
Coalitions and Incentives for Content Distribution

over a Secure Peer-to-Peer Middleware

Maria-Victoria Belmonte, Manuel Díaz and Ana Reyna

Department of Languages and Computer Science

E.T.S.I. Informática. Bulevar Louis Pasteur, N.35

University of Málaga (UMA), 29071, Málaga, Spain

e-mail: {mavi, mdr, reyna}@lcc.uma.es

Abstract— Nowadays, Peer-to-Peer is responsible for

more than 60% of Internet traffic. These protocols have

proved to save bandwidth and computing resources in

content distribution system. But, problems related to user

behaviour, such as free riding, still persist, and users

must be motivated to share content. In previous work, we

have designed and simulated a coalition and incentive

theoretical mechanism for content distribution that aims

to fight against problems in user behaviour. In this pa-

per, we present a real implementation of it. Since devel-

oping a peer-to-peer application from scratch is a labori-

ous and error prone task, we use SMEPP, a middleware

that aims to ease the development of secure distributed

application, to implement it.

Keywords-coalitions; incentives; peer-to-peer; middleware;

overlay.

I. INTRODUCTION

Nowadays, Peer-to-Peer (P2P) protocols are responsible
for more than 60% of Internet traffic, in spite of anti-piracy
laws [1]. Many Internet applications are taking advantage of
P2P architecture, since P2P paradigm abandons central serv-
ers to give way to a network where all nodes play the role of
server and client simultaneously. This brings new perspec-
tives to application scalability; where an excess of nodes in
the client-server paradigm could lead to saturation or even a
system crash, in the P2P paradigm it means greater capacity.

P2P protocols enable content distribution in a cost-
effective way, as they do not require a centralised provider to
handle all the demands. Instead, a P2P protocol can use its
clients' bandwidth for content distribution, saving the band-
width and computing resources of the system. However, the
performance and availability of these systems relies on the
voluntary participation of their users, which is highly variable
and unpredictable. Empirical studies have shown that a large
fraction of the participants share little or no files. For in-
stance, in [1], the authors affirm ―in Gnutella 25% of the
users do not share any files, Furthermore, about 75% of the
clients share 100 files or less‖ (including the 25% that do not
share) ―and only 7% of the clients share more than 1000 files.
This 7% of users together offer more files than all of the other
users combined‖. More recently, Handurukande et al. [3] also
observed the same behaviour in the eDonkey P2P network

and concluded that this is common to most P2P file sharing
systems. This phenomenon is known as ―free-riding‖, and is
still an open issue on content distribution systems [4]. P2P
content distribution systems need mechanisms that motivate
peers to share their content.

In [5], we presented a new coalition formation scheme

based on game theory concepts which formally prove how

coalitions improve P2P systems performance, encouraging

participants to contribute resources, receiving in return a

better quality of service. Empirical results obtained through

simulations illustrated how our approach encourages

collaborative behaviour, preventing the free-riding problem

and improves the overall performance of the system. Until

now, this mechanism has been a theoretical proposal, whose

features have been demonstrated only through simulations. In

this paper, we present a real distributed implementation of the

mechanism.

The development of distributed applications in general,

and concretely P2P, is a laborious and error prone task, since

many issues must be considered, from network protocols, to

security. In order to facilitate the software development of

this kind of system, new tools and methodologies capable of

abstracting all the underlying complexity should be used. A

middleware can simplify and reduce the development time of

the design, implementation and configuration of applications,

thus allowing developers to focus on the requirements of

their applications. In [5], we presented SMEPP (Secure

Middleware for Embedded Peer to Peer systems), a new

middleware especially, but not exclusively, designed for

Embedded Peer to Peer (EP2P) systems. This middleware

was designed to overcome the main problems of existing

domain specific middleware proposals [6]. The middleware

is secure, generic and highly customisable, allowing it to be

adapted to different devices, from PDAs and new generation

mobile phones to embedded sensor actuator systems, and

domains, from critical systems to consumer entertainment or

communication [8].

 In this paper, we take advantage from SMEPP middle-

ware to implement our coalitions and incentives mechanism

for distributed content distribution. On the one hand we

prove the suitability of using a P2P middleware, and on the

other, we demonstrate that our mechanism can be developed

as a real distributed application.

71Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

The structure of this paper is as follows. The following

section presents an overview of SMEPP middleware. In

Section III, the main features of our content distribution

mechanism are introduced. Section IV focuses on the im-

plementation issues. Finally, conclusion is presented in Sec-

tion V.

II. SMEPP MIDDLEWARE OVERVIEW

SMEPP middleware is based on three main pillars, its ab-
stract model, its reusable and flexible architecture and its built
in security. A detailed description of SMEPP middleware is
beyond the scope of this paper, nevertheless we believe it is
essential to introduce its main features. In addition, in Section
IV, some details, required for the implementation, will be
given. More details of SMEPP can be found in [5] .

The abstract model defines the entities involved and how
they relate in P2P environments (illustrated in Figure 1). It
defines the concepts of peer, group and service. The function-
ality of the application is offered in the form of services,
which can be published or consumed only inside groups of
peers. The group definition determines the level of security
inside a group. To access a group the peer has to provide the
suitable credentials, this is internally managed by the mid-
dleware. The service discovery is effectively performed
thanks to the underlying structured overlay network that im-
plements CHORD protocol [9]. In addition, the abstract
model also defines the API, which is generic and language
independent, and defines the functionality exposed by the
middleware with a high level of abstraction, this is the way
the programmer can interact with the middleware.

The architecture of SMEPP is based on software compo-
nents. Component-oriented paradigms have proved to be a
good approach to designing a middleware. Software compo-
nents offer several features (reusability, adaptability, etc.)
which are particularly suitable for dynamic environments and
rapidly changing situations that a middleware has to face.
This is especially interesting for our application. A specific
component framework has been designed for the implementa-
tion of the middleware. The developer has several tools which
allow the tuning of the middleware for a specific platform,
device or communication protocol.

Security is the most distinctive feature of SMEPP. Since
its conception the security aspect was considered, and tackled
transversally on the architecture and on the service model
definition, this ensures that the middleware is capable of
providing a high level of customisable security.

The SMEPP performance results showed that overall re-
source consumption of the middleware was relatively small,
the overall memory consumption peak being 1,83MB and the
highest average memory consumption being 670kB. More-
over regarding the usage of CPU, the middleware uses rela-
tively little CPU time (max being 2% of CPU capacity on a
2GHz Intel Core2 Duo). Taking into consideration that the
middleware is designed to work on small capability devices,
this is a good result. Furthermore, the suitability of SMEPP
was demonstrated by the development of two different inno-
vative real-life applications in the domains of Context Aware
Mobile Telephony and Environmental Monitoring in Indus-
trial Plants [8]. This was formerly implemented in JXTA [10],
where a new version of the application over SMEPP proving
the benefits of using middleware was developed. A compari-
son between JXTA and SMEPP can also be found in [11].

In this paper, we demonstrate how our coalitions and in-
centives mechanism for content distribution can be easily
implemented over SMEPP, taking advantages of its features,
such as the built in security and the structured overlay look up
mechanism for content discovery.

III. COALITION AND INCENTIVES MECHANISM OVERVIEW

The central idea of our mechanism is sharing the task of

downloading a file between a set of peers making up a coali-

tion. On the one hand, the downloader benefits as the total

download time is reduced. On the other hand, the burden on

the uploader (or provider) peer is also alleviated, since the

total task is divided between the members of the coalition.

And in addition, providers are rewarded for their participa-

tion in the coalition.

 More concretely, these rewards aim to encourage partici-

pants to contribute resources, receiving in return a better

quality of service. In this way, each peer that participates in a

coalition is lending "bandwidth" to other coalition peers, in

Figure 1. SMEPP abstract model

Figure 2. Coalitions and incentives mechanism

72Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

exchange for profit or utility. Each participant or provider

receives a reward each time it participates in a coalition, and

is penalised each time it downloads. The reward that a pro-

vider obtains by performing a task inside a coalition is calcu-

lated using the game-theory concept of core [12]. The core

ensures that each coalition participant receives a fair utility

in return for the bandwidth that it supplies. In our model,

these utilities are used to compute the Responsiveness bonus

(Rb), which represents the overall contribution of the peer to

the system. Therefore, this value will determine the quality

of service of each peer. The higher Rb the better quality of

service, this is the key to encouragement.

