common practice in IT for
many years. Its use for intervention prediction is more recent,
but the interest of this approach has quickly become essential
in companies and more particularly in any computer system

30Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

mailto:fabrice.mourlin@u-pec.fr
mailto:charif.mahmoudi@lacl.fr
mailto:ldjiken@fs-univ-douala.cm

offering services 24 hours a day. Publications have long been
available in order to present the broad spectrum of log analysis
techniques [2]. In the context of distributed computing
systems, Qiang Fu has published some very useful results on
behavior anomaly detection from logs [3]. W. Xu's work
focuses on the structure of logs and the impact on the analysis
strategy [4].

In the more specific context of analysis with prediction,
Chinghway Lim's work is based on the use of individual
message frequencies to characterize system behavior and the
ability to incorporate domain-specific knowledge through
user feedback [5]. Jakub Breier follows the same approach
based on Apache Hadoop technique to enable processing of
large data sets in a parallel way [6].

T. Li and Y. Jiang propose a platform to facilitate the data
analytics for system event logs [7]. This work is an end-to-end
solution that utilizes advanced data mining techniques to assist
log analysts. They apply learning techniques to extract useful
information from unstructured raw logs. The parsing
technique contains an index management.

Steven Yen published recently a book on the topic of
intelligent log analysis using Machine and deep learning [8].
He explains how deep learning implementation can improve
the result quality when the data volume achieves a limit. He
provides a comparison with a K mean model and two distinct
implementations. This work shows that a global solution does
not exist and some add-ons are crucial. For instance, the use
of an indexing process of log messages could lead to a cost
reduction at runtime.

In more constrained fields such as real time, log analysis
systems must be able to detect an anomaly in a limited time.
Biplob Debnath presents LogLens [9] that automates the
process of anomaly detection from logs with minimal target
system knowledge. LogLens presents an extensible index
process based on new metrics (term frequency and boost
factors). The use of temporal constraint also intervenes in the
recognition of behaviour pattern. So, abnormal events are
defined as visible in a time window while other events are not.
This allows semi-automatic real-time device monitoring.

Aspects remain to be covered such as the use of cross
logging in analysis and log indexing. The reason is the
separation of storage and indexing. In the previous works, the
storage is generally done by the use of relational databases
while the indexing uses rather NoSQL (Not only Structured
Query Language) databases where the notion of join cannot
be easily implemented.

III. USE CASE DESCRIPTION

A. Historic

When doing software monitoring, the first thing we want
to get is a reason for each failure, or even the root cause of the
problem. The idea is then to automate the creation of an
intervention request ticket and to follow up this maintenance
operation until the update operation of the service concerned.

Many software programs exist for this need, such as Free
Management of Computer Park (GLPI) [10], and new
software monitoring needs are appearing in order to improve
this incident management by anticipating maintenance

operations. The idea is then to reduce the costs of maintenance
task, which generally correspond to service interruptions.
Even if service replication strategies make it possible to lessen
the effects of a failure, it is preferable to anticipate this
problem and to research before the event in order to prevent
it.

B. Log information

At the heart of log analysis, there is the collection of
events, such as the setup of a service, the attempt to connect
to the system for example, a configuration request, or
variations in CPU or storage, or the trace of an application
event (receipt of an order, etc.).

A log entry contains information such as the date and time
of the event, on which network node the event occurred, user
identification, contextual information (configuration,
security) or even the service at the origin of the event.

C. Nominal scenario

The description of our use case is based on our desire to
monitor the activity of our information system. This includes
several application servers and data management servers,
interconnected by a software bus. It enables intelligent
message routing between applications and provides a first
level of fault tolerance in the event of a service failure.

Our servers provide log files, but also our applications
deployed on the servers. Many formatted files are thus written
in different directories. To perform a centralized log analysis,
a preparatory step consists in moving the files to a dedicated
machine. A second step consists in analyzing the data to keep
the useful parts on the one hand and to index the key parts on
the other hand. This pipeline continues with the use of a
statistical model to predict the actions to be planned (Figure
1). Finally, the last step concerns the collection of metrics in
order to evaluate the monitoring process.

