
A Coupled Three-Step Network-Based Approach to
Identify Genes Associated with Breast Cancer

Michael Netzer∗, Xiaocong Fang†, Michael Handler∗, Christian Baumgartner∗
∗Research Group for Clinical Bioinformatics,

Institute of Electrical, Electronic and Bioengineering, UMIT, 6060 Hall in Tirol, Austria
Email: michael.netzer|michael.handler|christian.baumgartner@umit.at

†Zhongshan Hospital, Fudan University
200032 Xuhui District, Shanghai,China

fangxiaocong@gmail.com

Abstract—New biomarker candidates for breast cancer re-
currence are urgently needed to provide patients an optimal
treatment and avoid “overtreatment” where patients needlessly
suffer from the toxic side effects of chemotherapy. In this work,
we present a new network-based approach to identify biomarker
candidates for breast cancer recurrence. Our coupled three-step
strategy first selects relevant genes by using a filter approach.
In the second step, we infer a new type of network where the
number of edges of each vertex (i.e., degree) represents the
predictive value of the underlying gene. In the third step, we
conduct a database search for biomedical interpretation of our
findings. Using a breast cancer microarray dataset we could
verify top ranked genes associated with breast cancer and other
pathophysiological processes.

Index Terms—biomarker discovery; microarray; feature selec-
tion; networks; breast cancer

I. INTRODUCTION

Recent biotechnological advances in the “omics” sciences
such as microarrays have led to high amounts of data. In
particular, this data is characterized by a high number of
features (e.g., genes) and a small number of samples (large p,
small n problem) [1]. To identify highly predictive biomarker
candidates, sophisticated feature selection approaches, includ-
ing filters and wrappers, are required [2]. Wrapper approaches
[3] use learning algorithms (i.e., a classifier if the dependent
variable is categorical) and a search strategy to identify sets
of highly discriminating features. Filter approaches that cal-
culate a measure for every feature representing its predictive
ability are independent of a classifier and generally have less
extensive computational costs [4].

Advances of computer systems have also led to extensive
biological network analysis [5]–[7], increasing understanding
of interactions between genes, proteins and metabolites.

In this work, we introduce a new three-step network-based
approach to identify genes related to breast cancer recurrence.
New biomarker candidates demonstrating recurrence are ur-
gently needed for diagnosis and to provide the patients with
an optimal treatment plan. According to Weigelt et al. [8],
currently, more than 80% of female patients with breast cancer
receive adjuvant chemotherapy, though only approximately
40% relapse and ultimately die of metastatic breast cancer.

Consequently, many patients are over-treated needlessly, suf-
fering from toxic side effects of chemotherapy [8].

Section “Materials and Methods” describes our new three-
step network-based approach. In the “Results and Discussion”
section, we show our results for an example dataset. Finally,
we conclude and discuss our method and findings.

II. MATERIALS AND METHODS

A. Data

We used 59 preprocessed microarray spectra (platform
GPL1390) from the study of Hoadley et al. [9] available at the
GEO database [10] (ns = 59). The data includes 29 controls
and 30 cases (breast cancer recurrence within 36 months). In
our experiments we only use genes where the ensembl gene
id is available (nf = 11638).

B. Computational approach

Given is a set of tuples (dataset) T = {xi, yi}ns
i=1 with

xi ∈ Rnf and yi ∈ {case, control}, where nf is the number
of features, ns is the number of samples and y is the set of
classlabels. Recently, we developed a new supervised approach
to infer networks based on the ratios between metabolites [11].
Therefore, we first calculated all ratios R between features F ,
where rij = | log2

(
fi
fj

)
| with i > j, and f ∈ F, r ∈ R.

Note that the logarithm induces symmetry of the ratios and
their reciprocals, respectively. We then created a graph G with:

Gij =

{
1 if |sij | > τ

0 else,
(1)

for i, j ∈ 1, . . . , nf , where τ is a defined threshold. The
score s representing the discriminatory ability was calculated
using the BI filtering method [12]. Briefly, BI combines a
discriminance measure (DA∗), the coefficient of variation CV
and ∆change representing the strength of the change. For the
unpaired BI , we define ∆ = x

xref
, where x is the mean of

the comparison group (e.g., case) and xref is the mean of the
reference group (e.g., control).

In our recent work, we could show that this new type of
network, based on the ratios, outperforms other networks as

1Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-190-8

BIOTECHNO 2012 : The Fourth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies



correlation networks in terms of accuracy (see also Netzer
et al., 2011). However, this approach has several limitations:
i) Creating the network for n features results in n·(n−1)

2
comparisons and BI calculations (O(n2)); ii) by definition
the values for f must be positive to calculate the logarithms
and xref must be 6= 0 to calculate the BI scores.

