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Abstract—Due to the growing interest for in-home activity
monitoring, the tracking of appliances use, usually referred to
as Non-Intrusive Load Monitoring (NILM), has to address new
challenges. Indeed, as NILM has long been motivated by potential
energy savings, most event detectors for NILM have focused on
the detection of on- or off-switches of high power devices. On the
contrary, in-home monitoring typically relies on the detection of
events related to low-power devices from potentially noisy signals.
Additionally, approaches that apply expert heuristics to a single-
variate input, often favored for their low complexity and real-time
applicability, can be overly sensitive to the choice of an arbitrary
defined detection threshold. This paper aims at decreasing the
sensitivity of a detector based on expert heuristic by applying
it to the Hotelling-T2 statistic of a multivariate input, computed
online from the current and voltage inputs. Focusing on realistic
scenarios, the approach is evaluated on a dataset recorded in a
real apartment using a commercially available smart-meter. The
results, expressed in terms of precision, recall and F-score, show
that the proposed approach can both yield higher performance
and be less sensitive to the choice of the detection threshold.
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I. INTRODUCTION

Non-intrusive load monitoring (NILM), introduced by
George Hart in the 1980s [1], denotes the tracking of ap-
pliances use through analysis of their power consumption.
The growing presence of smart meters in homes, encouraged,
e.g., by a directive of the European Union in 2009 [2], has
led to renewed research efforts in NILM. These efforts have
been mostly motivated by the potential for energy savings and,
therefore, focussed on the monitoring of high power devices.
However, due to the ageing population [3], applications such
as activity monitoring for disease prevention [4][5] or the
surveillance of life-critical devices present in homes, e.g., for
respiration support [6], have become of crucial importance.
The main advantage of NILM-based monitoring system is their
unobtrusiveness, as they do not require an additional installa-
tion. Additionally, a NILM-system could prevent other, more
obtrusive, installations such as power plugs. Consequently,
NILM approaches able to reliably monitor the use of low
power devices in realistic settings are urgently needed.

Many approaches extract multiple features from the
recorded power consumption signal in order to determine
the active appliances during a given time sequence. It has

been proposed in [1] to use both reactive and real power.
However, due to the high correlation between real and re-
active power consumption, these features are not sufficient
for the classification of low power devices [7]. As a result,
numerous features for NILM have been introduced in recent
years such as the current’s harmonic [8], the shape of the
so-called VI-trajectory [9] or the poles and residues of the
power signal’s impulse response [10]. The extraction of these
complex features require to record the current and voltage of
the power supply at a sampling frequency much higher than
50 Hz. Additionally, the applied classifier typically relies on
an event based method rather than a state-based method and
necessitate to segment the recorded signal into sequences of
interest. This segmentation requires an event detector, i.e., the
detection of on- and off-switches of appliances. This paper
focuses on event detection for NILM in realistic scenarios.

Approaches aiming at event detection for NILM can be
broadly split between three categories, namely, based on expert
heuristics, matched filtering, or probabilistic methods [11].
Though promising, probabilistic methods based on, e.g., gener-
alized likelihood ratio (GLR) [12], goodness-of-fit (GOF) [13]
or cumulative sum control (CuSuM) [14] can be compu-
tationaly costly and often rely on long sequences of input
signal, making them impractical in many realistic settings.
Approaches based on matched filtering, e.g., using Cepstrum
smoothing [15] or Hilbert transformation [16] can be sensitive
to mismatch between the dataset used to tune the approach and
the environment in which it is tested. Though promising, the
approach presented in [15] showed largely lower performance
when tested on data containing low-power devices [17].

Approaches based on expert heuristics rely on the choice
of a somewhat arbitrarily defined threshold or rule-based
approach [1][18], on which their performance can be greatly
sensitive. However, relying on features whose extraction is
typically computationally inexpensive, e.g., standard deviation
of the current signal envelope [19]. Approaches based on
expert heuristics are easily implemented. Therefore, reducing
their sensitivity on an arbitrary defined threshold could be of
great interest. Contrary to most expert heuristic approaches
that use a single-parameter as input, the approach proposed in
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this paper aims at decreasing the sensitivity of a detector based
on a expert heuristic by applying the Hotelling-T2 statistic to
a multivariate input.

In order to evaluate the benefit of the proposed approach,
a dataset recorded in realistic conditions has to be used.
Indeed, most datasets from the literature only considered low
frequency systems [1][12][20], specific devices [18] or sets
of (mostly) high-power devices [13][14][16][21]. Additionally,
those studies were often performed under laboratory condi-
tions [1][14], i.e., in absence of capacitive effects of the long
supply line and other environmental noise factors present in
a real apartment. Such signal disturbances can have a large
impact. Consequently, the evaluation conducted in this paper
is done using a dataset recorded in a real apartment using a
commercially available smart-meter.

