Screen Printed BaTiO_{3} for $\mathbf{C O}_{\mathbf{2}}$ Gas Sensor

Fabien Le Pennec, Sandrine Bernardini, Mohamad Hijazi, Carine Perrin-Pellegrino, Khalifa Aguir and Marc Bendahan
Aix Marseille Univ, Université de Toulon, CNRS, IM2NP, Marseille, France
e-mails: \{fabien.lepennec, sandrine.bernardini, mohamad.hijazi, carine.perrin-pellegrino, khalifa.aguir, marc.bendahan\} @im2np.fr

Abstract

In this work, we report on a new evaluation of metal oxide based on carbon dioxide sensors, using barium titanate nano-powder. The sensing principle is based on a change in conductance of semiconducting oxides when carbon dioxide is present. The sensitive layer was deposited on a $\mathbf{S i O}_{2} / \mathbf{S i}$ substrate by screen printing technology. The sensor responses were studied between 100 and 5000 ppm of carbon dioxide in the air with $\mathbf{5 0 \%}$ relative humidity. The sensor presents good sensitivity toward carbon dioxide, with a stable baseline, and fast response and recovery time. These results are promising for carbon dioxide sensing.

Keywords-Gas Sensor; $\mathrm{CO}_{2} ; \mathrm{BaTiO}_{3} ;$ Metal Oxide; Environment.

I. INTRODUCTION

Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ is one of the main gases responsible for the greenhouse effect and, consequently, the global warming trends. Hence, its monitoring is subject of a major societal challenge. With an outdoors concentration up to 500 ppm in urban areas, the ventilation balance is affected and the development of reliable low-cost CO_{2} sensors at multiple sites becomes an industrial strategy. Nowadays, the most commonly used method to detect CO_{2} is based on optical sensors. Despite their efficiency in CO_{2} detection, these technologies are expensive, have high electric consumption and are not fully miniaturized. Metal oxide gas sensors show potential features such as low-cost, mass production, miniaturization, fast response and recovery times.

In 1991, Ishihara et al. [1] first proposed a composite material based on p and n -type semiconductors, by mixing copper oxide (CuO) and barium titanate $\left(\mathrm{BaTiO}_{3}\right)$ powders. In 2001, Liao et al. [2] showed that pure CuO and pure BaTiO_{3} gave no response to CO_{2}. Since then, these pure materials have been definitively abandoned and only composites have been studied. But, the sensors of Liao et al. [2] were in the very basic form of large discs of sintered powders with unknown granularity, connected by Ag paste electrodes. Thus, we propose herein a new evaluation of BaTiO_{3} based CO_{2} sensors.

The rest of the paper is structured as follows. In Section II, we describe our approach based on BaTiO_{3} nano-powder deposition on platinum interdigitated electrodes by screen printing, a low cost, and an easily used technique. Then, in Section III, the sensing results are discussed based on a change in conductance of BaTiO_{3} when CO_{2} are introduced.

Finally, a conclusion is given in Section IV.

II. DESCRIPTION OF APPROACH AND TECHNIQUES

This description is composed of two parts; one is the sensing film fabrication; the other is the measurement system set-up.

A. Gas sensors

Our gas sensor is made of $\mathrm{Ti} / \mathrm{Pt}$ interdigitated electrodes (5 and 100 nm , respectively) deposited on $\mathrm{Si} / \mathrm{SiO}_{2}$ by magnetron sputtering. BaTiO_{3} thick films were deposited by screen printing on these electrodes to produce a CO_{2} sensitive layer. BaTiO_{3} nano-powder ($<100 \mathrm{~nm}, 4 \mathrm{~g}$) was mixed with glycerol (1.5 g) and screen printed on $\mathrm{Si} / \mathrm{SiO}_{2}$ substrate with interdigitated platinum electrodes spaced by $50 \mu \mathrm{~m}$ (Figure 1).

Figure 1. Sample image of $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate $\left(4 \times 4 \mathrm{~mm}^{2}\right)$ with platinum electrodes (bottom) and the final sensor with the BaTiO_{3} thick film (top).

The deposited film was annealed at $400^{\circ} \mathrm{C}$ on a hotplate, in ambient air. The film structure was determined by X-Ray Diffraction (XRD) with a Philip's X'Pert MPD equipment ($\lambda=1.54 \AA$).

