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Abstract—One of the key elements of the Semantic Web is
the Resource Description Framework (RDF). Efficient storage
and retrieval of RDF data in large scale settings is still
challenging and existing solutions are monolithic and thus
not very flexible from a software engineering point of view.
In this paper, we propose a modular system, based on the
scalable Content-Addressable Network (CAN), which gives the
possibility to store and retrieve RDF data in large scale settings.
We identified and isolated key components forming such system
in our design architecture. We have evaluated our system using
the Grid’5000 testbed over 300 peers on 75 machines and the
outcome of these micro-benchmarks show interesting results in
terms of scalability and concurrent queries.

Keywords- Semantic Web; Peer-to-Peer (P2P); Resource De-
scription Framework (RDF); RDF data indexing; RDF query
processing

I. INTRODUCTION

The Semantic Web [1] promises to deliver a new expe-
rience of the Web through the usage of more structurally
complex data based on the Resource Description Framework
(RDF) data model [2]. Realising this vision in large scale
settings will be hardly feasible without proper and scalable
infrastructures such as the ones proposed by the Peer-to-
Peer (P2P) community in the last decade. More specifically,
Structured Overlay Networks (SONs) such as CAN (Content
Addressable Network) [3] and Chord [4] have proved to be
an efficient and scalable solution for data storage and re-
trieval in large scale distributed environments [5], [6]. These
overlays, which offer a practical Distributed Hash Table
(DHT) abstraction, use a variant of consistent hashing [7] for
assigning keys to nodes. Consistent hashing distributes the
keys uniformly among all nodes, which provides a lookup
performance of O(log N) where N is the total number of
nodes in the network. However, such protocols can not
handle more advanced queries such as partial keywords,
wildcards, range queries, etc. because consistent hashing is
not order-preserving; it randomly distributes lexicographi-
cally adjacent keys among all nodes. More advanced SONs
such as P-Grid [8] and PHT [9] introduced the capability to
handle more complex queries (e.g., range or prefix queries)
but are still limited regarding the expressiveness of the
queries they support.

The need to specifically manage a large amount of RDF
data has triggered the concept of RDF store, which can

be seen as a kind of “database” allowing to query RDF
data using advanced query languages such as SPARQL [10].
The first generation for RDF data storage systems has
spawned centralized RDF repositories such as RDFS-
tore [11], Jena [12] and RDFDB [13]. Although these RDF
stores are simple in their design, they suffer from the
traditional limitations of centralized systems such as single
point of failure, performance bottlenecks, etc. The Semantic
Web community can benefit from the research carried out in
P2P systems to overcome these issues. As a result, the com-
bination of concepts provided by the Semantic Web and P2P
together with efficient data management mechanisms seems
to be a good basis to build scalable distributed RDF storage
infrastructure. SPARQL is a very expressive language and
supporting it in a distributed fashion is challenging. Various
solutions based on P2P solutions have been proposed to
process RDF data in a distributed way [14]–[16], but their
architectures are rather complex and lack flexibility.
To meet the storage and querying requirements of large
scale RDF stores, we revisit, in this paper, a distributed
infrastructure that brings together RDF data processing and
structured P2P concepts while keeping simplicity, reusability
and flexibility in mind. The proposed architecture, based on
a modified version of CAN [3], does not rely on consistent
hashing. We chose to store the data in a lexicographical
order in a three dimensional CAN which (i) eases RDF query
processing, (ii) reflects the nature of RDF triples (iii) retains
the benefits of deterministic routing [17].

The contributions of this paper are (i) the design of a
fully decentralized P2P infrastructure for RDF data storage
and retrieval, based on three dimensional CAN overlay,
written in Java with the ProActive [18] middleware, (ii) the
implementation of the proposed design with clear separation
between the sub-components of the whole API (e.g., storage
component, query processing, etc.). This modular architec-
ture means it is possible to substitute sub-components (e.g.,
using another local RDF store). Finally, (iii) the evaluation
of the proposed solution through micro-benchmarks carried
out on the Grid’5000 test bed.