The remainder of this paper is structured as follows. First,
the proposed approach and the expert heuristic approach
that is used as benchmark is described in Section II. The
recorded dataset and experimental framework are described in
Section III and the results in Section IV. Section V concludes
the paper.

II. PROPOSED APPROACH

In this section the proposed approach is described.

A. Threshold based NILM event detection

The signal recorded from a monitoring device, e.g., a smart
meter, typically consists of M = 2 channels representing the
current in Ampere and the voltage in Volts. In the remainder
of this paper, we use xm(n) to denote the signal recorded at a
sampling frequency fs, at sample index n, in the m-th channel.
We arbitrary set m = 0 as the index of the current channel and
m = 1 as the index of the voltage channel. Event detection
methods for NILM based on experts heuristics, such as the
one proposed in [19], typically rely on segmenting the input
signal into overlapping frames of length L with an hop size of
H samples and assigning a label d(`) ∈ [0, 1] equal to 1 if an
event is detected in the `-th frame and equal to 0 otherwise.

The methods considered in this paper rely on computing a
change quantifying value v(`) ∈ R≥0, whose computation is
the focus of the next subsection, for each frame, and applying

d(`) =

{
1 if v(`) ≥ τ(`),
0 otherwise,

(1)

where τ(`) denotes a decision threshold. It can be noted
that contrary to methods in which the decision threshold is
computed from a complete signal utterance, e.g., [13][21], this
paper considers event detection for real-time application and
uses a frame dependant threshold computed as

τ(`) = α · σv(`− δ), (2)

where δ denotes a decision delay and where

σv(`) =

√√√√√ 1

∆− 1

∆−1∑
i=0

∣∣∣∣∣∣v(`− i)− 1

∆

∆−1∑
j=0

v(`− j)

∣∣∣∣∣∣
2

(3)

denotes the standard deviation of v(`) computed over ∆
buffered values. In practical applications, the values of δ and
∆ are often hardware dependant. However, the choice of value
assigned to the constant α in (2), though of critical importance
for the detection performance, is typically arbitrarily defined.
The sensitivity of the detection performance to the choice of α
can be limited if the value v(`) suitably quantifies the potential
changes in the signal at a given time frame, i.e. v(`) ≈ 0 when
no change is present.

B. Change quantification

As most similar detectors, the approach proposed in [19]
that we chose as benchmark (cf. Section IV) due to its low
computational complexity and promising performance only
uses the recorded current to quantifies the change in the input
signal, i.e., computes v(`) from x0(n) only. This computation
relies on extracting for each frame, the envelope e`(n) of
length Le = H · (E− 1) +L, where E denotes the number of
frames used in the envelope extraction. The envelope e`(n) is
computed as the interpolation, e.g., linear or cubic, between
the maximums of |x0(n)| in each of the E considered frames
and, assuming that E {e`(n)} is constant in absence of event,
the change quantifying value v(`) can be computed as the
Change of Mean Amplitude Envelope (CMAE)

v(`) =
1

Le

∣∣∣∣∣
Le−1∑
i=0

e`−1(i)− e`(i)

∣∣∣∣∣ . (4)

Unfortunately computing v(`) as in (4) can, as stated in [19],
result in an unreliable detector in presence of noisy signals.
We aim at improving the reliability of the threshold based
detector from (2) by improving the computation of v(`).

Preliminary works showed that using multiple features can
be extracted from a NILM-signal. In general those features
can be separated into different domains:

1) power related features in time domain
2) power related features in frequency domain
3) features related to the phase difference between current

an voltage

Therefore, we propose to use a feature from each feature
domain as the information about the NILM-signal contained
by a feature is different for every domain. More specifically,
we have shown in [22] that the variance of the current, taking
advantage of both input channels, the phase of the input
signal and, the current’s frequency ratio were beneficial. In
our proposed approach, we extract for each frame a Lv = 3
elements feature vector

v(`) =
[
σ2
x(`) , φ(`) , ω(`)

]T
, (5)

where ·T denotes the transpose operator and where σ2
x(`), φ(`)

and ω(`) denote the current variance, the phase and the current
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frequency ratio computed as

σ2
x(`) =

1

L− 1

L−1∑
i=0

∣∣∣∣∣∣x0(`H + i)− 1

L

L−1∑
j=0

x0(`H + j)

∣∣∣∣∣∣
2

(6)

φ(`) = cos−1

∑L−1
i=0 x0(`H + i) · x1(`H + i)√∑L−1

i=0 x0(`H + i)2 ·
√∑L−1

i=0 x1(`H + i)2

(7)

ω(`) =

∑L−1
i=0

∣∣∣x̃f (`H + i)− 1
L

∑L−1
j=0 x̃f (`H + j)

∣∣∣2∑L−1
i=0

∣∣∣xf (`H + i)− 1
L

∑L−1
j=0 xf (`H + j)

∣∣∣2 , (8)

where x̃f (n) denotes the output of a bandpass filter applied to
x0(n) and centred around the carrier frequency f of the input
signal (cf. Section III-B) and xf (n) = x0(n)− x̃f (n).

