
Using Spacial Locality and Replication to Increase
P2P Network Performance in MMO Games

Ross Humphrey, Alexander Allan and Giuseppe Di Fatta
School of Systems Engineering

The University of Reading
Whiteknights, Reading, Berkshire, RG6 6AY, UK

gk004759@reading.ac.uk, A.J.M.Allan@student.reading.ac.uk, G.DiFatta@reading.ac.uk

Abstract—Massively Multiplayer Online Games (MMOGs) are
increasing in scale and popularity, which is putting strain on the
classical client-server(C/S) architecture. As a consequence there
is a growing research interest in the adoption of Peer to Peer
(P2P) architectures to spread the load throughout participating
client machines. However this presents many challenges, amongst
which is creating a shared virtual space between nodes, an area
known as Interest Management. When using the Region-Based
model of Interest Management the game world is mapped to a
logical space which is broken into regions managed by peers.
When a player’s avatar moves through the game-space it moves
through these regions, and must download content from the
appropriate peer. Finding this peer can be handled by a look-
up on a Distributed Hash Table with a circular key. This work
explores the advantage of mapping Distributed Hash Table(DHT)
keys using a locality preserving function instead of a conventional
uniformity enforcing hash algorithm within a P2P protocol for
MMOGs. Content retrieval robustness in terms of handling node
failures is also explored with multiple data replication techniques
analysed and compared. The performance difference is measured
in terms of hop count, node stabilisation and node failure. Results
show that using locality sensitive hashing and 12 node replication
provided favourable performance across all three measurements
used.

Keywords-Peer-to-Peer Networks; Massively Multiplayer Online
Games; Interest Management.

I. INTRODUCTION

A Massively Multiplayer Online Game (MMOG) allows
large numbers of on-line players to interact with each other in
the same persistent virtual space. Traditionally Client Server
(C/S) architectures were employed as they were convenient in
terms of implementation and security [1]. However, the pop-
ularity of MMOGs is rapidly increasing [2] which is putting
increasing strain on the C/S architecture presenting, amongst
other things, a large cost in terms of hardware and facilities, a
single point of failure and a network bottleneck. This has led
to a growing research interest towards architectures capable of
harnessing the power of client machines in the form of Peer
to Peer (P2P) MMOGs [3], [4], [5], [6].

A key problem when creating a P2P MMOG is maintaining
a sense of shared space across all players. This can be solved
by each player having a full copy of the game state and
broadcasting any changes to all other players. However, this is
not feasible as the number of messages needing to be sent over
the network scales exponentially with the number of players.

A solution to this is to send players only relevant informa-
tion, a process known as Interest Management [7]. This can
be achieved by dividing the game up spatially. A fine grained
approach to this is the aura-nimbus information model [8].
The aura bounds the presence of an object in space, with the
nimbus (the area-of-interest) representing the boundary within
which the object can perceive other objects.[9] While this
allows very accurate Interest Management, it does not scale
well due to the cost of computing the intersection between
areas of interest and auras of objects [10].

Region-based interest management is an approximation
which addresses the scalability issues of the pure aura-nimbus
model by partitioning the game space into static regions [8],
[11], [12], [13].

Traversal of these regions requires that a player query
a lookup table of some kind in order to contact the node
who is regional administrator. In a distributed environment
this lookup can be achieved using a node ID as the index
for a Distributed Hash Table (DHT). Chord offers one such
scalable implementation of a DHT with a lookup performance
of O(log(n)) and allows for index updates when nodes join
and leave the network [14]. Chord was chosen as it represents
a simple case of a distributed hash table in which to use as a
test bed for experimentation relating to replication and region
based interest management.

It is common practice when assigning DHT keys to do so in
a manner which assigns IDs uniformly around the keyspace,
a method known as consistent hashing. This is commonly
achieved by using a cryptographic hash algorithm such as
MD5[15] or SHA-1[16]. However, since in this application
domain regions are traversed sequentially, a locality preserving
hash function could be more efficient in terms of DHT hop
count than a conventional one. This work presents a compari-
son of four different keyspace generation methods for a Chord
DHT. Consistent hashing given by the MD2[17] and MD5
cryptographic algorithms is compared to linear and Hilbert
curve based methods (outlined in Section II, Subsections C
and D). The effectiveness of the four methods is measured in
terms of hop count and node keyspace stabilisations within a
simulation of a P2P protocol for MMOGs.