 Each peer can play three different roles: downloader,

participant or manager (In Figure 2, Pb is the downloader, P0

is the manager, and Pq and Pm are the participants). To sum

up: the download process starts when a peer decides to

download a file. In order to download this file, the

downloader has to find file providers in the network (discov-

ery). Once the providers are found, a coalition manager is

elected. The manager selection does not imply centralization,

because any potential participant can become the manager

with equal probability. Next, the manager sends offers to the

potential candidates (the rest of the providers). Each provider

answers the offer, and once the manager has received all of

them (or a timeout is reached), it has to divide up the task

between the potential coalition members (those participants

who answered). This process, called Task Assignment, es-

tablishes the coalition itself, and after this, the download

itself starts. During the download, the downloader periodi-

cally sends acknowledgement information to the manager,

who runs a checking mechanism to guarantee the quality of

service in the coalition, adapting to network traffic and help-

ing to avoid some attacks of malicious peers (such as free-

riding). After these checks, the Rb of all the members of the

coalition is updated using the utilities obtained after the Coa-

lition Payment Division.

A. Task Assignment

 Given a collection of providers, the task assignment has

to determine the task that each provider will be responsible

for, this is the input bandwidth that each participant will

provide to the coalition. If there are few participants (under a

threshold) no selection has to be done, otherwise only some

providers will be chosen for the coalition.

 To do so, and to determine the input bandwidth of a par-

ticipant, the progressive filling algorithm is used. This algo-

rithm provides the max-min fairness [13]. A bandwidth allo-

cation is max-min fair if and only if an increase of the input

bandwidth of a peer x within its domain of feasible allocation

is at the cost of decreasing some other input bandwidth of a

peer y. So, it gives the peer with the smallest bidding value

the largest feasible bandwidth.

B. Checking Mechanism

The checking mechanism makes the system less vulner-

able to peer failures, churns and network congestion prob-

lems, while it ensures the quality of service of the coalition.

The mechanism works as follows, during the download of a

file; the downloader sends acknowledgement information to

the manager with a predefined frequency. The manager cal-

culates the difference between the bytes sent and the ones

which should have been sent (according to the task assigned

to each participant). If this difference exceeds a predefined

threshold, the coalition is reconfigured in order to provide

better quality of service. Moreover, the manager also checks

that the downloader Rb is high enough to keep downloading.

The central idea is that if the coalition is not working as it

was expected or the downloader is abusing the system, the

coalition is cancelled.

Since the update of Rb values are calculated by the man-

ager and are based on the acknowledgement sent by the

downloader, the downloader could avoid the penalty if it

sends faked acknowledgement. But the checking mechanism

performed by the manager will stop the coalition if the ac-

knowledgement is too small, so the downloader will not be

penalised, but neither will they receive the file.

C. Coalition Payment Division

The hallmark of our mechanism is that the coalition

payment division ensures fairness, thanks to the game theory

concept of core. This means that peers won't be negatively

affected if they have lower capacity. The details of this are

explained in the following paragraph.

Let's call coalitional value V(S), to the total utility or

profit of a coalition S. For every peer in the coalition, Pi ∈ S,

we must distribute V(S) between the peers, and assign an

amount or utility (xi) to every peer Pi ∈ S. The problem is to

distribute V(S) in a stable and fair way so the coalition peers

have no reason to abandon it.

Firstly, we must calculate V(S). The profit obtained by S

is calculated as the difference between the time required for

the download with just one uploading participant (only P0,

the manager) minus the time it takes with the coalition S (all

the participants, including the manager). Then the coalitional

value is given by the following equation:

where t0 is the time that it would take the P0 to upload the

whole file (being P0 the only uploader or provider),
 the

upload bandwidth of P0 and
 the upload bandwidth of the

remaining participants of S.

Secondly, we use the core to distribute V(S) between the

coalition members. A utility distribution belongs to the core

if there is no other coalition that can improve on utilities of

all of its members. The stable utility division (xi) to every

peer Pi ∈ S is given, then, by the following equation (in

detail in [5]), where
 is the download bandwidth of P0 .

73Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

D. Responsiveness Bonus Computation

As it has been said, peers with higher utility will get a

better quality of service. In our approach the utility accumu-

lated by each peer () is proportional to the resources that

it supplies, and it is calculated as a heuristic function of xi.