We consider each vector v(`) to be a single independent
realisation of a random process with an Lv-dimensional F-
distribution and define the sequences of vectors V0(`) and
V1(`) of length L0 and L1, respectively, as

V0(`) = {v(`− L0) , · · · , v(`− 2) , v(`− 1)}, (9)
V1(`) = {v(`) , v(`+ 1) , · · · , v(`+ L1 − 1)}. (10)

An event is considered to occur at frame ` if the V0() and V1()
are composed of realisations of significantly distinct distribu-
tions. This significance of can be expressed by the Hotelling-
T2 statistic [23]. The computation of the Hotelling-T2 statistic
depends on the homogeneity of the partial covariance matrices
(Γ0(`) and Γ1(`)) computed separately from the vectors V0(`)
and V1(`). If, using the box test [24], these matrices are
determined to be homogeneous, the Hotelling-T2 statistic is
computed as

T 2(`) =
L0 · L1

L0 + L1
·
(
µ0(`)− µ1(`)

)T·
Γ(`)−1 ·

(
µ0(`)− µ1(`)

)
,

(11)

otherwise,

T 2(`) =
(
µ0(`)− µ1(`)

)T · (Γ0(`)−1

L0
− Γ1(`)−1

L1

)
·(

µ0(`)− µ1(`)
)
,

(12)

where µ0(`) and µ1(`) denote the average of the vectors in
V0(`) and V1(`), respectively, and Γ(`) denotes the Lv × Lv

covariance matrix computed using the vectors in both se-
quences. Finally, the label d(`) can be assigned by substituting
v(`) by T 2(`) in (1) and (3).

III. EXPERIMENT

In this section the experiment is presented.

A. Collected Dataset

We evaluated the approach proposed in Section II on a
dataset constructed to evaluate the performance of NILM

approaches applied to activities monitoring for health appli-
cations. The data was recorded in a three-room apartment
occupied by two elderly people who agreed to take part on
the study. The signals were recorded using a commercially
available smart-meter placed on the main power permitting to
record a continuous 2-channel stream, i.e., current and voltage,
sampled at the sampling frequency fs =4800 Hz. To pass the
data to a measurement computer an optical interface on the
backside of the smart meter was used. The recorded current
and voltage stream was stored with a resolution of 16 bits.
Due to the recording conditions, the recorded signals contain
the disturbances to be expected in such a realistic setting,
e.g., noise generated by the supply line itself. Therefore, the
dataset is particularly valuable to assess the performance to be
realistically expected from NILM approaches.

A total of 36 individual appliances were present in the
apartment and each one was switched on / off at least once
during the recording session. Without storing the phase to
which the appliances were connected, a total of 142 events
to be detected. The distribution of these appliances in terms
of both types and location is summarised in Figure 1. It can
be seen that, as expected in a real apartment, most appliances
were low power and a large number of lamps were present.
It can be noted that, e.g., the monitoring of lamp usage can
be a good indicator of activity and location of the user in
an apartment. Additionally, aiming at health applications, a
respiratory support machine (Resp. support) was among the
considered appliances and is an example of appliance whose
reliable monitoring could potentially be life critical.

All signals were recorded in a session of over an hour
during which the timestamp of each on- off-switch event
has been manually annotated. Events were setup to occur at
large interval from one-another in order to avoid simultaneous
events that could hinder the clustering used prior to the
computation of the performance of the considered approaches,
as described in the next subsection.