The remainder of the paper is organized as follows. In
Section II, we give an overview of the related work for RDF
data storage and retrieval in P2P systems. In Section III, we
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introduce the proposed distributed infrastructure for RDF
data storage and retrieval and present our data indexing and
query processing mechanisms. The experimental evaluation
of our approach is reported in Section IV. Finally, Section V
concludes the paper and points out future research directions.

II. RELATED WORK

Many P2P-based solutions have been proposed to build
distributed RDF repositories [20]. Some of them are built on
top of super-peer-based infrastructure as in Edutella [14]. In
this approach, a set of nodes are selected to form the super-
peer network. Each super peer is connected to a number of
leaf nodes. Super-peer nodes manage local RDF repositories
and are responsible for query processing. This approach is
not scalable for two main reasons. First, the super-peer nodes
are a single point of failure. Second, it uses the flooding-like
search mechanism to route queries between super-peers.

By using DHTs, other systems, such as RDFPeers [15],
address the scalability issue in the previous approach. RDF-
Peers is a distributed repository built on top of Multi-
Attribute Addressable Network (MAAN) [24]. Each triple is
indexed three times by hashing its subject, its predicate and
its object. This approach supports the processing of atomic
triple patterns as well as conjunctive patterns limited to the
same variable in the subject (e.g., (?s, p1, o1) ∧ (?s, p2, o2)).
The query processing algorithm intersects the candidate sets
for the subject variable by routing them through the peers
that hold the matching triples for each pattern.

From a topology point of view, the structure that comes
closest to our approach is RDFCube [16], as it is also a three
dimensional space of subject, predicate and object. However,
RDFCube does not store any RDF triples. It is an indexation
scheme of RDFPeers. RDFCube coordinate space is made
of a set of cubes, having the same size, called cells. Each
cell contains an existence-flag, labeled e-flag, indicating the
presence (e-flag=1) or the absence (e-flag=0) of a triple
in that cell. It is primarily used to reduce the network
traffic for processing join queries over RDFPeers repository
by narrowing down the number of candidate triples so to
reduce the amount of data that has to be transferred among
nodes. GridVine [19] is built on top of P-Grid [8] and uses
a semantic overlay for managing and mapping data and
meta-data schemas on top of the physical layer. GridVine
reuses two primitives of P-Grid: insert(key, value) and
retrieve(key) for respectively data storage and retrieval.
Triples are associated with three keys based on their subjects,
objects and predicates. A lookup operation is performed by
hashing the constant term(s) of the triple pattern. Once the
key space is discovered, the query will be forwarded to peers
responsible for that key space.
From the data indexing point of view, almost of the proposed
approaches for RDF data storage and retrieval use hashing
approaches to map data into the overlay. However, even
if this indexing mechanism enables the efficient key-based

lookup, resolving more complex queries such as conjunctive
queries may led to an expensive query resolution process.

III. CAN-BASED DISTRIBUTED RDF REPOSITORY

The aim behind the P2P infrastructure proposed in this
work is the RDF data storage and retrieval in a distributed
environment.

At the architectural level, it is based on the original idea
of CAN [3]. A CAN is a structured P2P network based
on a d-dimensional Cartesian coordinate space labeled D.
This space is dynamically partitioned among all peers in the
system such that each node is responsible for storing data in
a zone of D. To store the (k, v) pair (insert operation in
Figure 1), the key k is deterministically mapped onto a point
i in D and then the value v is stored by the node responsible
for the zone comprising i. The lookup (retrieve operation
in Figure 1) for the value corresponding to a key k is
achieved by applying the same deterministic function on k to
map it onto i. The query is iteratively routed from one peer
to its adjacent neighbors, with closest zones’coordinates to
the searched key, until it reaches the node responsible for
that key.

insert(k)

retrieve(k)

Figure 1. Routing in CAN: data storage (insert(k, v)) and retrieval
(retrieve(k)).