During our first prototypes, the volume of data processed
exceeded 10 MB per hour and it became evident that such a
sequential process could not meet our needs. The choice of a
Big Data cluster for the processing of such volumes of text is
legitimate, especially since this work relates to the monitoring
of distributed systems.

IV. SOFTWARE ARCHITECTURE

Log analysis tasks often have strict due dates and data
quality is a primary concern in software monitoring activities.
This underlines the importance of finely managing the
sequencing of tasks on the analysis platform.

The Hadoop ecosystem offers a set of software to process
huge data sets. It was originally designed to run on clusters of

Figure 1. Log file lifecycle.

31Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

physical machines. Distributed analytical frameworks, for
example MapReduce, evolve into resource managers that
gradually transform Hadoop into a very versatile data
operating system. With these frameworks, one can perform a
wide range of data manipulation and analysis operations by
connecting them to Hadoop Distributed File System (HDFS)
as a document storage system [11].

Hadoop is highly scalable; it is easy to add a new service
such as a search engine. As it includes the Zookeeper
clustering tool, it is able to deploy on a set of nodes a search
engine to manage a large volume of text-oriented data.

We have made the choice to use Apache Solr to index,
search a large amount of business data, and provide relevant
content based on a search query [12].

A. Big Data platform

A part of our work is based on Solr framework 8.1 and the
integration with all other components in Hortonworks Data
Platform Virtual Machine (HDP VM), such as Apache HBase,
Apache Spark, Apache Kafka, in addition to some other open
source tools. A part of our work relies on specific
configurations of the tools; another part is the development of
specific components for customizing the behavior of the
Hadoop tools.

Our article outlines our approach and a simplified
architecture for analyzing software-generated logs to detect
functional-related issues. Our architecture is a batch analytics
system analyzing Solr query logs.

The diagram from Figure 2 illustrates the high level of our
software architecture.

We use shell scripts to collect log files destined for a
remote directory (named "log file folder source"). With a
common data ingestion path, the logs go from an Apache
Flume source, then to a Kafka channel and are transmitted to
a first Spark consumer (named "Spark SQL consumer"). Its
essential task is to recognize and process the contents of the
file and load them into an SQL table in memory, perform filter
operations and put them in common format. Then, the route
continues with a backup of these data in HBase tables. The
role of this Flume route is to store structured information in a
column-oriented database (the blue route in Figure 2).

In parallel, another route has the role of indexing the data
from the logs (red route in Figure 2). From the same Kafka
source, a second Spark consumer (named "Spark Solr
consumer") takes care of data indexing while respecting the

Solr schema. The index is updated for the query steps and then
we use of a model for the prediction of maintenance tasks.

In this architecture, HBase is a highly reliable data store,
supporting disaster recovery and cross-datacenter replication.
Solr Cloud is the indexing and search engine. It is completely
open and allows us to personalize text analyzes. It allows a
close link with HBase database so the schemas used by both
tools are designed in a closely related way.

The Jasper Report tool allows us to build a report from
data automatically and regularly. Suitable cross tables help to
give priorities to software maintenance tasks.

B. Configuration

1) Via operating system
Several elements of this architecture support ad hoc

configuration. We have defined specific configuration scripts
for routing log files to the "log file folder" directory, source
Flume. We use entries in cron tables to ensure regular data
collection.

2) Via event streaming-tools.
We have described two Flume routes within our Big Data

cluster. Flume configurations correspond to the creation of
routing agents so that information reaches the programs that
use them.

The Flume and Kafka tools are both event-streaming tools.
While their roles are comparable, the developments in these
two projects are very different and there are now more Kafka
connectors. Thus, the popularity of Apache Kafka is currently
higher than that of Flume. We have kept software routes with
Flume for event routing, but we define Kafka topics to ensure
decorrelation between components. This makes it possible to
simplify the management of components, among other things
for updates. In addition, the Kafka API allows more controls
on the management of messages associated with a topic; for
example time management. We have added rules to ensure
that a received message is processed within an hour. In that
case, we raise an alert and the data is saved in the local file
system.