B. Evaluation

In order to evaluate the performance of the proposed ap-
proach, i.e., the use of Hotelling-T2 statistic as input of the
threshold based detector, and of the considered benchmark,
i.e., using CMAE, in realistic framework and to avoid the
detrimental effect of repeated approach initialisation, the entire
dataset was processed as a single stream. The parameters were
extracted using a 40 ms window, L = 192, and a 50 % hopsize,
H = 96. The envelope used in the case of our benchmark
CMAE was extracted using E = 4 blocks, similarly as
in [19]. However, contrary to [19], a linear interpolation
was used instead of a cubic one. This choice reduced the
number of false positive obtained on the considered dataset.
The frequency ratio ω(`) was computed by using a bandpass
filter, designed as a second order butterworth filter, centred
around the carrier frequency f =50 Hz with lower and higher
cutoff set at 35 Hz and 65 Hz, respectively. We fixed ∆ = 240
(50 ms) and δ = 144 (30 ms), cf. (2)-(3), and focused on the
influence of the arbitrary chosen threshold, considering the
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Figure 1. Distribution of the appliances used to record the evaluation dataset.

values α ∈ {1 · · · 30}. It can be noted that the exact values of
∆ and δ seemed to have a limited impact on the performance
of the considered approaches. The box test and computation
of T 2(`), cf. (11) and (12), were based on the implementation
provided in [25] and according to its recommendation we used
L0 = L1 = 100.

The performance of the considered approaches was deter-
mined using the Precision, Recall and F-score defined as [26]

Precision =
True positives

True positives + False positives
, (13)

Recall =
True positives

True positives + False negatives
, (14)

F-score = 2 · Precision · Recall
Precision + Recall

, (15)

where the number of true positives and false negatives were
determined as follows. First, events detected within the same
8 s window were considered as a single-event. The same
tolerance was used to determine if a detected event should
be assigned to an annotated event, i.e., true positive, or to
none, i.e., false positive. Annotated events with no assigned
detection were considered false negatives.

IV. RESULTS

An example of the extracted features from the smart meter
input signal and the resulting Hotelling value that represents
the combination of these features is shown in Figure 2. This
figure shows that relatively small changes in the variance
(i.e., at the 15th second) are accompanied by relatively big
changes in the phase. As a result, the Hotelling value shows a
clear peak around the 15th second which should be easier to
detect by the event detection algorithm than the pure variance.
Therefore, this observation suits the intuition that the usage of
multiple non-related features may improve the detection of
events in a NILM-signal.

The observed precision and recall as function of α are
depicted in Figure 3. It appears that in the case of both CMAE
and Hotelling-T2, the precision increases with the value α,
until it reaches a plateau, which in both cases corresponds
to a precision of about 0.6. This behaviour is to be expected
as increasing the value of α reduces the likelihood of false
positives.

On the other hand, high values of α would increase the
likelihood of false negative. This behavior can be noticed
by observing the recall (Figure 3), for which the proposed
approach exhibits a large advantage compared to the use of
CMAE. Using CMAE, the recall decrease sharply for values
of α ranging from 3 to 7 and ultimately reaches a plateau with
a recall of 0.2. On the contrary, using Hotelling-T2 statistic,
recall decreases slowly with increasing values of α with a
plateau corresponding to a recall of 0.8. This shows that the
proposed approach is less likely to introduce false negative,
even for overly large values of α.

The advantage of the proposed method over the use of
CMAE is best noticed by observing the F-score depicted in
Figure 4. As a logical consequence of the behaviour observed
in terms of precision and recall, using CMAE requires an
accurate setting of α in order to yield the optimal F-score.
Indeed, F-score obtained using CMAE decreases sharply for
α values different than 3 or 4. On the other hand, not only
does the use of Hotelling-T2 statistic yields a higher maximum
F-score with a value of 0.7, but its performance is much less
sensitive to the setting of α value.

Further improvement of the presented approach could be
achieved by using the multivariate approach with other event
detectors or by improving the multivariate statistic itself, i.e.
using multivariate likelihood detectors [27].

V. CONCLUSION

This paper proposes to use Hotelling-T2 statistic, computed
from a multivariate input, in order to reduce the sensitivity
of an event detector for NILM based on expert heuristics
to the value of an arbitrary defined detection threshold. The
multivariate input is computed online from a recorded signal
of current and voltage. The proposed approach is compared to
the use of CMAE, which, as many similar approaches, does
not take advantage of the available voltage input or frequency-
related features.

A dataset recorded in real environment, i.e., containing
appliances relevant to activities monitoring and noisy signal,
was used to evaluate the proposed approach. The results,
expressed in terms of precision, recall and F-score, show that
not only does the proposed approach yield better performance
than the considered benchmark, this performance is much less
sensitive to the setting of the detection threshold.

Even if using multiple features for event detection is compu-
tationally more expensive, we think this approach improves the
event detection in NILM systems in future implementations,
epecially for the detection of low-power devices in high-
frequency load signals. In future work, we will evaluate the
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Figure 2. Extracted features and resulting Hotelling value from one phase. Values are normalized between 0 and 1 for readability.
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Figure 3. Precision and recall as function of applied threshold.

presented approach with other high-frequency datasets and
event detection algorithms.
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