At the data representation level, data is presented in
the RDF format [2]. RDF is a W3C standard aiming to
improve the World Wide Web with machine processable
semantic data. RDF provides a powerful abstract data model
for structured knowledge representation and is used to
describe semantic relationship among data. Statements about
resources are in the form of <subject,predicate,object>
expressions which are known as triples in the RDF
terminology. The subject of a triple denotes the resource

that the statement is about, the predicate denotes a property
or a characteristic of the subject, and the object presents the
value of the property. These triples, if connected together,
form a directed graph where arcs are always directed from
resources (subjects) to values (objects).

When designing an RDF data storage and retrieval, a
set of key challenges have to be taken into account in
order to come up with a scalable distributed RDF infras-
tructure. From the system scalability point of view, and
unlike centralized solutions for massive RDF data storage
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and retrieval which raise several issues (e.g., single point
of failure, poor scalability), we argue that the use of a
structured P2P overlay, at the architectural level, ensures the
system’s scalability. It also offers location transparency, that
is, queries can be issued by any peer without any knowledge
regarding the location of the stored data. Scalability needs
to be achieved also at the query level by providing the
ability to perform concurrent complex queries. As the data
is expressed in RDF format, we use the SPARQL query
language, which is another W3C recommendation [10], used
to query RDF data. SPARQL queries could be in the form
of:

• atomic queries are triples where the subject, the pred-
icate and the object can either be variables or con-
stant values. As an example, the query q = (si, ?p, ?o)
looks, for a given subject si, for all possible objects
and predicates linked to si. These kinds of queries are
also called triple patterns.

• conjunctive queries are expressed as a conjunction of
a set of atomic triple patterns (subqueries).

• range queries have specified ranges on variables.
For instance, we consider the following query
q = (< s >< p >?o FILTER (v1 ≤ ?o ≤ v2)) with a
given subject s and a predicate p. It looks for a set of
objects, given by the variable ?o, such as v1 ≤ o ≤ v2.

As stated earlier, the intrinsic goal behind a distributed
RDF storage is to search for data provided by various
sources. As a first step towards this direction, we would
like to guarantee that the data can be found as long as the
source node responsible for that data is alive in the network.
This can be guaranteed by using a structured overlay model
for distributed RDF data storage and retrieval. In this work,
our distributed RDF storage repository relies on a three
dimensional coordinate space where each node is responsible
for a contiguous zone of the data space and handles its local
data store. In the following section, we detail the data storage
and retrieval process.

A. RDF Data Organization

The RDF storage repository is implemented using a
three dimensional CAN overlay with lexicographic order.
The three dimensions of the CAN coordinate space rep-
resent respectively the subject, the predicate and the ob-
ject of the stored RDF triple. From now, let us denote
by zsmin,zsmax, zpmin,zpmax, zomin and zomax, the minimum
(min) and the maximum (max) borders of a peer’s zone
according to the subject axis (zsmin, zsmax), the predicate
axis (zpmin, zpmax), and the object axis (zomin, zomax). We say
that a triple t =< s, p, o > ∈ z only if zsmin ≺ s ≺ zsmax,
zpmin ≺ p ≺ zpmax and zomin ≺ o ≺ zomax; where s, p, o

present respectively the subject, the predicate, and the object
of the triple t and z is a zone of the CAN overlay. Doing so,
a triple represents a point in the CAN space without using
hash functions.

n1n0

n2

n3
S-axis

s ∈ [zsmin, zsmax]?

s ∈ [zsmin, zsmax]

p ∈ [zpmin, zpmax]?

P-axis

O-axis

insert(t)
n4

n5

n6

...

ni

nj

s ∈ [zsmin, zsmax]

p ∈ [zpmin, zpmax]

o ∈ [zomin, zomax]?

t

Figure 2. Insertion of RDF triples.

For better understanding, consider the example presented
in Figure 2. Suppose that node n0 receives an insert(t)
request aiming to insert the RDF triple t in the network.
Since no element of t belongs to the zone of n0, and as
s fits into the zone of n1, n0 routes the insert message
to its neighbor n1 according to subject axis (S− axis).
The same process will be performed by n1, by means of
the predicate axis (P− axis) which in turn, will forward
the message to its neighbor n3. Once received, n3 checks
whether one of its neighbor is responsible for a zone such as
o belongs to. Since the target peer is not found, the message
will be forwarded at each step according to the object axis
(O− axis) to the neighbor with object coordinates which
are closest to o. The idea behind this indexing mechanism
is sketched in Algorithm 1.

