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Abstract—In this paper, we propose a method to predict
gene knockout effects for the cell growth by utilizing biological
databases such as KEGG and EcoCyc, in which biological
knowledge and experimental results have been collected. We
construct biological networks from such databases and con-
figure experimental conditions by giving source metabolites,
target metabolites, and knockout genes. We then enumerate all
minimal active pathways, which are minimal subsets of a given
network using source metabolites to produce target metabolites.
We simulate the effects of gene knockouts by measuring
the difference of minimal active pathways between original
networks and knockout ones. In the experiments, we applied it
to predict the gene knockout effects on the glycolysis pathway
of Escherichia coli. In the results, our method predicted three
out of four essential genes, which are confirmed by the Keio
collection containing comprehensive cell growth data obtained
from biological experiments.

Keywords-metabolic pathways; gene knockout; prediction
method; minimal pathway; Keio collection.

I. INTRODUCTION

Living organisms, such as bacteria, fishes, animals, and
humans, are kept alive by a huge number of intracellular
chemical reactions. In systems biology, interactions of such
chemical reactions are represented in a network called a
pathway. Pathways have been actively researched in the
last decade [1]–[3]. In addition, it is a biologically impor-
tant subject to reveal the function of genes, which affect
the phenotype of organisms. For model organisms such
as Escherichia coli (E. coli), it has been approached by
various methods. Constructing gene knockout organisms is
an example of such methods [4]–[6]. However, it generally
involves high costs and is limited by target genes and
organisms.

In this paper, we propose a computation method to pre-
dict gene knockout effects by identifying active pathways,
which are sub-pathways that produce target metabolites from
source metabolites. We particularly focus on minimal active
pathways, which are proposed by Soh and Inoue [7] and do
not contain any other active pathways. In other words, all
elements of each minimal active pathway are qualitatively
essential to produce target metabolites. To predict gene
knockout effects by the enumeration of minimal active

pathways, we first introduce extended pathways that include
relations between enzymatic reactions and genes. Then, we
formalize the problem of finding minimal active pathways on
the extended pathway with gene knockouts. After computing
the solution of the problem, our method predicts gene
knockout effects by collecting minimal active pathways that
are still active under given gene knockouts.

To evaluate our method, we choose E. coli as our target
organism, since it has been studied and much information
about it is available on public resources. We apply our
method to predict gene knockout effects on E. coli utilizing
biological databases KEGG and EcoCyc, in which biological
knowledge and experimental results have been collected. In
the experiments, we compared our prediction and the cell
growth of every single gene knockout E. coli strain, which
was obtained from the Keio collection [4].

This paper is organized as follows. At first, we explain
databases used in this paper and our research framework
in Section II. We define the extended pathway in Section
III. We formalize the problem of finding minimal active
pathways on the extended pathway in Section IV and the
effect of gene knockouts in Section V. Following that, we
show our computational method in Section VI. In Section
VII, we compare computational prediction and results of
biological experiments. Following discussions in Section
VIII, we conclude this paper in Section IX.

II. USED DATABASES AND RESEARCH FRAMEWORK

This section explains used databases and our research
framework shown in Figure 1. In this paper, we particularly
focus on E. coli. The metabolic pathway has been revealed
by biochemical, molecular, and genetic studies, and E. coli is
the organism in most detail. A large number of E. coli studies
has contributed to several kinds of biological databases. In
particular, we use the following two databases to construct
our input network, called an extended pathway. One is
EcoCyc [8]. It is a bioinformatics database that describes
the genome and the biochemical machinery of E. coli K-
12 MG1655. The EcoCyc project performs literature-based
curation of the entire genome, metabolic pathways, etc.
Specifically, it has been doing a literature-based curation
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from more than 19,000 publications. We construct metabolic
pathways with EcoCyc. The other one is Kyoto encyclopedia
of genes and genomes (KEGG) [9], which is a database
resource that integrates genomic, chemical, and systemic
functional information. In particular, gene catalogs in the
completely sequenced genomes, from bacteria to humans,
are linked to higher-level systemic functions of the cell,
the organism, and the ecosystem. A distinguished feature
of KEGG is that it provides useful application program in-
terfaces (API). We connect enzymatic reactions of metabolic
pathways to genes with this API.