3) Via persistent storage.
We wrote the script for creating tables structured in

families of columns to keep the information from the log files.
The column families are logical and physical groups of
columns. The columns in one family are stored separately
from the columns in another family. Because we have data
that are not often queried, we assign that data to a separate
column family.

Figure 2. Big Data workflow for log analysis.

32Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

Because the column families are stored in separate HFiles,
we keep the number of column families as small as possible.
We also want to reduce the number of column families to
reduce the frequency of mem-store flushes, and the frequency
of compactions. Moreover, by using the smallest number of
column families possible, we improve the load time and
reduce disk consumption.

4) Via indexing engine.
Apache Solr is an open source search engine and Solr

index can be considered as an equivalent of a SQL table. A
standalone instance maintains several indexes. However, on
our Big Data cluster, the Solr installation is also distributed.
In that context, we have four shards with a replication rate
equals to three. This allows us to distribute operations by
reducing blockages due to frequent indexing. We have
configured not only the schema, but also the data handlers
(schema.xml and solrconfig.xml files).

Our schema defines the structure of the documents that are
indexed into Solr. This means the set of fields that they
contain. We also define the datatype of those fields. It
configures also how field types are processed during indexing
and querying. This allows us to introduce our own parsing
strategy via class programming.

C. Component architecture

1) Based on Spark framework.
To implement this architecture, we have developed several

components using the Spark framework version 2.4.7. These
components are at the heart of Flume routes, so their
sequencing is based on the Spark-streaming module. In other
words, when log data are available, the scheduler creates
micro batches to process these data during a fixed duration
window. In order to keep the results of the processing, the
components save their results in a HBase database installed on
the Hadoop cluster [15].

We have two consumers of the data associated with the
Kafka topic. Spark SQL consumer uses the Spark SQL
module to store data in an HBase database whose schema is
structured in family of columns. The labels of these families
of columns are involved in the data schema of the second
Spark consumer.

HBase is a database distributed on the nodes of our
Hadoop cluster, which allows having a persistence system
where the data are highly available because the replicated rate
on separate nodes is set to three.

2) Based on Spring Data.
Spark Solr consumer uses the Spring Data and SolrJ

library to index the data read from the Kafka topic. It splits the
data next to the Solr schema where the description of each
type includes a "docValue" attribute, which is the name of the
HBase column family. For each Solr type, our configuration
provides a given analyzer. We have developed some of the
analyzers in order to keep richer data than simple raw data
from log files. Finally, the semantic additions that we add in
our analysis are essential for the evaluation of Solr query.
Likewise, we store the calculated metrics in HBase for
control.

SolrCloud is deployed on the cluster through the same
Zookeeper agents. Thus, the index persistence system is also

replicated. We therefore separate the concepts of backup and
search via two distinct components. This reduces the
blockages related to frequent updates of our HBase database
[14].

3) Based on SolrJ library.
At the beginning of our Solr design, we have built our

schema based on our data types. Some of them were already
defined, but some others are new. In addition, we have
implemented new data classes for the new field types. For
example, we used RankFieldType as a type of some fields in
our schema. Then, it becomes a sub class of FieldType in our
Solr plugin.

We have redesigned Solr filters so that they can be used in
our previous setups. Our objective was to standardize the
values present in the logs coming from different servers.
Indeed, the messages provide information of the form
<attribute, value> where the values certainly have units.
However, the logs do not always provide the same units for
the same attribute calculation. The analysis phase is the place
to impose a measurement system in order to be able to
compare the results later.

The development pattern proposed by SolrJ is simple
because it proposes abstract classes like TokenFilter and
TokenFilterFactory then to build inherited classes. Then we
have to build a plugin for Solr and drop it in the technical
directory agreed in the installation of the tool [13].

