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Abstract—This paper analyses the temporal dynamic of long-
term fraction of Absorbed Photosynthetically Active Radiation
(fAPAR) time series over Europe as derived from a 15 years
dataset of satellite images collected between 2001 and 2015
from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) sensor onboard of Terra satellite. A fitting of
piecewise logistic functions of time was performed for each cell
in order to account for the multi-cycle dynamic of fAPAR.
Most of the cells within the domain area showed a single peak
cycle, even if a non-negligible fraction of the domain (about
15%) showed two distinct peaks in the yearly cycle. The results
of the logistic function fittings allow identifying the key
transition dates between increasing/decreasing trends in
fAPAR, constituting a starting point for a more detailed
analysis of drought effects on ecosystems.
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I. INTRODUCTION

The understanding of the phenological cycle of land
ecosystems is a key element in the analysis of the feedbacks
between climate and Earth’s biosphere. The fraction of
Absorbed Photosynthetically Active Radiation (fAPAR) has
been widely identified as a suitable proxy of the greenness
and health status of vegetation, thanks to its central role in
both plant primary productivity and carbon dioxide
absorption. The Global Climate Observing System (GCOS)
recognized fAPAR as one of the 50 climate variables
essential to characterize the climate of the Earth [1].

The spatiotemporal variability of fAPAR can be derived
from space by means of the inverse solution of the radiation
transfer through the canopy space. Several remote sensing
based fAPAR products are currently available, including the
ones from the Advanced Very High Resolution Radiometer
(AVHRR), the Moderate-Resolution Imaging
Spectroradiometer (MODIS) and the PROBA-V;
particularly, the MODIS standard product MOD15A2 is
characterized by a relatively long time series (starting in
2000) and a near real time update.

The observed sensitivity of fAPAR to vegetation stress
has suggested its use in drought monitoring [2] [3]; an
example is the role of fAPAR anomalies in the Combined
Drought Indicator (CDI) developed for agricultural drought
monitoring in the European Drought Observatory (EDO) [4]
[5].

Even if the simple fAPAR anomalies have proven to be
reliable for drought detection [6], the fAPAR response to
drought may vary as a function of the timing and

phenological phase (i.e., early stage, late growth) [7], this
latter characterized by a temporal variability influenced by
climate change [8]. Generally, it seems valuable to quantify
the capability to automatically identify the phenological
stage at which a certain fAPAR anomaly occurs.

Several methodologies have been proposed in the past to
capture the timing of key phenological phases in remote
sensing fAPAR time series, including fixed thresholds [9],
moving averages [10], lagged moving average [11], Fast
Fourier and Harmonic Analysis [12], and fitting of smooth
functions [13] [14], as well as to evaluate the impact of
climate and used datasets on key transition dates [8] [15].

In this paper, we test the use of a series of piecewise
logistic functions to fit a time series of fAPAR images
collected by the MODIS-Terra sensor over Europe in the
period 2001-2015. Advantage of logistic function is the
capability to reproduce the succession of relatively constant
low and high values linked by transition periods, as observed
in most fAPAR records.

Goal of the study is to identify the suitability of the
methodology to detect the key transition dates for a future
integration of this approach in an operational drought
monitoring system like EDO. In Section II, the processing of
satellite data and the mathematical background of the fitting
procedure are described, in Section III the main results of the
fitting, including the detected number of peaks and the key
transition dates, are detailed, and, finally, in Section IV a
summary of the results is reported, as well as some key
conclusions of the study are illustrated.

II. MATERIALS AND METHODS

In this Section, the pre-processing of the remotely sensed
data, as well as the procedure to derive the key transition
dates, are described in details.

A. Satellite fAPAR data

Physically based fAPAR retrieval algorithms commonly
perform a combined estimation of fAPAR and Leaf Area
Index (LAI). The standard MODIS Terra LAI/fAPAR
product (MOD15A2, Collection 5) is used in this study; this
product is available globally as 8-day composites at 1-km
spatial resolution on a Sinusoidal grid. Data are provided in
spatial tiles of about 1,200 × 1,200 km2 [16].

The estimation procedure retrieves LAI and fAPAR from
the remotely-observed and atmospherically corrected
Bidirectional Reflectance Distribution Function (BRDF)
recorded by MODIS in 7 spectral bands by solving an

17Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-489-3

BIONATURE 2016 : The Seventh International Conference on Bioenvironment, Biodiversity and Renewable Energies



inverse problem. A numerical inversion of the three-
dimensional radiation transfer process through the canopy
system is solved by splitting it into two separate sub-
problems: i) the radiation field in the canopy calculated for a
black surface, and ii) the radiation field in the same medium
(with the black surface) generated by anisotropic sources
located at the canopy bottom [17].