Figure 1 shows our research framework using the two
databases. At first, we construct our input network called
extended pathway from them. We then construct the problem
of finding minimal active pathways by giving source and
target metabolites to the extended pathway. In addition, the
condition of knockout genes is also added to the problem.
Then, we compute minimal active pathways using source
metabolites to produce target metabolites. In the case of wild
cells, we usually obtain multiple minimal active pathways
including bypass pathways. However, in the case of knock-
out cells, we lose some (or all) of them. In brief, we predict
the effects of gene knockouts from how many pathways are
lost from the case of wild cells.

To evaluate our prediction method, we usually need
additional biological experiments. However, Baba et al.
comprehensively experimented on the cell growth of every
single gene knockout strain [4]. Thanks to this research, we
can evaluate our method with comparative ease. We briefly
explain this research as follows. The E. coli K-12 single gene
knockout mutant set, named Keio collection, is constructed
as a resource for systems biological analyses. Excluding
repetitive genes, e.g., insertion sequences related genes,
4288 protein coding genes are targeted for the systematic
single gene knockout experiments. Of those, 3985 genes are
successfully disrupted, and those of single-gene knockout
mutants are constructed as the Keio collection. On the other

hand, 303 genes are not disrupted and they are thought to
be essential gene candidates. Those single gene knockout
mutants have the same genome background, which results in
an advantage for distinct functional analysis of the targeted
gene. The genome-wide relationship between the genome
structure, i.e., genotype, and the phenomena, i.e., phenotype,
which are analyzed by using the Keio collection has become
available.

Although Figure 1 shows specific databases for E. coli, the
research framework itself can be applied for other organisms
whose pathway information is available, e.g., mice.

III. EXTENDED PATHWAYS

In this section, we explain how to represent metabolic
pathways and their relations to genes. We then define the
extended pathway.

To represent metabolic pathways, we commonly use bi-
partite directed graph representation as follows. Let M be a
set of metabolites and R be a set of reactions. For M and
R, M ∩R = ∅ holds. Let AM ⊆ (R×M)∪ (M ×R) be a
set of arcs. A metabolic pathway is represented in a directed
bipartite graph GM = (M ∪ R,AM ), where M and R are
two sets of nodes, and AM is a set of arcs. In addition to the
metabolic pathway, we consider relations between enzymatic
reactions and genes. Let G be a set of genes and AG be a
set of arcs such that AG ⊆ (G×R). That is, AG represents
relations between enzymatic reactions and genes. Let N be
a set of nodes such that N = M ∪R∪G and A be a set of
arcs such that A = AM ∪AG. Then, the extended pathway
is represented in a directed graph G = (N,A).

Figure 2 shows an example of the extended pathway. As
the figure shows, it consists of two layers: the metabolic
layer and the genetic layer. The genetic layer is the dif-
ference between the metabolic pathway and the extended
pathway. In this example, the pathway consists of nodes
of M = {m1,m2, . . . ,m6}, R = {r1, r2, . . . , r7}, and
G = {g1, g2, . . . , g8}. Each arc represents relations between
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Figure 2. Example of an Extended Pathway

elements. For instance, the activation of the reaction r6 needs
the production of metabolites m3 and m4 and the expression
of either g4 or g8. We will explain the interpretation of the
extended pathway in detail in the next section.

IV. MINIMAL ACTIVE PATHWAYS WITH GENE
KNOCKOUTS

In the literature [7], the minimal active pathway is defined
only on the metabolic pathway. On the other hand, in
this section, we define the minimal active pathway on the
extended pathway.