4) Based on Spark-MLlib.
In Artificial Intelligence, Support Vector Machine (SVM)

models are a set of supervised learning techniques designed to
solve discrimination and regression problems. SVMs have
been applied to a large number of fields (bioinformatics,
information research, computer vision, finance, etc.) [16].
SVM models are classifiers, which are based on two key ideas,
which allow to deal with nonlinear discrimination problems,
and to reformulate the ranking problem as a quadratic
optimization problem. In our project, SVMs can be used to
decide to which class of problem a recognized sample
belongs. The weight of these classes if linked to the Solr
metrics on these names. This amounts to predicting the value
of a variable, which corresponds to an anomaly.

All filtered log entries are potentially useful input data if it
is possible that there are correlations between informational
messages, warnings, and errors. Sometimes the correlation is
strong and therefore critical to maximizing the learning rate.
We have built a specific component based on Spark MLlib It
supports binary classification with linear SVM. Its linear
SVMs algorithm outputs an SVM model [18].

We applied prior processing to the data from our HBase
tables before building our decision modeling. These processes
are grouped together in a pipeline, which leads to the creation
of the SVM model with the configuration of its hyper-
parameters such as weightCol. Part of the configuration of
these parameters comes from metrics calculated by our
indexing engine (Figure 2). Once created and tested, the
model goes into action to participate in the prediction of
incidents. We use a new version of the SVM model builder
based on distributed data augmented. This comes from an
article written Nguyen, Le and Phung [19].

5) Based on Jasper Report library.

33Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

This reporting library allows us to build weekly graphical
reports on indexing activity. This information is a help to
check the suitability of the SVM model, which supports
prediction requests following pattern recognition. The
representations are documents in pdf format; we did not
automate the impact of this data extraction on the use of our
decision-making model.

V. BIG DATA STREAMING

We use Apache Kafka as queue system for our logs. Then
we use spark streaming library to read from Kafka topic and
process logs on the fly. Spark Streaming is a real-time
processing tool that runs on top of the Spark engine. The
scheduler exploits all the computation resources of our cluster.
Each node runs several executors, which run tasks and keeps
data in memory or disk storage across them.

In our program, the Spark context sends all the tasks for
the executors to run.

A. Filtered log strategy

1) Asynchronous reading.
Our component called Spark SQL Consumer contains a

Kafka receiver class, which runs an executor as a long-running
task. Each receiver is responsible for exactly one input
discretized stream (called DStream). In the context of the first
Flume route, this stream connects the Spark streaming to the
external Kafka data source for reading input log data.

Because the log data rate is high, our component reads
from Kafka in parallel. Kafka stores the data logs in topics,
with each topic consisting of a configurable number of
partitions. The number of partitions of a topic is an important
key for performance considerations as this number is an upper
bound on the consumer parallelism. If a topic has N partitions,
then our component can only consume this topic with a
maximum of N threads in parallel. In our experiment, the
Kafka partition number is set to four.

2) Normalized form.
Since log data are collected from a variety of sources, data

sets often use different naming conventions for similar
informational elements. The Spark SQL Consumer
component aims to apply name conventions and a common
structure. The ability to correlate the data from different
sources is a crucial aspect of log analysis. Using normalization
to assign the same terminology to similar aspects can help
reduce confusion and error during analysis [17]. This case
occurs when log messages contain values with different units
or distinct scales. The log files are grouped under topics. We
apply transformations depending on the topic the data come
from. The filtered logs are cleaned and reorganized and then
are ready for an export into an HBase instance.

3) Stuctured data storage.
Next step, the Spark SQL Consumer component inserts

the cleaned log data into memory data frames backed to a
schema. We have defined a mapping between HBase and
Spark tables, called Table Catalog. There are two main
difficulties of this catalog.

a) The row key definition implies the creation of a

specific key generator in our component.

b) The mapping between table column in Spark and the

column family and column qualifier in HBase needs a

declarative name convention.

The HBase sink exploits the parallelism on the set of Region
servers, which are under control of the HBase master. The
HBase sink treats both Put operation and Delete operation in
a similar way, and both actions are performed in the executors.
The driver Spark generates tasks per region. The tasks are sent
to the preferred executors collocated with the region server,
and are performed in parallel in the executors to achieve better
data locality and concurrency. By the end of an exportation, a
timed window of log data is stored into HBase tables.