Once information on the canopy structure is available,
the solution to these problems is obtainable. Hence, a Look-
Up-Table (LUT) approach is adopted by subdividing the
vegetated land into eight-biome classes: grasses and cereal
crops, shrubs, broadleaf crops, savanna, deciduous broadleaf
forests, evergreen broadleaf forests, deciduous needle
forests, evergreen needle forests.

The MOD15A2 product is generated daily and
successively aggregated to 8-day composites by using a
maximum composite method; quality assessment (QA) flags
are included in the 8-day composition, and a back-up
algorithm is triggered for low quality pixels to estimate LAI
and fAPAR from vegetation indices. Data from MODIS-
Terra are available from April 2000 to nowadays.

For the period 2001-2015, we downloaded the
MOD15A2 tiles covering Europe (from 17 to 21 horizontal
and from 02 to 05 vertical). A series of post-processing
procedures was applied to the 8-day fAPAR tiles in order to
obtain dekadal maps (3 maps per month, corresponding to
the days: 1-10, 11-20 and 21-end of the month) over the
European domain. First of all, the tiles were mosaicked and
reprojected in the common lat/lon regular grid at 0.01 degree
resolution. Hence, low quality data were masked out
according to the QA flag and fAPAR estimates for each
dekad were obtained by means of an exponential smoothing
(with smoothing parameter equal to 0.5) of the raw data [18].
The exponential smoothing allows removing likely outlier
(i.e., cloud contaminated values) without compromising a
near-real time delivery of the newly upcoming data.

A long-term average fAPAR dataset is reconstructed by
simply averaging the 15 values available for each dekad,
obtaining an estimate of the mean fAPAR dynamic for each
cell in the domain.

B. Fitting procedure

Ecological studies have shown clear temporal patterns in
fAPAR time series, in which periods of relatively constant
low and high values are linked by transition (smooth
increasing/decreasing) periods; these patterns can be
relatively well represented by means of a sequence of
logistic functions [19].

This approach was introduced by [13] for an automatic
application on MODIS Enhanced Vegetation Index (EVI)
images, with the aims of modelling a single
growth/senescence cycle from remotely sensed data. These
authors suggest subdividing the full period into segments of
sustained increasing/decreasing values, each of which can be
fitted by the function:
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where t is time in dekad, d is the minimum fAPAR value
observed in the segment, c+d is the maximum fAPAR value,
a and b are the fitting parameters obtained from a least
squares regression of the reduced variable Y = ln[c/(fAPAR-
d)]-1 vs. t.

The key transition dates are identified from the fitted
values y(t) as the local extrema in the rate of change in
curvature (derivative of the angle of the unit tangent of the
curve along the unit length of the curve), K’:
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where z = exp(a + bt). Equation (2) presents three extrema
(see Figure 1), the first is the onset of increasing fAPAR
(circle), the second is the inflection point (cross) and the
third is the onset of the maximum fAPAR values (square). In
case of a segment with decreasing fAPAR values, the first
and the last extrema represent the end of the period with
maximum values and the end of the decreasing, respectively.

The fitting procedure is preceded by a segmentation
phase, in which the single decreasing/increasing periods are
identified. In this preliminary step a 5-value moving window
average is performed on the fAPAR data, and the
independent segments are identified in correspondence of the
changes from positive to negative slope [19].

III. RESULTS

As described in Section II.B, a preliminary analysis of
the fAPAR dekadal average data was performed in order to
detect the number of segments necessary for an accurate
fitting of the fAPAR annual cycle. As depicted in Figure 2,
this analysis shows how most of the domain is characterized
by a single cycle with a distinct peak (2 segments), even if a
significant fraction of the domain (around 15%) presents 2
different peaks (4 segments) within the annual cycle.

Figure 1. A schematic representation of the fitting procedure for a
single segment (redrawn from [13]).
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Figure 2. Spatial distribution of the cells with a single peak (in red) or
with two peaks (in blue).

Distinct areas with two peaks in the processed window
are the Nile (even if outside Europe) and Volga deltas, as
well as some mountainous forests (i.e., Carpathian, Central
Chain in Spain). It is worth to point out that a small fraction
of the domain (around 8%) has no clear cycle according to
our detection method, and an even smaller fraction (< 2%)
has more than 2 peaks (likely due to noisy time series); both
areas were removed from the successive analyses.