The value of will be reduced when Pi acts as a download-

ing peer, and incremented when it is a provider or uploading

peer. The heuristic uses the xi values obtained by Pi by

means of (Upload points) and (Download points).

 and accumulate the utility obtained by each coalition

formation process in which Pi participates.

Let us call Fsi to the number of files shared (the total size

in bytes) by a peer Pi. The value of the peer is calculated

using the following equation:

The values are between zero and one. The interpreta-

tion of this formula is that if the peer uploads more than

downloads, it gets the maximum value, also true when, it is

not uploading but sharing. If neither uploading nor sharing;

its is set to zero. In any other case, it is calculated as the

ratio between the upload and the download points (the

parameter allows us to regulate the relation to in-

crease/decrease the penalty/reward).

Therefore, we use this value to decrease the download

bandwidth
 (using it as a multiplier of the

download bandwidth of the peer Pb when it wants to

download a file). Initially, the of the peers is 1, a higher

responsiveness bonus (closer to 1) will mean that Pi will

be able to use most of its bandwidth capacity. Otherwise, a

 closer to 0 will reduce its bandwidth capacity, (in fact, it

could even avoid creating the coalition for the download

when it is 0). Thus, our incentive mechanism penalises the

selfish behaviour of the peers, and provides incentives for

collaborative behaviour.

E. Experimental Results

 In [5], we presented some simulation results. These ex-

periments confirmed the benefits of using our mechanism.

On the one hand download times are improved, and on the

other hand, free riders are stopped, this lead to an improve-

ment of the system's effectiveness.

 Our own simulator was used to run the experiments. It

was configured to simulate a P2P network of 1000 peers

during 2000 units of simulated time (steps). All peers had the

same bandwidth capabilities. The collection of files shared in

the network was defined with different sizes (from 10000KB

to 90000 KB), and a random number of copies (between 5

and 500) of these were delivered through the network at the

start of the simulation. Each peer had a random number of

initially stored files, and the objective of the simulation was

that every peer download the files that were not initially

stored. Our simulations, considered three types of users (or

behaviours): free riders (FR), collaborative (C) and adaptive

(A). The first, do not share at all, the second share as much

as possible, and the last, only share if they want to download.

Depending on the behaviour of each peer (that is randomly

assigned in each simulation) it will face its downloads in

different ways.

Figure 4. Free tider detection (% detection vs simulation time) Figure 3. Average download time using coalitions (diamonds)

and not using them (squares) (simulation time vs bytes)

74Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

TABLE II. SMEPP API

Group management Service management
createGroup publish

joinGroup unpublish

leaveGroup getServices

getGroups getServiceContract

getGroupDescription startSession

getPeers Peer management
getIncludingGroups newPeer

getPublishingGroup getPeerId

Message handling Event handling

invoke event (raise)

receiveMessage receiveEvent

reply subscribe

receiveResponse unsubscribe

 TABLE I. BYTES DOWNLOADED IN SIMULATIONS

 No coalitions Coalitions

 Pop. 1 Pop. 2 Pop. 1 Pop. 2

FR 157 Gb 123 Gb 24 Gb 20 Gb

C 156 Gb 92 Gb 130 Gb 82 Gb

A 91 Gb 84 Gb

Total 313 Gb 306 Gb 154 Gb 186 Gb

 To analyse the impact of the different behaviours on the

system the experiments were run with two different popula-

tions. The first one without adaptive users: 50% FR, 50% C

and 0% A, called Population 1. And the second with adaptive

users: 40% FR, 30% C and 30% A, called Population 2. In

addition, to analyse the impact of the use of coalitions, simu-

lations were run with and without incentive policies: No

Coalitions (NC), where no incentive mechanism was consid-

ered and Coalitions (C), which implemented our proposal.

After repeating the simulation experiments 100 times we

took the average to give the results. Two main metrics were

considered: downloaded bytes and average download time.

 In Table I the bytes downloaded per populations and per

behaviour for both scenarios, with and without coalitions, is

shown. In Population 1, when coalitions were used the total

amount of bytes downloaded was reduced to 50% with re-

spect to NC, but 84% of this reduction was due to the free

riders detection. This showed how the algorithm prevents

free riders from abusing, avoiding the overhead of the system

resources. In Figure 4, the free rider detection effectiveness

of our approach is shown (Population 2). More than 50%

were detected at step 300 and the 100% were stopped at step

1500.