We here define MS ⊂ M as a set of source metabolites
and MT ⊂M as a set of target metabolites such that MS ∩
MT = ∅. An extended pathway instance is represented in a
four tuple π = (N,A,MS ,MT ), where N = M ∪ R ∪ G,
A = AM ∪AG. Let K be a set of genes such that K ⊆ G.
We use K as a set of knockout genes in a given pathway.
A knockout instance is represented in a five tuple πK =
(N,A,MS ,MT ,K). If K = ∅ then πK corresponds to π.

Let m, r be a metabolite and a reaction such that m ∈M
and r ∈ R, respectively. A metabolite m ∈ M is called a
reactant of a reaction r ∈ R when there is an arc (m, r) ∈
A. On the other hand, a metabolite m ∈ M is called a
product of a reaction r ∈ R when there is an arc (r,m) ∈ A.
Furthermore, a gene g ∈ G is called a corresponding gene
of a reaction r ∈ R when there is an arc (g, r) ∈ A.

A reaction is called a reversible reaction if it can occur
in both directions between reactants and products. In this
paper, we distinguish a reversible reaction as two reactions.
Suppose that there is a reversible reaction r1 that has m1

and m2 as reactants and m3 and m4 as products. In this
case, we split the reaction r1 into two reactions r1a and r1b

such that one of them has m1 and m2 as products and m3

and m4 as reactants.
Let s : R → 2M be a mapping from a set of reactions

to a power set of metabolites such that s(r) = {m ∈
M | (m, r) ∈ A} represents the set of metabolites that are
needed to turn the reaction r activatable. Let p : R→ 2M be
a mapping from a set of reactions to a power set of metabo-
lites such that p(r) = {m ∈ M | (r,m) ∈ A} represents

the set of metabolites that are produced by the reaction r.
Let c : R → 2G be a mapping from a set of reactions to a
power set of genes such that c(r) = {g ∈ G | (g, r) ∈ A}
represents the set of genes that are corresponding genes of
the reaction r. Let p′ : M → 2R be a mapping from a
set of metabolites to a power set of reactions such that
p′(m) = {r ∈ R | (r,m) ∈ A}. Let c′ : G → 2R be a
mapping from a set of genes to a power set of reactions
such that c′(g) = {r ∈ R | (g, r) ∈ A}.

Let t be an integer variable representing time. In this
paper, the time is used to represent order relation between
reactions to produce target metabolites from source metabo-
lites. In the following, we explain important notions related
to production of metabolites, activation of reactions, and
expression of genes. Since we focus on gene knockouts,
we suppose that almost all genes exist in the cell of a given
organism. We also suppose that if genes exist, then they
are expressed and available to construct enzymes needed for
enzymatic reactions. The reason for this condition is that we
want to simulate how the lack of corresponding genes affects
metabolic pathway rather than how the existence of genes
affects other elements. Although our pathway modeling is
simple, it allows us to analyze a whole cell scale pathway.
Let πK = (N,A,MS ,MT ,K) be a knockout instance,
where N = M ∪ R ∪ G, A = AM ∪ AG. Let G = (N,A)
be an extended pathway. Let M ′ ⊂ M be a subset of
metabolites. A metabolite m ∈ M is obviously producible
at time t = 0 from M ′ on G if m ∈ M ′ holds. A
reaction r ∈ R is activatable at time t > 0 from M ′ on
G if the following two conditions are satisfied: (i) for every
m ∈ s(r), m is producible at time t − 1 from M ′, (ii) at
least one corresponding gene g ∈ c(r) is not included in K.
A metabolite m ∈ M is producible at time t > 0 from M ′

on G if there is at least one activatable reaction r at time t
such that m ∈ p(r). If r is activatable at time t, then r is
activatable at time t+ 1. If m is producible at time t, then
m is producible at time t+ 1.