Algorithm 1 Indexing algorithm
1: . Code for Peer Pi

2: upon event 〈Insert | t〉 from Pj

3: if t /∈ Zi then
4: if s or p or o closer to one of my Neighbors’

zones then
5: send 〈Insert | t〉 to Neighdim

6: end if
7: end if
8: end event

This indexing approach has several advantages. First, it
enables to process not only simple queries but also range
queries. Using hashing functions in a DHT approach makes
the management of such kind of queries expensive or even
impossible. Moreover, in contrast to hashing mechanism that
destroys the natural ordering of the stored information, the
lexicographic order preserves the semantic information of
the data so that it gives a form of clustering of triples
sharing a common prefix. In other words, this approach
allows that items with “close” values will be located in
contiguous peers. As a result, range queries, for instance, can
be resolved with a minimum number of hops. The routing
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process of an insert operation consists in finding the peer
managing the zone where the triple falls to. Routing query

messages is slightly more complex and will be explained
later in this section.
A closer look reveals that one downside with this approach
is that it is sensitive to the data distribution. RDF triples
with common prefixes might be stored on the same peer,
i.e., a node can become a hot zone. In the case where an
element is common to many triples, such as a frequently
occurring predicate (e.g., < rdf : type >), the triples can
still be dispatched on to different peers, depending on the
values of the other elements. However, when some elements
share the same namespace or prefix, the probability that they
end-up on a very small subset of all available peers is very
high. To avoid this potential issue, we try to automatically
remove namespaces or prefixes and only use the remaining
part for indexing and routing. Some care has to be taken
when doing this because if done too aggressively, we might
lose the clustering mentioned earlier. Note that this issue also
appears in other P2P implementations which rely on prefix-
based indexing with order-preserving hash functions [19].

In the general case, there are other solutions that can
be used to mitigate the impact of skewed data. First, one
can limit the CAN space if some specific information is
known about the data distribution. For instance, if it is
known that all subjects will have a prefix falling in a
small interval, then it is possible to instantiate the overlay
with the specified interval, avoiding empty zones. Second,
if at runtime some peers are overloaded, it is possible to
force new peers to join zones managing the highest number
of triples, hence lowering the load. Some more advanced
techniques have been proposed to deal with imbalance such
as duplicating data to underloaded neighbors or having peers
manage different zones [3].

B. RDF Data Processing

From the data retrieval perspective, efficient data lookup
is at the heart of P2P systems. Many systems, such as Chord,
relies on consistent hashing to uniformly store (key, value)
pairs over the key space. However, consistent hashing only
supports key-based data retrieval and is not a good candidate
to support range queries since adjacent keys are spread
over all nodes as stated earlier. Therefore, efficient lookup
mechanisms are needed to support not only simple atomic
queries but also conjunctive and disjunctive range queries.
Hereafter, we detail how the queries are supported by our
routing process:

• atomic queries are routed on the subject− axis of
the CAN overlay looking for a match on the subject
value si. Once a peer responsible for the specified value
si is found, it forwards the query through its neighbors
in the dimension where peers are most likely to store
corresponding triples based on their zones’s coordinates

• conjunctive queries are decomposed into atomic
queries and propagated accordingly.

• range queries are routed by first identifying the con-
stant part(s) in the query. Then the lowest and the high-
est values are located by going over the corresponding
axis. If all results are found locally, they are returned to
the query initiator. Otherwise, the query is forwarded
to neighbors that may contain other potential results.