In particular, when dealing with standard normal distributed
microarray data (N(0, 1)) we have a high number of features
(n > 10, 000) including negative values for f and xref is
close to zero.

Therefore, in this work, we propose a new generic three-
step strategy to overcome the afore mentioned restrictions for
standard normal distributed datasets with a high number of
features (e.g., preprocessed microarray data):

Step 1: In order to reduce the number of features we
first perform a feature selection. Therefore, we use a
filter method and calculate the score s representing the
discriminatory ability of each feature. We remove all features
f with a score less than a defined threshold (sf < τ ). Finally,
we obtain our reduced dataset Tr.

Step 2: Given a standard normal distributed dataset we
calculate all differences D between features F in Tr, where
dij = |fi − fj | with i > j, and f ∈ F, d ∈ D. Similar to
equation 1 we finally construct the graph with

Gij =

{
1 if sij > τ

0 else,
(2)

In our experiments, we used the information gain [13] to
calculate the score s on the distances d for step 1 and 2. The
information gain IG of a feature f is given by [14]

IG = H(Y )−H(Y |X), where (3)

H(Y ) = −
∑
y∈Y

p(y) log2(p(y)), and (4)

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2(p(y|x)), (5)

where H(Y ) denotes the entropy for Y (class variable) and
H(Y |X) is the entropy of Y after observing X .

The information gain easily allows to identify features with
no or less discriminatory ability. Therefore, we set τ = 0
(filtering threshold) to remove features with no information
regarding the class attribute. In addition, we also used the
information gain because it can also deal with values ≤ 0.

Step 3: After the network is inferred the genes are
ranked according to the topological descriptor of the vertices.
In this study we ranked the genes according to their degree
(i.e., number of edges).

To verify and interpret our findings a database search to
multiple repositories such as the Database for Annotation,
Visualization and Integrated Discovery (DAVID) [15] and
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database was conducted [16].

Fig. 1. The proposed workflow. The second row outlines the result of each
process from row one. T denotes the entire dataset and Tr denotes the reduced
dataset after feature selection.

Fig. 2. Standard normal distribution of the dataset.

The feature selection was performed using Weka [17].
We used R [18] to implement the network approach methods.
There exist several R packages for handling and analyzing
graphs such as graph [19], igraph [20], QuACN [21] and
BioNet [22]. The overall workflow including data import,
feature selection, network inference and pathway analysis is
depicted in Fig. 1.

The used hardware platform was an Intel Centrino 2x-1.83
GHz PC with 2048 MB RAM.

III. RESULTS AND DISCUSSION

This works aims at identifying new genes related to breast
cancer recurrence. The distribution of the used dataset is
shown in Fig. 2. After feature selection of step 1 a total of 156
genes yielded an information gain > 0. The resulting network
after applying step 2 to the reduced dataset is shown in Fig.
3. The ten top ranked genes using the degree (i.e., number of
edges) are listed in Table I.

The related pathophysiological processes of the identified
gene set are shown in Table II.

Kallilreins gene family are a group of serine proteases and
known to be involved in several endocrine related malignancies
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[23]. Kallikrein gene 7 (KLK7) was first reported in 1991 in
the desquamation of stratum corneum [24] and later reported
to be highly upregulated in ovarian carinomas [25]. Recent
studies have reported that KLK7 can be up regulated primarily
by estrogens and glucocorticoids [26], [27]. The expression of
the KLK7 gene was supposed to be the most independent
prognostic marker for the survival of patients with breast
cancer [27].

Salivary amylase alpha 1 (AMY1) is involved in the starch
and sucrose metabolism. It was reported to be highly expressed
in individuals with high starch diets [28] and highly activated
under psychosocial stress [29]. There is no existing evidence
which supports the association between AMY1 and breast
cancer, however, recent study reported AMY1 is an important
modulator of cAMP-dependent protein kinase (PKA) which
has versatile functions in cells [30].

The PH domain of PHLDA2 can compete with the PH
domain of some other proteins, thereby interfering with their
binding to phosphatidylinositol 4,5-bisphosphate (PIP2) and
phosphatidylinositol 3,4,5-triphosphate (PIP3) in membrane
lipids thus involved in various biological processes [15].

SnrpC belongs to the U1 small nuclear ribonucleoprotein
C family and was reported to be involved in the splicing of
mRNA [31]. The peptidylarginine deiminases 2 (PAD2) is a
member of PADs which catalyze citrullination by converting
arginine residues of proteins [32], [33]. It was also reported to
play a role in inflammatory response, cell apoptosis [34], [35]
as well as the gene regulation in the mammary glands [36].