 In Population 2, when adaptive users were introduced,

the benefit of using of coalitions was higher (than in Popula-

tion 1). The total amount of bytes was reduced by 39% with

respect to NC, where 83% was due to the free rider’s detec-

tion. In addition, comparing coalitions in both populations,

the total amount of downloaded bytes were increased by

20% using Population 2, proving that adaptive users benefit

the system. Note that in Population 2 there were fewer free

riders and collaborative users, therefore, less shared files in

the network, this justifies the smaller amount of total bytes

downloaded with respect to Population 1.

 In addition to the analysis of the downloaded bytes, the

average download time offered even better results. In Figure

3, the average download time using and not using coalitions

is shown for Population 2. Experiments showed that using

coalitions the average download time was smaller. As ex-

pected, the benefit of using coalitions is increased as the file

size grows. When adaptive users were introduced the

download times were improved compared with NC, what

demonstrated the effectiveness of our incentive mechanism.

More details about the configuration and results of the ex-

periments can be found in [5].

F. Related Works

The incentive mechanisms in P2P networks for content

distribution [4] have been classified in different categories.

Our approach belongs to reciprocity based mechanisms:

peers that contribute more get a better quality of service.

Other publications also included in this category are

[14][15][16][17][18][19].

 From the approaches above, those based on mutual recip-

rocity, like Bit Torrent [16], Emule [15] or [14], do not fit

the asymmetric nature of a collaborative relationship, since

the peer's decision to upload to another peer is based on the

direct exchange of data/services/credits between two peers

that have mutual interests (same content). However, our

approach, unlike the ones above, encourages cooperative

behaviour by forming coalitions of peers that help each other

to download files. So any peer can participate in a coalition

increasing its Rb, and this will lead to a higher download

bandwidth for further downloads from any other peer in the

system.

 The indirect reciprocity-based approaches, like

[17][18][19] or our approach, consider peers' overall contri-

bution to the network, and so they encourage cooperation.

 2Fast [17] is also based on creating groups of peers that

collaborate in order to download files. However, the system

does not enforce fairness and does not specify how the helper

may reclaim its contributed bandwidth in the future. Again in

[19], where the peer contribution is based on the number of

peer uploads and downloads, the computed peer contribution

does not guaranty that the peers receive fair utility in return

for the bandwidth that they supply. Finally, Karakaya et al.

[14] propose a distributed framework in which each peer

monitors its neighbours (recording the number of messages

coming or going), and the free-riders are located and iso-

lated. However, and unlike this approach, stopping free rid-

ers is not the only goal of our approach, indeed we also wish

to increase the effectiveness of the download mechanism.

IV. IMPLEMENTATION

When faced with the implementation of our content distri-

75Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

TABLE III. MECHANISM MESSAGES

Message Sender Receiver

Manager offer Downloader (C) Manager (C)

Offer answer Participant (S) Manager (C)

Acknowledge Downloader (C) Manager (C)

Cancel Manager (C) Participant (S)

New Download user Downloader(C)

Task Manager (C) Participant (S)

Query Rb Manager (C) Rb manager(R)

Update Rb Manager (C) Rb manager(R)

bution mechanism, first, the functionality has to be modelled

as a service, since SMEPP is service oriented. Then, two

main implementation issues must be tackled: first, the con-

tent discovery, and second the query and update of the Re-

sponsiveness bonus. Both issues will take advantage of the

structured overlay network offered by SMEPP.

 As we have already stated, SMEPP is based on the con-

cept of peer, group and service. Its API offers primitives to

abstract the peer management, group management, and the

service management, but also for events and message han-

dling. The SMEPP API is summarised in Table II.

A. Content Discovery

The content discovery process is responsible for finding

the peers that provide a specific file in the network. This task

is tackled differently in popular P2P systems. In Napster, this

responsibility was delegated to central servers which were

also responsible of storing the files; In Emule, the task is

delegated to many different servers that only store provider's

references, not the files. Gnutella implements a pure distrib-

uted algorithm to find providers, forwarding query messages

through the neighbours. BitTorrent or One-Click Hosting

(like megaupload, rapidshare, etc.), do not provide any

mechanism for content discovery. In BitTorrent, torrent files

containing the description of the shared file are published

through webs, mail, forums, etc so, the user must find this

torrent file in order to join or to start a download. The same

goes for one-click hosting, where search engines or webs

specialised in download links are used to find the sources of

the content.