B. Index construction and query

1) The index pipeline
The strategy of the Spark Solr Consumer component deals

with the ingestion of the log data into Apache Solr for search
and query. The pipeline is built with Apache Spark and
Apache Spark Solr connector (Figure 3). Spark framework is
used for distributed in memory compute, transform and ingest
to build the pipeline.

The Apache HBase role is the log storage and the Apache
Solr role is the log indexing. Both are configured in cloud
mode Multiple Solr servers are easily scaled up by increasing
server nodes. The Apache Solr collection, which plays the role
of SQL table, is configured with shards. The definition of
shard is based on the number of partitions and the replicas rate
for fault tolerance ability.

Figure 3. Overall high-level architecture of the index pipeline.

The Spark executors run a task, which transforms and
enriches each log message (format detection). Then, the Solr
client takes the control and sends a REST request to Solr
Cloud Engine. Finally, depending on the Solr leader, a shard
is updated.

2) The query process.
We also use Solr Cloud as a data source Spark when we

create our ML model. We send requests from spark ML
classes and read results from Solr (with the use of Solr
Resilient Distributed Dataset (SolrRDD class). The pre
statement of the requests is different from the analysis of the
log document. Their configuration follows another analysis
process.

With Spark SQL, we expose the results as SQL tables in
the Spark session. These data frames are the base of our ML
model construction. The metrics called TF (Term Factor) and

34Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

IDF (Inverse Document Frequency) are key features for the
ML model. We have also used boost factor for customizing
the weight of part of log message.

VI. RESULTS AND ACTIONS

We have several kinds of results. A part is about our
architecture and the capacity to treat log messages over time.
Another part is about the classification of log messages. The
concepts behind SVM algorithm are relatively simple. The
classifier separates data points using a hyperplane with the
largest amount of margin. In our working context, the margin
between log patterns is a suitable discriminant.

A. Data features

1) Architecture measurement
For our tests, we used previously saved log files from 20

days of application server and database server operations. We
were interested in the performance of the two Spark
consumers, the Spark SQL Consumer and the Spark Solr
Consumer.

For Spark SQL Consumer, the volume of data to analyze
is 81.7 M rows in HBase. To exploit this data, we used a
cluster of eight nodes on which we deployed Spark and
HBase. The duration of the tests varies between 24 minutes
and 2 hours and 1 minute.

For Spark Solr Consumer, the volume of data indexed is
87.2M rows indexed in about an hour. The number of
documents indexed per second is 28k.

We only installed Solr on four nodes with four shards and
a replication rate of three. We have seen improved results by
increasing the number of Spark partitions (RangePartitioner).
At runtime for our data set based on a unique log format, the
cost of Spark SQL consumer decreases when the partitioning
of dataset increases, an illustrated in Figure 4. The X-axis
represents the partition number as an integer and the Y-axis
represents the time consumed (minute unit). We have to
oversize the partitions and the gains are much less interesting.

2) Model measurement

SVM offers very high accuracy compared to other
classifiers such as logistic regression, and trees. There are
several modes of assessment. The first is technical; it is
obtained thanks to the framework used for the development
(Spark MLlib). The second is more empirical because it
relates to the use of this model and the anomaly detection rate
on a known dataset.

The analytical expressions of the features precision and
recall of retrieved log messages that are relevant to the find
are indicated below.

Precision is the fraction of retrieved log messages that are
relevant to the find:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

Recall is the fraction of log messages that are relevant to the
query that are successfully retrieved:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠} ∩ {𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑙𝑜𝑔 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 log 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠}|

𝐹𝛽 = (1 + 𝛽2) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙

In Table 1, we have four classes and for each class we
compute three numbers: true positive (tp), false positive (fp)
and false negative (fn). For instance, for the third class, we
note these numbers tp3, fp3 and fn3. From these values, we
compute precision by label, recall by label and F-score by
label.