This work also uses the same simulation to look at the
the effectiveness of implementing a replication algorithm to
maintain the games’ state in event of node loss.

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-238-7

AP2PS 2012 : The Fourth International Conference on Advances in P2P Systems

Fig. 1. Components of the simulation protocol stack

The rest of the paper is organised as follows. Section II
provides additional detail on the ID mapping and replication
techniques used within the simulated environment. Section III
provides a description of the simulated P2P MMOG environ-
ment. Section IV describes the comparative analysis of the ID
mapping algorithms and data replication techniques. Section
V provides the experimental results and their interpretation.
Concluding remarks are given in Section VI.

II. OVERVIEW OF TECHNIQUES

A. Chord DHT

Chord was used as the underlying P2P protocol for this
simulation. Chord is a Distributed Hash Table (DHT) which
allows efficient mapping of keys onto nodes in a peer to peer
environment [14]. By using Chord a node can locate another
node within O(log(n)) hops. The key/value pairs are spread
throughout the network giving Chord its ability to scale to a
large number of peers.

The Chord protocol layer is comprised of a number of
nodes. Each node contains a section of the DHT with the
key/value pairs stored within it. The section held within each
node is changed when a node leaves or joins the network.
A stabilisation takes place when this table is changed. A
stabilisation consumes both network and hardware resources
as it involves querying the nodes on the network and changing
values within a node dependent on queries made. The DHT
within this simulation uses a 128-bit key space; this key space
can be changed depending on the ID allocation used for the
node.

Each node within a Chord ring has an identifier that
indicates where the node is mapped in the logical ID space.
The ID in a chord network is typically generated using a one
way consistent hash function such as MD5. Two forms of
consistent (non locality preserving and uniformity enforcing)
hashing were implemented as comparison with the two locality
preserving key generation algorithms. The two implementa-
tions decided on were MD5 and MD2 which both produce a
128-bit ID.

B. Consistent Hashing - Message Digest Algorithms MD2 and
MD5

A message digest algorithm is a one way cryptographic hash
function which outputs a string of fixed length (a hash) for an
arbitrary size of input data.

The MD2 and MD5 algorithms are derivations of the pop-
ular Merkle-Damgård method [18] and output 128-bit words
for any given input. These methods of consistent hashing are
commonly used within the Chord protocol to map IP addresses
into the key space and will be used in comparison with locality
aware hashing methods.

C. Locality Preserving - X-Axis Linear curve

A simple method of embedding locality in a 1D index is by
an ordered linear traversal along an axis. The 2Dimensional
space is broken down into a grid of a finite granularity and
the grid squares are assigned an index sequentially. The X-
Axis method fixes the y axis for each traversal of the x
axis. This has the effect that locality is preserved effectively
in the x-coordinate at the expense of relatively poor locality
preservation in the y-coordinate.

The ID allocation operates by assigning IDs to nodes in
a linear fashion across the x-axis. The nine squares of the
grid in Figure 2 are traversed in the following sequence of
coordinates:

(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2), (2, 2)

This method is compared to the consistent hashing (uni-
formity enforcing) method provided by MD2 and MD5, and
with the locality preserving Hilbert curve as a method of key
generation for a Chord DHT.

Fig. 2. X-axis linear curve in a 3x3 2-dimensional grid

D. Locality Preserving - Hilbert’s Curve

Hilbert’s curve is a continuous fractal space-filling curve of
finite granularity. Giuseppe Peano (1858-1932) discovered a
densely self intersecting curve in 1890 which passes through
every point in a 2D space (and by extension in an n-
dimensional hypercube) [19], [20]. This work was followed
in 1891 by that of David Hilbert [21] who published his
own version of the space-filling curve including illustrations
for construction (Figure 3). Hilbert’s variant proves to have
performance advantages (in terms of how locality and how
well ’compact regions’ of 2D space are represented) over
other space-filling curves [22], [23]. This explains its attraction

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-238-7

AP2PS 2012 : The Fourth International Conference on Advances in P2P Systems

as a contemporary multi-dimensional indexing method. The
Hilbert’s variant proceeds through each step replacing the U
shape with an upside down Y. Each corner in the diagram
represents an additional number in the sequence. As a means
of dimensionality reduction, it transforms the data from n to
1 dimension by assigning each point in space a number.