Let G′ = (N ′, A′) be a sub-graph of G, where N ′ =
M ′ ∪R′ ∪G′ and A′ = A′

M ∪A′
G. Then, an active pathway

of πK = (N,A,MS ,MT ,K) is defined as follows.
Definition 1: Active Pathway of Knockout Instance

A bipartite directed graph G′ is an active pathway of πK if
it satisfies the following conditions:

• MT ⊂M ′

• M ′ = MS ∪ {m ∈M | (m, r) ⊆ A, r ∈ R′} ∪ {m ∈
M | (r,m) ⊆ A, r ∈ R′}

• A′ = {(m, r) ∈ A | r ∈ R′} ∪ {(r,m) ∈ A | r ∈
R′} ∪ {(g, r) ∈ A | g 6∈ K, r ∈ R′}

• G′ = {g ∈ G | (g, r) ∈ A′, r ∈ R′}
• For every m ∈M ′, m is producible from MS on G′

From Definition 1, active pathways include a set of
metabolites, reactions, and genes, which are producible and
activatable from MS on G′ such that all target metabolites
MT become producible. The number of active pathways
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depends on the combination of MS and MT but an extended
pathway generally has a large number of active pathways.
We thus particularly focus on minimal ones rather than active
pathways. We give the definition of minimal active pathways
of πK as follows. Let G and G′ be extended pathways. We
say that G is smaller than G′ and represented in G ⊂ G′ if
R ⊂ R′. An active pathway G is minimal active pathway of
πK iff there is no active pathway of πK , which is smaller
than G. As this definition shows, we only need to see sets of
reactions to compare two pathways. Thus, in the rest of this
paper, we sometimes represent a minimal active pathway as
a set of reactions.

Any reactions included in a minimal active pathway
cannot be deleted to produce target metabolites. Intuitively,
this indicates that each of the elements of a minimal active
pathway is essential. In practice, minimal active pathways
including a large number of reactions are considered to be
biologically inefficient. We thus introduce a time limitation z
and pathways that can make all target metabolites producible
by t = z. In the following, we consider the problem of
finding minimal active pathways with respect to πK and z.

V. KNOCKOUT EFFECTS

This section provides how to predict knockout effects. In
the following, we give some definitions for the prediction.
Let π = (N,A,MS ,MT ) and πK = (N,A,MS ,MT ,K)
be an extended pathway instance and a knockout instance,
respectively. In addition, we denote the number of minimal
active pathways of π as |π| and the number of minimal active
pathways of πK as |πK |. Obviously, |πK | ≤ |π| holds. Then,
the gene knockout effect, i.e., the prediction by the proposed
method, is given by EK = |π|−|πK |. Let Ka and Kb be sets
of knockout genes. If EKa > EKb

holds, then we say that
the gene knockout effect of Ka is stronger than that of Kb.
If |πK | = 0, i.e., EK = |π|, then we say that the knockout
effect of K is critical to produce target metabolites. Various
metabolites are known as vital metabolites, which means
organisms cannot survive without them. That is, if some
gene knockouts are critical to produce such metabolites, then
a given organism cannot grow any more or dies. If |K| = 1
and its effect is critical to produce vital metabolites, then
we say that the gene g ∈ K is essential.

In the following, we explain the above definition with
a specific example. Suppose that we are given a path-
way instance π = (N,A,MS ,MT ), where N and A
are from the extended pathway shown in Figure 2, and
the source metabolite is MS = {m1} and the target
metabolite is MT = {m6}. Obviously, |π| = 3 and the
minimal active pathways of π are specifically as follows:
{r1, r5, r7}, {r2, r3, r6, r7}, {r2, r4, r6, r7}. Then, we con-
sider the following knockout instances πK1 and πK2 , where
K1 = {g1} and K2 = {g6}. For πK1 , minimal active
pathways including r1 can no longer be solutions, i.e.,
|πK1 | = 2. For πK2 , minimal active pathways including

r6 can no longer be solutions either. Thus, {r2, r3, r6, r7}
and {r2, r4, r6, r7} are deleted from the solutions of π, i.e.,
|πK2 | = 1. Consequently, we can say that the knockout
effect of K2 is stronger than that of K1. Moreover, suppose
that K = {g7}. Then, there is no minimal active pathway
of πK and we say that the knockout effect of K is critical
to produce m6. If m6 is a vital metabolite, we can simulta-
neously say that g7 is an essential gene.