TABLE I. SVM MODEL MEASURES

Class

number

Metrics

Precision by label Recall by label F1 score by label

0,000000 0.884615 0.920000 0.901961

1,000000 1.000000 1.000000 1.000000

2,000000 0.846154 0.785714 0.814815

3,000000 0.854462 0.7914858 0.842529

Our prediction models are similar to a multiclass

classification. We have several possible anomaly classes or
labels, and the concept of label-based metrics is useful in our
case. Precision is the measure of accuracy on all labels. This
is the number of times a class of anomaly has been correctly
predicted (true positives) normalized by the number of data
points. Label precision takes into account only one class and
measures the number of times a specific label has been
predicted correctly normalized by the number of times that
label appears in the output. The last observations are:

 Weighted precision = 0.917402

 Weighted recall = 0.918033

 Weighted F1 score = 0.917318

 Weighted false positive rate = 0.043919

Figure 4. Spark consumer runtime versus number of partitions

0

20

40

60

80

100

120

140

8 16 24 32 40 48 54

ti
m

e
co

n
su

m
ed

 (
m

in
)

Partition number
Spark SQL consumer Spark Solr consumer

35Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

Our results for four classes are within acceptable ranges of
values for the use of the model to be accepted.

The test empirical phase on the SVM model was not
extensive enough to be conclusive; however, our results
suggest that increasing the number of log patterns deteriorates
the performance. In addition, we defined a finite set of log
patterns for a targeted anomaly detection approach.

B. Reporting

We have created a custom data source to connect to
Apache Solr, therefore, we are able to retrieve data and
provide them back in following the JRDataSource interface
of Jasper Report. With this access point, we have extracted
metrics about the document cache and Query result cache.
Both give an overview of the Solr activities and is meaningful
for the analysts.

We have deployed the CData JDBC Driver on Jasper
Reports to provide real-time HBase data access from reports.
We have found that running the underlying query and getting
the data to our report takes the most time. When we generate
many pages per report, there is overhead to send that to the
browser.

For the reporting phase, we have developed two report
templates based on the use of a JDBC adapter. With system
requests, we collect data about the last events (Get, Put, Scan,
and Delete). From these HBase view, we have designed the
report templates with cross tables. For the storage phase, we
compute and display the number of Put events per timed
window or grouped over a period.

We periodically updated the data across report runs and
export the PDF files to the output repository where a web
server manages them.

VII. CONCLUSION AND FUTURE WORK

We have presented our approach on log analysis and
maintenance task prediction. We showed how an index engine
is crucial for a suitable query engine. We have developed
specific plugins for cutomizing the field types of our
documents, but also for filtering the information from the log
message.

Because indexing and storage are the two sides of our
study, we have separated the storage into a Hadoop database.
We have stressed the key role of our Spark components, one
per data source. The partition management is the key concept
for improving the performance of the Spark SQL component.
The data storage into data frames during the micro batches is
particularly suitable for the management of flows originating
from Kafka files. We observed that our approach supported a
large volume of logs.

From the filtered logs, we presented the construction of
our SVM model based on work from the Center for Pattern
Recognition and Data Analytics, Deakin University,
(Australia). We were thus able to classify the recognized log
patterns into classes of anomalies. This means that we can
identify the associated maintenance operations. Finally, to
measure the impact of our distributed analysis system, we
wanted to automatically build reports based on templates and
highlight indexing and storage activity.

Our study also shows the limits that we want to push back,
such as the management of log patterns. The use of an AI
model is not the guarantee of an optimal result. We want to
make more use of indexing metrics to give more weight to
some information in the analyzed logs. We are, therefore,
thinking of improving the classification model of log data.

A first perspective will be to improve the indexing process
based on a custom schema. We think that the use of DisMax
query parser could be more suitable in log requests where
messages are simple structured sentences. The similarity
detection makes DisMax the appropriate query parser for
short structured messages.

The log format has a deep impact on the Solr schema
definition and about the anomaly detection. We are going to
evolve our approach. In the future, we want to extract
dynamically the log format instead of the use of a static
definition.

We think also about malicious messages, which can
perturb the indexing process and introduce bad requests in our
prediction step. The challenge needs to manage a set of
malicious patterns and the quarantine of some message
sequences.