We compare the key space generated by the Hilbert Curve
with those generated by the consistent hashing algorithms
MD2 and MD5, and with the simple X-axis curve.

Fig. 3. The first 4 levels of Hilbert’s curve in 2 dimensions

E. Replication

The elastic nature of multiplayer online games does not
lend itself well to a static P2P network. As players log out
spuriously or disconnect from the network data is lost and
cannot be recovered until the peer next logs in to the network.
This is a problem when objects in the game world go offline
and other players wish to access them.

In order to solve this problem replication must be im-
plemented so that when a player leaves the network, the
persistent world in the game continues without the data being
lost. A replication strategy was devised that would allow for
data to be replicated to other nodes in the network. This
replication strategy involves mirroring information using a set
of replication nodes.

If for example node n queries node a for data d, but finds
that a is no longer present in the network, n can then query
a’s replication nodes. As long as at least one of a’s replication
nodes remain online, n will be be able to retrieve d.

Formally each node n has a set of Rn replication nodes
Repn = {rn0 , ..rni } where 0 ≤ i ≤ Rn which each carry
a copy of its data. One of these replication nodes is chosen

randomly, the others are chosen from n’s successor nodes on
the DHT. The number of replication nodes used at node n,
Rn, varies and is based on the popularity of the data at n. If
data is requested more than once every 5 seconds from n then
Repn will contain all DHT successor nodes and one random
node.

When data is modified at node n or any member of Repn,
a lock message is sent to n and each member of Repn. When
the data is successfully modified, its new value is broadcast
to n and members of Repn. When all these nodes have
successfully received the new value, an unlock message is
broadcast amongst replicated nodes.

III. SIMULATION OF A P2P MMOG PROTOCOL

The proposed system contains a number of components that
are used to simulate a P2P MMOG (Figure 1). The system
adopts three separate protocols: the Chord DHT Protocol, the
Game Protocol and the Replication Protocol.

1) The Chord DHT Protocol: is used to find the information
being searched for by the user in the network. The layer uses
the nodes provided by the simulated network, when searching
for the requested data. The search data requested is provided
by the Game Protocol that receives the requests from the
Traffic Generator. The traffic generator builds requests based
on coordinates. The coordinates are relative to the position
within a game world. From this, a message is generated and
sent from the sender node within the simulator.In a real MMO
application a user would provide the requests. If an ID cannot
be found in the network the modified protocol will research
using the successor list of the node (where the node data is
replicated to).

2) The Game Protocol: is used in the product to store game
data within nodes. The Game Protocol layer is used to parse
messages between layers as well as building initial request
messages. The Game Protocol also has the functionality to
store successful searches in a local cache at each node.

The Game Protocol receives initial messages from the
Traffic Generator. Valid message types can be created in the
traffic generator and parsed to the Game Protocol layer where
they are automatically handled depending on their type. The
Game Protocol also receives replication message instructions
from the Replication Protocol to spread data in the network
to reduce failures.

3) The Replication Protocol: is a set of methods containing
logic to replicate data around the network. Locking and
unlocking of data is set up within this layer of the product
as well as logic to ensure consistency of data throughout
the network (such as pushing new data to all replication
nodes). The Replication Protocol layer interacts directly with
the data held within the Game Protocol layer. The Replication
protocol is explained in greater depth in Section III. A locking
and unlocking mechanism is also employed. The locking
and unlocking messages can be sent by any node holding a
replication with a time released unlock being employed in the
event of a node failing whilst the data is locked.

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-238-7

AP2PS 2012 : The Fourth International Conference on Advances in P2P Systems

These protocols interact with each other to perform sim-
ulated user actions created by the Traffic Generator. These
user actions are in the form of object lookup requests given
coordinates in the game space which simulate the user moving
through a physical 2D space.[24]

The network actions are dealt with by the P2P simulation
environment PeerSim [25]. This allows simulation of a real
time dynamic P2P network environment with adjustable node
failure and churn rate.