In order to route a query, a client sends it to a peer
inside the overlay, the query initiator, as mentioned in
Algorithm 2 at line 2. Once received, this query will be
transformed, i.e., the initiator creates a message with addi-
tional information used for routing purposes (line 3), notably
a key corresponding to the coordinates the message must be
routed to. The next step consists of decomposing a complex
query, a conjunctive query for instance, into atomic queries
(line 5). Once we have these atomic queries, the peer sends
messages, in parallel, to its neighbors accordingly, that is,
if through them it can reach peers responsible for potential
matches (lines 6 - 8). Whenever a peer has to propagate the
message in different dimensions, it will de facto become a
synchronization point for future results, that is, it waits for
the results to come back and will merge the results before
sending them to the client node (lines 15 - 21). In parallel
of sending messages to its neighbors, the initiator will also
check its local datastore in case it has potential matches
for the query (line 10). Once neighbors receive a routing
message (line 23), they will check their local datastore in
case they can match the query (line 24) and return possible
results to the initiator (line 26) otherwise they propagate the
message to their neighbors accordingly (line 28). In order to
ease the routing of the results, each message will embed the
list of visited peers. This technique ensures that the forward
path is the same as the backward path, avoiding potential
issues related to NAT traversal, IP filtering, etc. that may
happen in case we want to establish a direct connection to
the initiator peer.

Figure 3 depicts various routing scenarios depending on
the parts within the triple pattern. If subject, predicate and
object are fixed, e.g., when performing an add, then the
only peer which potentially holds matching results will be
involved 3(a). In case the subject and the predicate are fixed,
the message will have to traverse the object dimension in
order to collect matching triples 3(b). When only the subject
is fixed, the routed message will have to cross the object
and predicate dimensions 3(c). Note that whenever a query
with only variables is processed, our approach naively uses
message flooding through each peer’s neighbors. Hence, it
may happen that a peer receives a message multiple times
from different dimensions as shown in Figure 3(d). These
duplicate messages will be ignored. Thanks to the way data
is indexed and stored, queries are restricted to a specific
subspace where candidate results are more likely to be
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Algorithm 2 SPARQL queries routing algorithm
1: . Code for the Query Initiator

2: upon event 〈Query | Q〉 from client

3: RQ← transformIntoRoutableQuery(Q)

4: if RQ is a complex query then
5: List of sub qi ← decomposeQuery(RQ)

6: for each sub qi do
7: send 〈SubQuery | sub qi〉 to Neighdim

8: end for each
9: end if

10: if local RDFs matches Q then
11: MergedRes←MergedRes ∪{local matched RDFs}
12: end if
13: end event
14:
15: upon event 〈SubQueryResults | Res〉 from Neighdim

16: MergedRes←MergedRes ∪ {Res}
17: Pending Sub q ← Pending Sub q \ {Neighdim}
18: if Pending Sub q == ∅ then
19: send 〈FinalRes | MergedRes〉 to client

20: end if
21: end event
22: . Code for the Neighborsdim
23: upon event 〈SubQuery | sub qi〉 from Initiator or Neighdim

24: if local RDFs matches sub qi then
25: Res← matched RDFs

26: send 〈SubQueryResults | Res〉 to Initiator

27: else
28: send 〈SubQuery | sub qi〉 to Neighdim

29: end if
30: end event

predicate

ob
je

ct

subject

(a) Fixed subject, object and predi-
cate

predicate

ob
je

ct

subject

(b) Fixed subject and predicate

predicate

ob
je

ct

subject

(c) Fixed subject

predicate

ob
je

ct

subject

(d) No fixed part

Figure 3. Example of message scope depending on constant parts in the
query.

found.

C. Modular Architecture

One of the goals when designing this distributed storage
was to be able to easily change or modify some parts.
A modular architecture is at the heart of the design,
clearly separating the infrastructure (a CAN overlay), the
query engine (using Jena [12]) and the storage system
(a BigOWLIM [21] repository) as depicted in Figure 4.
However, these elements do not work in isolation. Rather,
they require frequent interactions. In this section, we will
outline the different parts of our architecture, explaining
their functions and showing their relations.

Peer i
 

Reusable 
Abstractions
 

Query Manager

P2P substrate

Query 
decomposition and 
parsing (e.g. Jena)
 

CAN
overlay
 

Local RDF 
repository (e.g. 
BigOWLIM)
 

Reasoner

Figure 4. Modular architecture overview.