REFERENCES

[1] J. Andersson and U. Schwickerath, “Anomaly Detection in the
Elasticsearch Service,” CERN Openlab Summer Student
Report, pp. 1-18, 2019.

[2] T. S. Collett, “A review of well-log analysis techniques used to
assess gas-hydrate-bearing reservoirs,” Natural Gas Hydrates :
Occurrence, Distribution, and Detection, Geophysical
Monograph, The AmericanGeophysical Union, vol. 124, pp.
189-210, 2001.

[3] Q. Fu, J. G. Lou, Y. Wang and J. Li, “Execution anomaly
detection in distributed systems through unstructured log
analysis,” 2009 ninth IEEE international conference on data
mining IEEE, pp. 149-158, 2009.

[4] A. Oliner, A. Ganapathi and W. Xu, “Advances and challenges
in log analysis,” Communications of the ACM, vol. 55, no. 2,
pp. 55-61, 2012.

[5] C. Lim, N. Singh and S. Yajnik, “A log mining approach to
failure analysis of enterprise telephony systems,” 2008 IEEE
International Conference on Dependable Systems and
Networks With FTCS and DCC (DSN), IEEE, pp. 398-403,
2008.

[6] J. Breier and J. Branišová, “Anomaly detection from log files
using data mining techniques,” In Information Science and
Applications, Springer, Berlin, Heidelberg, pp. 449-457, 2015.

[7] Li Tao et al., “FLAP : An end-to-end event log analysis
platform for system management,” Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1547-1556, 2017.

[8] S. Yen and M. Moh, “Intelligent log analysis using machine
and deep learning,” Machine Learning and Cognitive Science
Applications in Cyber Security, IGI Global, pp. 154-189, 2019.

[9] B. Debnath et al., “Loglens : A real-time log analysis system,”
2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), IEEE, pp. 1052-1062, 2018.

[10] M. Picquenot and P. Thébault, “GLPI (Free Management of
Computer Park) : Installation and configuration of a park
management solution and support center,” ENI Editions, 2016.

[11] K. Shvachko, H. Kuang, S. Radia and R. Chansler, “The
hadoop distributed file system,” 2010 IEEE 26th symposium

36Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

on mass storage systems and technologies (MSST), IEEE, pp.
1-10, 2010.

[12] D. Smiley, E. Pugh, K. Parisa and M. Mitchell, “Apache Solr
enterprise search server,” Packt Publishing Ltd, 2005.

[13] J. Kumar, “Apache Solr search patterns,” Packt Publishing Ltd,
2015.

[14] K. Koitzsch, “Advanced Search Techniques with Hadoop,
Lucene, and Solr,” Pro Hadoop Data Analytics, Apress,
Berkeley, CA, pp. 91-136, 2017.

[15] R. C. Maheshwar and D. Haritha, “Survey on high performance
analytics of bigdata with apache spark,” 2016 International
Conference on Advanced Communication Control and
Computing Technologies (ICACCCT), IEEE, pp. 721-725,
2016.

[16] M. F. Ghalwash, D. Ramljak and Z. Obradović, “Early
classification of multivariate time series using a hybrid
HMM/SVM model,” 2012 IEEE International Conference on
Bioinformatics and Biomedicine, IEEE, pp. 1-6, 2012.

[17] F. E. N. G. Changyong et al., “Log-transformation and its
implications for data analysis,” Shanghai archives of
psychiatry, vol. 26, no. 2, 2014.

[18] M. Assefi, E. Behravesh, G. Liu and A. P. Tafti, “Big data
machine learning using apache spark MLlib,” 2017 IEEE
International Conference on Big Data (Big Data), IEEE, pp.
3492-3498. 2017.

[19] T. D. Nguyen, V. Nguyen, T. Le and D. Phung, “Distributed
data augmented support vector machine on spark,” 2016 23rd
International Conference on Pattern Recognition (ICPR),
IEEE, pp. 498-503, 2016.

37Copyright (c) IARIA, 2021. ISBN: 978-1-61208-842-6

ALLDATA 2021 : The Seventh International Conference on Big Data, Small Data, Linked Data and Open Data