The list of game objects are assigned IDs based on four
different mapping techniques: MD2, MD5, X-Axis linear
curves and Hilbert Curves. The methods are explained in more
detail in the following section.

IV. COMPARATIVE ANALYSIS OF ID MAPPING
ALGORITHMS

A comparative analysis of the ID mapping and replication
techniques described was conducted within the simulation
described in section II. The effectiveness is measured in terms
of Chord hops, node failures and node stabilisations:

4) Hops: The number of hops that take place within the
simulation model from the sender node to the receiver node
determines search time. The simulator calculates three metrics
for performance comparison:

• Max Hop Maximum number of hops taken by the
simulator to find data at a receiver node in the network.

• Min Hop Minimum number of hops taken by the
simulator to find data at a receiver node in the network.

• Mean Hop Average number of hops over a complete
simulation.

The lower the number of hops the faster data can be
retrieved in the network. This results in higher performance.

5) Stabilisations: A stabilisation takes place in the network
when data within the DHT is changed by a node. The DHT
is changed when a node leaves the network or a new node
joins the network. A stabilisation consumes both network
and hardware resources (CPU cycles, memory) as it involves
querying the nodes on the network and changing values within
a node dependent on queries made.

6) Failures: A failure occurs in the network when the
sender node fails to find the data being queried. Failures can
occur on the network when:

• Data has not been replicated and the master node has left
the network.

• A collision in the ID space has occurred (only observed
when hash collisions have occurred).

• The ID cannot be found within the network ID space.
• A failure in the (simulated) physical network occurs.

Having a high number of failures is undesirable as it gives a
player an inaccurate representation of the MMO game world.
In having a high number of failures a player may not be able to
retrieve character information leading to a poor overall game
experience.

Fig. 4. Average Hop rate per cycle vs churn rate

A. Simulation 1

A network of 10,000 nodes was created and the network
initialised on top of this. The node ID was created by MD2,
MD5, X-Axis Locality and Hilbert indexing to produce four
different data sets. For each data set the churn rate was
increased from 0-500 nodes (0-5%) per cycle in increments
of 100. At each of these increments the hop count and node
stabilisations were recorded. The results from each data set
were gathered 100 times and were averaged for each variable.

B. Results for Simulation 1 Scenario

In using X-axis locality, the average number of hops re-
quired to find data on the P2P network is reduced (see Figure
4), and in using Hilberts curve the number of stabilisations
can be reduced (see Figure 6). In reducing stabilisations the
amount of network traffic is also reduced which in a real
physical network would result in better performance (less
bandwidth) and a decrease in physical resource utilization at
each node (memory, CPU cycles).

When searching within a local area within the game appli-
cation the performance of Hilberts curve increases on average
(see Figure 4), this is a result of the locality preserved
within the logical ID space[26][27]. A local cache of network
addresses is used which increases in size over time. This is
independent of churn resulting in a decrease of hops over time.

C. Simulation 2

A network of 10,000 nodes was created and the network
initialised on top of this. The node ID was created by MD2,
MD5, X-Axis Locality and Hilbert indexing to produce four
different data sets. For each data set the churn rate was
increased from 0-500 nodes (0-5%) per cycle in increments of
100. At each of these increments the failure rate was recorded.
The results from each data set were gathered 100 times and
were averaged for each variable.

D. Failure Rate

Each ID generation method was tested where no replication
mechanism is used (figure 5). These results show that when

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-238-7

AP2PS 2012 : The Fourth International Conference on Advances in P2P Systems

 0

 5

 10

 15

 20

 25

 30

 0 1 2 3 4 5 6

F
ai

lu
re

s
(%

)

churn rate (%)

Hilbert’s curve
x-axis locality

MD2
MD5

Fig. 5. Average failure rate per cycle vs churn rate: no replication strategy

using the Chord protocol without replication strategy the
number of failed queries increases linearly with the churn rate.