As SMEPP integrates Service Discovery functionality,

we take advantage of this in order to be able to efficiently

discover the file a peer wants to download. We could also

opt for an implementation based on events, but the file

search would be less efficient and the implementation effort

would be bigger. SMEPP defines the services through con-

tracts (A XML File). The contract provides descriptive in-

formation on the service, while the implementation is the

executable service (e.g., a Java service) exposed to the mid-

dleware through grounding. A service contract describes

―what the service does‖ (viz., the service signature), ―how it

does it‖ (viz., the service behaviour), and it may include

other extra-functional service properties (e.g., QoS). When a

service is published, SMEPP generates a key from the con-

tract; this key determines which peer in the group is respon-

sible for this service. The structured SMEPP overlay network

(which uses CHORD protocol [9]) determines the range of

keys a peer is responsible for, and enables a fast search

mechanism thanks to the key space defined within the group.

To take advantage of this effective search mechanism, we

define a contract for each shared file. This way if two peers

share the same file, they will publish the same contract,

which will result in the same key, and therefore, the same

responsible peer. Thus, peers which share the same file, will

publish the same service on the same peer.

B. Responsiveness Bonus Management

 In addition to the content discovery, the storage (query

and update) of the Rb is another important implementation

issue. The Rb represents the overall contribution of a peer, so

it has to be updated every time a peer participates in a coali-

tion (as downloader or as participant or manager, typically

the former will decrease the Rb and the latter will increase

it.). Every time a manager set up a coalition for a

downloader, it has to query the downloader's Rb, in order to

determine the bandwidth that the coalition will provide.

 There are several choices to implement this. On the one

hand we can opt for a centralised storage server. This would

simplify the update and query processes, and would require

less communication effort than in a pure distributed scenario.

But this came at a price: that of a single point of failure. On

the other hand, the pure distributed scenario, requires a com-

plex algorithm for the calculation of the Rb value, such as the

ones used in distributed consensus systems [20] which re-

quires a lot of effort to maintain consistency. Finally, we can

opt to take advantage of the structured overlay network in a

similar way as for the approach of the implementation of

content discovery. As foreseen, in this paper we choose this

last option for the implementation of our mechanism.

 The central idea is that every peer has to delegate the

task of storing and updating its Rb value to another peer, like

in [21]. Using the unique identifier of the peer and a hash

function, a peer can find the peer responsible for storing the

value of any other peer in the network. This functionality is

offered by the overlay network

 The Rb management functionality will be encapsulated

into a service, this service will be responsible for storing and

updating a peer's Rb. When a peer joins the group, it must

publish an Rb service with its id (as was proposed for files in

content discovery). To update or query an Rb a peer just need

to invoke the middleware primitive getServices, specifying

the id of the peer it wants to update or query in a contract

template.

76Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

C. Final Implementation

As has been stated, in our approach each peer can work

as participant, manager or downloader. The functionality

required is summarised in Table III. The table shows the

messages sent between the different services. At least three

services need to be defined in order to fulfil the requirements

of this application:

 Main Service (C): This service enables the download

and the manager functionality.

 Sharing Service (S): This service encapsulates the

functionality of participants.

 Rb Management (R): This service is responsible for

enabling the update and the query of the Rb value of

each peer.

Each peer must at least publish one Main Service, one Rb

Management service and as many Sharing services as files it

shares.

The code of a SMEPP peer running our mechanism is il-

lustrated in the Figure 5. For the sake of simplicity we skip

base cases, the steps are the following: first we use the new-

Peer primitive to create the SMEPP peer (this connects the

peer to the SMEPP network and assigns it an Id). For secu-

rity, SMEPP requires the provision of valid Credentials in

order to successfully join the network. The PeerManager

object allows us to invoke peer's primitives. Next the peer

has to find the concrete group where our P2P content distri-

bution mechanism is running, to do this, it performs a search

of a group providing its description, using getGroups primi-

tive. Once the group is found, the peer joins it with join-

Group primitive. Next, the peer publishes all the, previously

explained, services. This is performed using the publish

primitive. Up to this point, we have a peer in the group shar-

ing files, to start a download the user will invoke the local

service specifying the file info (NewDownload message), this

will start the exchange of our mechanism's message between

the different peers in the group, performing the coalition and

incentives mechanism (as explained in Section III).