Wee1 is another gene which was previously reported to be
involved in tumourigenesis [37], [38] as well as the signaling
regulation in breast cancer stem cells [39]. It was suggested
to act as a tumor suppressor via regulating Cyclin and cyclin-
dependent kinase complexes [37].

SOCS family proteins are part of a classical negative
feedback system that regulates cytokine signal transduction of
which SOCS2 appears to regulate the growth hormone/IGF1
signaling pathway [15], [40]. It is also suggested to play a role
in the oncogenesis of ovary and mammary gland [41].

SOX5 is one of the high-mobility group (HMG) which has
been recognized as a key player in the regulation of embryonic
development [42] and in the determination of cell fate [43]
reported to be involved in the progression of glioma and
prostate cancer [44], [45].

KIAA0494 was supposed to play a role in the splicing of
eukaryotic pre-mRNAs [46] but there are no more studies
provided on its effect on tumorgenesis. CTP synthase (CTPS)
plays a predominant role in CTP synthesis by converting UTP
to CTP thus controling cell proliferation, differentiation and
apoptosis [47]. Previous studies have demonstrated that CTPS
depletion resulted in stabilization of wild-type p53 and showed
antitumor effects in breast cancer cells [48].

Among the top 10 most related genes, we found that
half of them had been previously reported to play roles in
tumorogenesis, such as KLK7, Wee1, SOCS, SOX5 and CTPS.
Furthermore, some had been studied in breast cancer (KL7,
Wee1,SOCS, CTPS). However, the others were first suspected

Fig. 3. The resulting network in which the ten white vertices represent the
genes with highest degree. The network is plotted using Cytoscape [49].

TABLE I
THE GENE ID, DEGREE AND NAME OF THE TOP 10 RANKED FEATURES.

Rank Gene ID Degree Gene name

1 ENSG00000169035 86 kallikrein-related peptidase 7
(KLK7)

2 ENSG00000051415 68 amylase, alpha 1A, 1B, 1C

3 ENSG00000181649 66 pleckstrin homology-like domain
family A, member 2 (phlda2)

4 ENSG00000124562 54 small nuclear ribonucleoprotein
polypeptide C

5 ENSG00000117115 52 peptidyl arginine deiminase, type
II

6 ENSG00000166483 51 WEE1 homolog (S. pombe)

7 ENSG00000120833 49 suppressor of cytokine signaling 2

8 ENSG00000134532 47 SRY (sex determining region Y)-
box 5

9 ENSG00000159658 45 KIAA0494

10 ENSG00000171793 43 CTP synthase

to be involved in the development or progression of breast
cancer. Our results revealed that it is possible that these
genes provide new targets for the control of breast cancer.
However, further studies are warranted and essential to verify
and validate these promising findings.

IV. CONCLUSION

In this work, we introduced a new network-based approach
to identify biomarker candidates for breast cancer recurrence.
Our main contribution is to propose a new workflow that
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TABLE II
THE RELATED PATHOPHYSIOLOGICAL PROCESSES OF THE TOP 10 RANKED

GENES. THE ASSOCIATED GENE NAMES CAN BE FOUND IN TABLE I.

Rank Related pathophysiological processes

1 Play a role in the desquamation of the skin, the stratum corneum.
Up-regulated in by estrogens and glucocorticoids.

2 involved in starch and sucrose metabolism, dalivary secretion,
carbohydrate digestion and absorption.

3 compete to bind phosphoinositides in the membrane lipids with a
broad specificity in various biological processes

4 associated with snRNP U1. and involved in the splicesome path-
way

5 catalyzes the deimination of arginine residues of proteins

6 participate in the cell cycle with an increased synthesis during S
and G2 phases

7 a negative regulator in the growth hormone/IGF1 signaling path-
way

8 binds specifically to the DNA sequence 5’-AACAAT-3’, overex-
pressed in glioma and prostate tumor

9 involved in the splicing of eukaryotic pre-mRNAs

10 catalyzes the ATP-dependent amination of UTP to CTP, play a
role in pyrimidine metabolism

includes the filtering of relevant genes and inferring the
network based on an information entropy measure. Our three-
step strategy selected in the first step relevant features using
the information gain. In the second step we inferred a new
type of a network where the number of edges of each vertex
(i.e., degree) represents the predictive ability of the underlying
feature. Finally we used the DAVID and KEGG databases to
verify and interpret top ranked genes.

Using our breast cancer microarray dataset from the GEO
database we could identify a set of known and unexpected
genes associated with breast cancer and other pathophysio-
logical processes. The proposed generic method can also be
applied to other biomedical questions (e.g., other diseases) or
types of data such as metabolic datasets.
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