When using replication in the network the number of
failures is reduced to a negligible number for all methods of
ID generation, regardless of the churn rate (up to 50%).

Replication also improved the hop performance of using
Hilberts curve to map IDs in a logical space when using a
random query. In doing so Hilberts curve performs as well
as X-axis locality (see Figure 4). By searching a local area,
performance is still significantly faster (also seen in Figure 6).
Stabilisations are unaffected by the use of replication, with
Hilberts curve ID mapping still offering the most significant
performance increase. When using replication a higher number
of messages is sent to distribute data in the network which
results in more data being sent across the network. The initial
testing was carried out in a random manner to test performance
in a generalized application. Later testing using geographical
proximity was used to test whether locality had a bearing on
the lookup time of data in a P2P network.

In using locality aware IDs, the number of hops in a P2P
network can be reduced as well as the number of stabilisations
required. Within a game application locality offers a significant
performance enhancement (see Figure 4). The failure rate
however is mostly unaffected and requires another technique
to improve performance.

The performance of a P2P network can be beyond that of
random IDs with and without replication. This is done using
a combination of locality aware ID mapping in a logical ID
space and replication.

V. CONCLUSION AND FUTURE WORK

This paper explored two aspects of the implementation of a
MMOG over P2P protocols. We showed how using a locality
aware ID mapping when performing Interest Management in
a logical space can have a positive effect on the stability and
efficiency of a DHT based P2P protocol. This is measured in
terms of number of hops and stabilisations. Specifically, we
show that by using Hilberts curve to map IDs with respect to
the regions of interest within a logical game space hop perfor-

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1 2 3 4 5 6

S
ta

bi
liz

at
io

ns

churn rate (%)

Hilbert’s curve
x-axis locality

MD2
MD5

Hilbert’s curve with Replication
x-axis locality with Replication

MD2 with Replication
MD5 with Replication

Fig. 6. Average stabilisations per cycle vs churn rate

mance in a DHT can be doubled (on average). We additionally
outline and implement a data replication scheme and show
how it leads to the number of failures in a P2P network being
reduced. Replication also reduced the number of hops (on
average) when using; Hilberts curve, MD2 and MD5 to map
IDs to a logical space. In general, when using Hilberts curve as
ID generation for Interest Management, in combination with
the replication method we propose, the network performance
is improved (over the other implementations explored). This
should be of consideration to developers of P2P MMOGs who
are in need of a node ID scheme for a DHT implementation
and data replication strategy. Future work will look at a more
extensive implementation of MMOG features such as global
game-state management and player communication and the
problems these pose for a P2P implementation.

REFERENCES

[1] J. Mulligan and B. Patrovsky, Developing online games: An insider’s
guide. New Jersey: New Riders, March 2003.

[2] B. Woodcock, “An analysis of MMOG subscription growth,”
MMOGCHART.COM [On-line], vol. 24, 2008, available =
http://tinyurl.com/d6kpl5s [May 24, 2012].

[3] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support
for massively multiplayer games,” in INFOCOM 2004. Twenty-third
AnnualJoint Conference of the IEEE Computer and Communications
Societies. IEEE, March 2004.

[4] T. Hampel, T. Bopp, and R. Hinn, “A peer-to-peer architecture for mas-
sive multiplayer online games,” in Proceedings of 5th ACM SIGCOMM
workshop on Network and system support for games. ACM, 2006, pp.
30–31.

[5] S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera, “Enabling mas-
sively multi-player online gaming applications on a p2p architecture,” in
Proceedings of the IEEE international conference on information and
automation. IEEE, 2005, pp. 7–12.

[6] M. Ratti, S.and Pakravan and S. Shirmohammadi, “A distributed latency-
aware architecture for massively multi-user virtual environments,” in
Haptic Audio visual Environments and Games, 2008. HAVE 2008. IEEE
International Workshop on. IEEE, 2008, pp. 53–58.

[7] K. Morse, “Interest management in large-scale distributed simulations,”
Department of Information and Computer Science, University of Cali-
fornia, Irvine, California, Tech. Rep. 96-27, 1996.