To summing up, SMEPP simplifies the implementation

of this kind of application, as the above code shows. Not

only abstracting the underlying complexity but also offering

an efficient look up mechanism for file discovery. Moreover,

it tackles the security issues internally, without additional

effort.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented the implementation of a

coalition and incentive based P2P content distribution sys-

tem.

Our mechanism is based on game theory and takes into

account the rational and self-interested behaviour of the

peers. The central idea is that incentives encourage participa-

tion; each time a participant contributes in a coalition they

receive a reward. The fairness of the rewards division within

a coalition is guaranteed by means of the game theory con-

cept of core. These rewards are accumulated in the Respon-

siveness bonus, which represents the overall contribution of

the peer to the system, and this is used to increase or de-

crease the quality of service of the downloads the peer per-

forms. This way our approach manages to promote the coop-

eration, and therefore, reduces the free riding phenomenon.

Moreover, simulations showed that download times are im-

proved.

When dealing with the development of real distributed

applications, is has been proven that to use a middle-

ware simplifies the implementation issues. In this paper, we

proposed to use SMEPP middleware to ease the distributed

implementation of the above mechanism. SMEPP is a Secure

Middleware for Embedded Peer to Peer Systems and another

of our publications.

// CREATE NEW SMEPP peer

 String configFile = args[0];

 Credentials myCredentials = new Creden-

tials("");

 PeerManager peer =

 PeerManager.newPeer(myCredentials, config-

File);

//Join P2P group (find and join)

 GroupDescription myP2PGroup =

 new GroupDescription("P2PGroup ",

 new SecurityInformation(1), "P2PGroup");

GroupId[] groupIds =

 peer.getGroups(myP2PGroup);

//(...)

 GroupId gid = groupIds[0];

 peer.joinGroup(gid);

//PUBLIHS SERVICES

//Main Service

 PeerServiceId psid = peer.publish(gid,

ContractLoader.loadFromFile("MainService.xml"),

 new SMEPPServiceGroun-

ding(MainService.class),

 null,

 null);

//Rb management service

 psid =

 peer.publish(gid,

 ContractLoader.loadFromFile("RbMgr.xml"),

 new SMEPPServiceGrounding(RbMgr.class),

 null,

 null);

//File Sharing services

foreach (file f in sharedFiles){

 String fContract =

 GenerateContract(f,"SharingS.xml");

 psid = peer.publish(gid,

 ContractLoader.loadFromFile(fContract),

 new SMEPPServiceGrounding(SharingS.class),

 null,

 null);

 //Invoke local service to start downloads

 }

}

Figure 5. SMEPP peer code

77Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

 For the real implementation of our content distribution

system different issues have been taken into account. Mainly,

two issues must be addressed: content discovery (taking

advantage of the middleware overlay), and the storage, query

and update of the Responsiveness bonus. Taking advantage

of the middleware, the complexity of the development of the

distributed application is abstracted, moreover the process of

content discovery is delegated in the middleware, what

greatly eases the implementation, as foreseen.

As future work, we plan to implement our coalition ap-

proach over Gnutella protocol [22]. The objective would be

to compare and analyse the performance of these two im-

plementations.

ACKNOWLEDGMENT

This work is partially supported by EU funded project
FP6 IST-5-033563 and Spanish projects TIN2008-01942 and
P07-TIC-03184.

REFERENCES

[1] Ipoque Internet Study 2008-2009.
http://www.ipoque.com/resources/internet-studies/internet-study-
2008_2009. 26.09.2011.

[2] Saroiu, S., Gummadi, P. K., and Gribble, S. D, ―Measurement study of
peer-to-peer file sharing system‖. In Kienzle, M. G. and Shenoy, P. J.,
Multimedia Computing and Networkin, pp. 156–170. SPIE, San Jose,
CA, USA. 2002.

[3] Handurukande, S. B., Kermarrec, A.-M., Le Fessant, F., Massouli´e,
L., and Patarin, S. , ―Peer sharing behaviour in the edonkey network,
and implications for the design of server-less file sharing systems‖.
SIGOPS Oper. Syst. Rev., vol. 40, pp. 359-371, 2006.