Query manager. Although the routing of the query is a
P2P substrate’s responsibility, part of the process requires
the analysis of the query in order to extract atomic queries
and their constant parts. This is performed using the Jena
Semantic Web Framework [12] which provides dedicated
operations. When a query returns data sets from multiple
peers, the merge/join operation also relies on Jena. In order
to experiment with the modularity aspect of our imple-
mentation, we have successfully swapped the query engine
for Sesame [22] without impacting the other parts of the
architecture.
P2P substrate. This “layer” is responsible for maintaining
the CAN infrastructure, routing messages and accessing the
local repository. The 3D CAN overlay is managed through
an Overlay object which is responsible for maintaining a
description of the zone managed by the current peer and
an up-to-date list of its neighbors. Changing the number of
dimensions of the CAN, e.g., to handle meta-data, requires
providing a modified implementation of the Overlay object.
To route a query, we first analyze it to determine its constant
parts, if any, which will be used to direct it to the target peer.
When there is not enough information to make a routing
decision, it is broadcasted to the neighboring peers which
will perform the same process.
Local storage abstraction. The local storage is ultimately
responsible for storing data and processing queries locally.

43Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems



It is important for the P2P infrastructure to be independent
from the storage implementation. All references are isolated
through an abstraction layer whose role is to manage the
differences between data structures and API between the
P2P and the storage implementations. Some requests require
the access to the local repository to read or write some
information. Although this is rather straightforward, some
care has to be taken regarding the commit of data to
the storage. With some implementations like BigOWLIM,
committing can take some time and thus should not be done
after each write operation. The peer can implement a policy
to only perform them when a threshold is reached (e.g., the
time passed since last commit aka commit interval, number
of write done, etc.) or when a read query has to be processed.

IV. EXPERIMENTAL EVALUATION

In order to validate our framework, we have performed
micro-benchmarks on an experimental testbed, Grid’5000.
The goal was twofold. First, we wanted to evaluate the over-
head induced by the distribution and the various software
layers between the repository and the end user. Second, we
wanted to evaluate the benefits of our approach, namely the
scalability in terms of concurrent access and the overlay
size. All the experiments presented in this section have
been performed on a 75-nodes cluster with 1Gb Ethernet
connectivity. Each node has 16GB of memory and two
Intel L5420 processors for a total of 8 cores. For the 300
peers experiments, there were 4 peers and 4 BigOWLIM
repositories per machine, each of them running in a separate
Java Virtual Machine.

A. Insertion of random data

Single peer insertion. The first experiment performs 1000
statements insertion and we measured the individual time
for each of them, on a CAN made of a single peer. The two
entities of this experiment, the caller and the peer, are located
on the same host. The commit interval was set to 500 ms
and 1000 random statements were added. Figure 5(a) shows
the duration of each individual call. On average, adding a
statement took 2.074 ms with slightly higher values for the
first insertions due to cold start.

In a second experiment, the caller and the peer were put
on separate hosts in order to measure the impact of the local
network link on the performance. As shown in Figure 5(b),
almost all add operations took less than 9 ms while less
than 6.7% took more than 10 ms. The average duration for
an add operation was 6 ms.
Multiple peer insertion. We have measured the time taken
to insert 1000 random statements in an overlay with different
number of peers, ranging from 1 to 300. Figures 6(a) and
Figure 6(b) show respectively the overall time when the calls
are performed using a single or 50 threads. As expected, the
more peers, the longer time is taken to add statements since
more peers are likely to be visited before finding the target
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Figure 5. Insertion of 1000 statements with one peer.

one. However, when performing the insertion concurrently,
the total time is decreased but still depending on the number
of peers. Depending on the various sizes of the zones of the
global space and the first peer randomly chosen for triple’s
insertion, the performance can vary, as can be seen with the
small downward spike on Figure 6(b) at around 80 peers. To
measure the benefits of concurrent access, we have measured
the time to add 1000 statements on a network of 300 peers
while varying the number of threads from 1 to 50. Results
in Figure 7 show a sharp drop of the total time, clearly
highlighting the benefits of concurrent access.
B. Queries using BSBM data