B. Setup

0.1 V DC voltage was applied to the sample while the electrical resistance was monitored by a homemade LabVIEW program using a Keithley Model 2450 Source Measure Unit (SMU) Instrument (Keithley, U.S.A.). Dry air (no humidity) was used as both the reference and the carrier gas. A gas dilution and humidification system generates an output mixture at the target CO_{2} concentrations (1 to 5000 $\mathrm{ppm})$ with a variable humidity (0% to 90%). The sensing properties of BaTiO_{3} sensors were tested by measuring the sensor resistance for 5 min under CO_{2} diluted in dry air and in humid air with a standard Relative Humidity (RH) value of 50%. The sensors were operated at several temperatures from $200^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$ on a hotplate. A constant total flow was maintained at 500 Standard Cubic Centimeters per Minute (SCCM) via mass flow controllers.

III. RESULTS AND DISCUSSIONS

The XRD diffractogram of BaTiO_{3} thick film (Figure 2) shows the presence of BaTiO_{3} nanocrystals in the tetragonal phase of BaTiO_{3} [3].

Figure 2. BaTiO_{3} diffractogram using $\lambda=1.54 \AA$ (Philip's X'Pert MRD).
The BaTiO_{3} sensors for different CO_{2} concentrations provide a measurable response depending on the CO_{2} concentrations in the $100-5000 \mathrm{ppm}$ range and $50 \% \mathrm{RH}$ at various temperatures. The higher response amplitude variations were obtained at $280^{\circ} \mathrm{C}$. Figures 3 and 4 show, respectively, the response and the sensitivity of the BaTiO_{3} sensor under CO_{2} in the air with $50 \% \mathrm{RH}$ at $280{ }^{\circ} \mathrm{C}$, the optimum working temperature. It gives reversible responses to CO_{2} concentrations between 100 ppm and 5000 ppm .

Figure 3. Resistive responses of BaTiO_{3} to six CO_{2} concentrations with 50% RH at $280^{\circ} \mathrm{C}$.

The sensor response is defined in (1) as the ratio between the sensor resistance under CO_{2} exposure and the sensor resistance in the air:

$$
\begin{equation*}
\mathrm{R}=\mathrm{R}_{\mathrm{gas}} / \mathrm{R}_{\mathrm{air}} \tag{1}
\end{equation*}
$$

where $\mathrm{R}_{\text {air }}$ is the sensor resistance through humid airflow and $\mathrm{R}_{\mathrm{gas}}$ the sensor resistance in the presence of CO_{2}.

The response time was less than 2 minutes and the recovery time was about 5 minutes. The responses are proportional to the CO_{2} concentrations, and they restored the original baseline in less than 5 minutes.

Figure 4. Sensitivity response of BaTiO_{3} to different concentrations of CO_{2} with $50 \% \mathrm{RH}$ at $280^{\circ} \mathrm{C}$.

These results are in agreement with the recent review on chemiresistive CO_{2} gas sensors [4].

IV. Conclusions

This work reported preliminary results on a screen printing BaTiO_{3} sensor working at an optimum temperature of $280^{\circ} \mathrm{C}$ and for $50 \% \mathrm{RH}$. Our experiments showed stable baseline responses with fast response/recovery times towards CO_{2}. These sensors seem promising for measuring indoor and outdoor air quality and for CO_{2} detection. However, after a few weeks, using the same operational conditions, the sensor responses were weakened on the record. New experiments and analyses are in progress to understand this phenomenon.

ACKNOWLEDGMENT

The authors thank Mr. A. Combes and Dr. T. Fiorido for their technical support.

REFERENCES

[1] T. Ishihara, K. Kometani, M. Hashida, and Y. Takita, "Application of Mixed Oxide Capacitor to the Selective Carbon Dioxide Sensor", J. Electrochem. Soc., 138, 1991, pp. 173-176, doi: 10.1149/1.2085530.
[2] B. Liao, Q. Wei, K. Wang, and Y. Liu, "Study on $\mathrm{CuO}-\mathrm{BaTiO}_{3}$ semiconductor CO_{2} ", Sens. Actuators B:Chem., 80, 2001, pp. 208-214, doi: 10.1016/S0925-4005(01)00892-9.
[3] H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic, "X-ray diffraction powder patterns" National Bureau of Standards, Circular 539, 3, 1954, pp. 44.
[4] Y. Lin and Z. Fan, "Compositing strategies to enhance the performance of chemiresistive CO_{2} gas sensors", Materials Science in Semiconductor Processing, vol. 107, 2020, pp. 104820-104841, doi: 10.1016/j.mssp.2019.104820.