[4] Karakaya, M., Korpeoglu, I., and Ulusoy, O. , ―Free riding in peer-to-
peer networks‖. Internet Computing, IEEE, vol. 13, pp. 92–98, 2009.

[5] Belmonte M.V., Díaz M., and Reyna A., ―A Coalition based incentive
mechanism for P2P content distribution systems‖ Proceedings of the
3rd. international conference on agents and artificial intelligence. pp.
15-24. ICAART 2011. Rome, Italy, January - 2011.

[6] Díaz M., Garrido D., Reyna A., and Troya J.M.,―SMEPP: A Secure
Middleware for P2P Systems‖. Horizons in Computer Science.
Volumen III. Nova Publisher 2010.

[7] Díaz M., Garrido D., and Reyna A. ―SMEPP and the internet of
things‖. In Workshop on Future Internet of Things and Services.
CD.ROM, 2009.

[8] Caro, R.J., Garrido, D., and Plaza Tron, P. , ―SMEPP: A Secure
Middleware For Embedded P2P‖, 2009. ICT-MobileSummit
Conference Proceedings. IIMC International Information Management
Corportaion, 2009.

[9] Stoica I., Morris, R., Karger, D.R., Kaashoek, M.F., and Balakrishnan,
H., ―Chord: A scalable peer-to-peer lookup service for internet
applications‖. In SIGCOMM, pp. 149–160, 2001.

[10] The JXTA home page. www.jxta.org. 26.09.2011

[11] Deliverable 6.4 SMEPP Validation. www.smepp.net 26.09.2011

[12] Kahan, J P. and Rapoport, A., ―Theories of coalition formation‖, L.
Erlbaum Associates, Hillsdale, New Jersey London,1984.

[13] Bertsekas, D.P. and Gallager, R.G., and Humblet, P., ―Data networks‖
Prentice-Hall, New York, NY, USA, 1987.

[14] Karakaya, M., Korpeoglu, I., and Ulusoy, O. ―A connection
management protocol for promoting cooperation in Peer-to-Peer
networks‖. Computer Communications, 31, pp. 240-256. 2006.

[15] Kulbak, Y., Bickson, D., et al.(2005). The emule protocol specification
http://www.cs.huji.ac.il/labs/danss/p2p/resources/emule.pdf;
15.06.2011.

[16] Cohen, B. ―BitTorrent protocol specification‖.
http://www.bittorrent.org/beps/bep_0003.html 26.9.2011

[17] Garbacki, P., Iosup, A., Epema, D., and van Steen,M. ―2fast :
Collaborative downloads in p2p networks‖. In Peer-to-Peer
Computing, IEEE International Conference on, pp. 23–30. IEEE
Computer Society, Los Alamitos, CA, USA. 2006.

[18] Karakaya, M., Korpeoglu, I., and Ulusoy, O. ―Counteracting free
riding in Peer-to-Peer networks‖. Computer Networks, 52, pp. 675–
694. 2008.

[19] Mekouar, L., Iraqi, Y., and Boutaba, R. ―Handling Free Riders in Peer-
to-Peer Systems‖. Agents and peer-to-peer computing: 4th
international workshop, AP2PC 2005, Utrecht, The Netherlands, July,
pp. 58–69. Springer-Verlag, New York, NY, USA. 2006.

[20] Zhou, R., Hwang, K., and Cai, M. ―GossipTrust for Fast Reputation
Aggregation in Peer-to-Peer Networks‖ IEEE Transactions on
Knowledge and Data Engineering, CA, USA, pp.1282-1295. 2008.

[21] Kamvar, S.D., Schlosser, M.T., and Garcia-Molina, H.. ―The
Eigentrust algorithm for reputation management in P2P networks‖.
In Proceedings of the 12th international conference on World Wide
Web (WWW '03). ACM, New York, NY, USA, pp. 640-651. 2003.

[22] ―Gnutella Protocol Specification‖. Online. http://www. stanford.edu/
class/cs244b/gnutella_protocol_0.4.pdf.26.09.2011.

78Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

http://www.bittorrent.org/beps/bep_0003.html
http://www.stanford.edu/class/cs244b/gnutella_protocol_0.4.pdf
http://www.stanford.edu/class/cs244b/gnutella_protocol_0.4.pdf