[8] S. Fiedler, M. Wallner, and M. Weber, “A communication architecture
for massive multiplayer games,” in Proceedings of the 1st workshop on
Network and system support for games. ACM, 2002, pp. 14–22.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-238-7

AP2PS 2012 : The Fourth International Conference on Advances in P2P Systems

[9] J. Lee, H. Lee, S. Kangm, S. Kim, and J. Song, “Ciss: An efficient object
clustering framework for dht-based peer-to-peer applications,” Computer
Networks: The International Journal of Computer and Telecommunica-
tions Networking, vol. 51, no. 4, pp. 1072–1094, 2007.

[10] S. Singhal and M. Zyda, “Networked virtual environments: design and
implementation,” Recherche, vol. 67, p. 2, 1999.

[11] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, and P. Barham,
“Exploiting reality with multicast groups,” Computer Graphics and
Applications, IEEE, vol. 15, no. 5, pp. 38–45, 1995.

[12] T. Funkhouser, “Ring: a client-server system for multi-user virtual
environments,” in Proceedings of the 1995 symposium on Interactive
3D graphics. ACM, 1995, pp. 85–95.

[13] H. Abrams, K. Watsen, and M. Zyda, “Three-tiered interest manage-
ment for large-scale virtual environments,” in Proceedings of the ACM
symposium on Virtual reality software and technology. ACM, 1998,
pp. 125–129.

[14] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communication Review, vol. 31, no. 4, pp.
149–160, 2001.

[15] R. Rivest, “The md5 message-digest algorithm,” Internet activities
board, vol. 143, 1992.

[16] F. PUB, “Secure hash standard,” Public Law, vol. 100, p. 235, 1995.
[17] B. Kaliski, “The md2 message-digest algorithm,” RSA Laboratories,

Cambridge, Massachusetts, Tech. Rep. 1319, 1992.
[18] R. Merkle, “Secrecy, authentication, and public key systems.” Proceed-

ings of the workshop on the theory and application of cryptographic
techniques on Advances in cryptology, 1979.

[19] G. Peano, “Sur une courbe, qui remplit toute une aire plane,” Mathe-
matische Annalen, vol. 36, no. 1, pp. 157–460, 1890.

[20] A. Butz, “Space filling curves and mathematical programming,” Infor-
mation and Control, vol. 12, pp. 314–330, 1968.

[21] D. Hilbert, “Ueber die stetige abbildung einer line auf ein fluchenstuck,”
Mathematische Annalen, vol. 38, pp. 459–460, 1891.

[22] G. C. and M. Lindenbaum, “On the metric properties of dis-
crete space-filling curves,” IEEE Transactions on Image Process-
ing [On-line], vol. 5, no. 1, pp. 794–797, Jan 1996, available =
http://tinyurl.com/c9qse9k [May 24, 2012].

[23] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz, “Analysis of the clus-
tering properties of the hilbert space-filling curve,” IEEE Transactions
on Knowledge and Data Engineering, vol. 13, no. 1, pp. 124–141, Jan
2001.

[24] A. Montresor and M. Jelasity, “A walkable kademlia network for virtual
worlds,” in INFOCOM’09 Proceedings of the 28th IEEE international
conference on Computer Communications Workshops. IEEE, 2009, pp.
313–314.

[25] M. A. and M. Jelasity, “Peersim: A scalable p2p simulator,” in Peer-to-
Peer Computing, 2009. P2P’09. IEEE Ninth International Conference
on. IEEE, 2009, pp. 99–100.

[26] Z. Gharib, M. Barzegar and J. Habibi, “A novel method for supporting
locality in peer-to-peer overlays using hypercube topology,” in ISMS ’10
Proceedings of the 2010 International Conference on Intelligent Systems,
Modelling and Simulation. ACM, 2010, pp. 391–395.

[27] B. Ratti, S. Hariri and S. Shirmohammadi, “Nl-dht: A non-uniform
locality sensitive dht architecture for massively multi-user virtual en-
vironment applications,” in ICPADS ’08 Proceedings of the 2008 14th
IEEE International Conference on Parallel and Distributed Systems.
ACM, 2008, pp. 793 –798.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-238-7

AP2PS 2012 : The Fourth International Conference on Advances in P2P Systems