The Berlin SPARQL Benchmark (BSBM) [23] defines
a suite of benchmarks for comparing the performance of
storage systems across architectures. The benchmark is built
around an e-commerce use case in which a set of products
is offered by different vendors, with given reviews by
consumers regarding the various products. The following
experiment uses BSBM data with custom queries detailed
below. The dataset is generated using the BSBM data
generator for 666 products. It provides 250030 triples which
are organized following several categories: 2860 Product
Features, 14 Producers and 666 Products, 8 Vendors and
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Figure 6. Insertion of 1000 statements for a variable number of peers.
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Figure 7. Evolution of the time for concurrent insertion with 300 peers.

13320 Offers, 1 Rating Site with 339 Persons and 6660
Reviews. Out of this benchmark, we chose four queries to
execute on our infrastructure:

• Q1 finds all the producers from Germany
• Q2 retrieves triples having “purl:Review” as object
• Q3 retrieves triples having “rdf:type” as predicate
• Q4 returns a graph where “bsbm-ins:ProductType1”

instance appears

Q1 and Q4 are complex queries and will be decomposed
into two subqueries. Hence, we expect a longer processing

time for them. The number of matching triples for each
query is as follows:

Query Q1 Q2 Q3 Q4
# of results 1 6660 25920 677

Figure 8 shows the execution time and the number of
visited peers when processing Q1, Q2, Q3 and Q4. Note that
when a query reaches an already visited peer, it will not be
further forwarded, therefore we do not count it. Q1 is divided
into two subqueries with only a variable subject. Hence, it
can be efficiently routed and is forwarded to a small number
of peers. Q2 also has one variable and thus exhibits similar
performance. Q3 has two variables so it will be routed along
two dimensions on the CAN overlay, reaching a high number
of peers. Since it returns 25920 statements, the messages
will carry a bigger payload compared with other queries.
Finally, Q4 generates two subqueries with two variables
each, making it the request with the highest number of
visited peers. In the network of 300 peers, the two subqueries
have visited more than 85 peers.
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Figure 8. Custom queries with BSBM dataset on various overlays.

Summary. Regarding the statement insertion into the
distributed storage, although a single insertion has a low
performance, it is possible to perform them concurrently,
leading to a higher throughput. The performance of the query
processing phase strongly depends on the number of sub-
queries, the payload carried between peers and the number of
visited peers. While the payload depends on the complexity
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of the query itself (conjunctive/atomic query, number of
variables in a triple pattern, etc.), the number of visited peers
depends not only on the structure of the overlay but also on
the randomly chosen peer for initiating the query.

V. CONCLUSION

In this paper we have presented a distributed RDF storage
based on a structured P2P infrastructure. RDF triples are
mapped on a three dimensional CAN overlay based on
the value of its elements. The global space is partitioned
into zones and each peer is responsible for all the triples
falling into it. We do not use hash functions, thus pre-
serving the data locality. By removing constant parts such
as prefixes from when indexing elements, we lessen bias
naturally present in RDF data. The implementation has
been designed with flexibility in mind. Our modular design
and its implementation is abstracted away from the local
storage and the query decomposer, thus they can swapped
with other ones with minimal efforts. It also relies on
standard tools and libraries for storing triples and processing
SPARQL queries. We have validated our implemention with
micro-benchmarks. Although basic operations like adding
statements suffer from an overhead, the distributed nature of
the infrastructure allows concurrent access. In essence, we
trade performance for throughput. On a 75 nodes cluster, we
have deployed an overlay of 300 peers. The time taken for
query processing depends on the number of variable parts
in the query and the size of the result set.

Future work. When queries have to be multicasted along
different dimensions, the number of visited peers increases
significantly, lowering the global performance. In this
regard, we are currently working on an optimal broadcast
algorithm, such as the one proposed in [25], which we
adapt to CAN. This will allow us to decrease the number of
redundant messages in case no constant parts are specified
within the triple patterns of the query. Finally, we will
investigate the impact of churn and node failures in our
future experiments.

Code availability: The implementation mentioned in this
paper is available at: http://code.google.com/p/event-cloud/.
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