The average fAPAR data were fitted according to a series
of piecewise logistic functions, which number has been
identified in the previous phase. For each cell, the key
transition dates were evaluated, and two maps have been
created as reported in Figure 3: a) starting Day Of the Year
(DOY) of the increasing phase, and b) ending DOY of the
decreasing phase.

The maps in Figure 3 show a quite large range of
variability for both start and end dates, with distinct spatial
patterns; in details, start date (Figure 3a) is early in the year
(DOY 90) for Central Europe, is in the middle of the year for
North Europe and quite late (DOY > 280) for the
Mediterranean areas. Similarly, end date map (Figure 3b)
shows a distinct North/South gradient, with end date just
before summer for the Mediterranean countries, close to the
end of the year for central Europe and around DOY 280-300
for North Europe. The North/South gradient observed in both
transition dates is in general agreement with the expected
phenological cycles for such regions.

The frequency distribution of the data in Figure 3a shows
that the mode of the distribution is around DOY 130±60,
even if a secondary small peaks can be observed at DOY =
290 (Mediterranean area). In contrast, the frequency
distribution of the data in Figure 3b shows two overlapping
bells around DOY 280±15 and 330±30, corresponding to
North-Central and South-Central Europe (respectively), and
a quite small third peak at DOY 210 (Mediterranean areas).

The resulting length of the period between the start of the
increasing and the end of the decreasing fAPAR (not shown)
has a single peak distribution centered on DOY = 230±70
days. It is worth to point out that data over North Europe are

severely affected by missing values during winter time (due
to persistent cloud coverage and low solar angle), which
likely affect the estimates of start/end dates and
underestimate the length of the period between these two
dates.

The most notable difference in the observed dynamics is
that, while Central and North Europe fAPAR are relatively
in-phase with the incoming solar radiation (with maximum
values occurring during summer), the data over
Mediterranean countries are off-phase (maximum values in
early spring); the latter are mainly due to the sever water
stress that occurs over these areas during summer. Overall,
the observed dynamics are in agreement with the ground
observed datasets (i.e., from flux towers) reported in [20]
[21].

Finally, the plots in Figure 4 report three examples of
fAPAR time series, as well as the transition points as
detected by the applied methodology. The three sites were
selected with the aim of illustrating the performance of the
methodology over different conditions. These plots clearly
highlight the good capability of the proposed procedure to
identify the presence of single or multiple cycles, as well as
of the piecewise logistic approach to capture the true
dynamic of fAPAR. In particular, the plot in Figure 4c
highlights the capability of the method do detect also the
secondary transition points that occur between the two
primary cycles, which can be used to further discriminate
among different fAPAR time series behaviors.

IV. SUMMARY AND CONCLUSIONS

This paper evidences the flexibility of an approach based
on piecewise logistic functions to automatically capture the
dynamic of fAPAR over a large area, such as the European
continent. The methodology allows identifying the main
transition dates between increasing and decreasing periods in
a consistent framework by exploiting the information content
of the fAPAR dataset itself. The fitting of a continuous
function for the computation of the transition dates, rather
than the use of a discrete numerical detection, allows for a
more coherent spatial definition of these dates.

The obtained results highlight a large variety of the
vegetation dynamic within the studies domain, suggesting
that the fAPAR anomalies occurring in the same dekad over
different areas may represent different effects on ecosystems
due to the different phenological stages (e.g., green-up,
senescence, etc.) at which those anomalies manifest.
Additionally, the likely interannual variability of the detected
transition dates should be analyzed in the current framework
of climate change.

Improvements of the proposed modelling framework can
be derive from quantitative comparisons of the retrieved key
dates against ground observations; overall, these results can
be considered a promising starting point for a more
ecosystem-driven analysis of drought phenomena over
Europe, which may be based on combining the information
on the current phenological stage with the anomaly
compared to the climatology.
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Figure 3. Spatial distribution of the two main transtion dates (as Day Of the Year, DOY): (a) start of the fAPAR increasing period, (b) end of the
fAPAR decreasing period.

Figure 4. Example of fAPAR time series with main transition dates (red dots), as well as secondary ones (blue dots) in case of multiple peaks, for the sites:
(a) South of Skopje (Macedonia), (b) North of Basel (Switzerland), and (c) Hatay region in Turkey.
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