In addition to the number of remaining minimal active
pathways after knockouts, an important factor in the pre-
diction is the gain of ATPs. This is because pathways that
are inefficient with respect to energy consumption will not
be used in organisms. Let |πa+|, |πa+

K | be the number of
minimal active pathways of π and πK , which gain ATPs,
respectively. Then, the gene knockout effect with respect
to ATP production is given by Ea+

K = |πa+| − |πa+
K |. In

particular, it is important when we consider the glycolysis
pathway since one of its main functions is to gain ATPs.
However, we cannot find any pathways producing ATPs on
some other pathways, i.e., minimal active pathways on them
must consume ATPs. In this case, the number of minimal
active pathways, which consume fewer ATPs, should be
considered instead of |πa+| and |πa+

K |.

VI. COMPUTATIONAL METHOD

This section explains how to compute |πK |. In this
paper, we use the method of computing all minimal active
pathways of π proposed by Soh and Inoue [7]. This method
computes pathways through propositional encoding and min-
imal model generation. An advantage is that this method
is flexible for adding biological constraints. Moreover, we
can utilize SAT technologies, which have been developed
actively in recent years.

In the following, we briefly explain the propositional
encoding to compute minimal active pathways of π. Let
i, j be integers denoting indices for metabolites and reac-
tions. Let t be an integer variable representing time. Let
π = (N,A,MS ,MT ) be an extended pathway instance,
where N = M ∪R ∪G, A = AM ∪AG. We introduce two
kinds of propositional variables. Let m∗

i,t be a propositional
variable, which is true if a metabolite mi ∈M is producible
at time t. Let r∗j,t be a propositional variable, which is true
if a reaction rj ∈ R is activatable at time t.

The encoding of the problem of finding minimal active
pathways with respect to πK and z is as follows.

ψ1 =
∧

0≤t<z

∧
mi∈M

(
m∗

i,t → m∗
i,t+1

)
ψ2 =

∧
0≤t<z

∧
rj∈R

(
r∗j,t → r∗j,t+1

)

ψ3 =
∧

1≤t≤z

∧
rj∈R

r∗j,t → ∧
mi∈s(rj)

m∗
i,t−1
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ψ4 =
∧

1≤t≤z

∧
rj∈R

r∗j,t → ∧
mi∈p(rj)

m∗
i,t


ψ5 =

^

mi∈(M\MS)

^

1≤t≤z

 

m∗
i,t → m∗

i,t−1 ∨
_

rj∈p′(mi)

r∗j,t

!

ψ6 =
∧

mi∈MS

m∗
i,0 ∧

∧
mi′∈M\MS

¬m∗
i′,0

ψ7 =
∧

mi∈MT

m∗
i,z

The formulas ψ1 and ψ2 represent that once a metabolite
(or a reaction) is made to producible (or activatable), then it
remains in the producible (or activatable) state. The formula
ψ3 represents that if a reaction rj is activatable at time t then
its reactants must be producible at time t− 1. The formula
ψ4 represents that if a reaction rj is activatable at time t
then its products must be producible at time t. The formula
ψ5 represents that if a reaction mi is producible then either
two states hold: the metabolite mi is producible at t − 1
or at least one reaction rj is activatable. The formulas ψ6

and ψ7 represent source metabolites and target metabolites.
We denote the conjunction of ψ1, . . . , ψ7 as Ψz . Then, we
can enumerate minimal active pathways with respect to πK

and z by computing minimal models of Ψz with respect to
V z = {r∗i,z|ri ∈ R}.

The computation for π is always needed to compare a wild
cell and its mutant. We thus explain a method to compute all
minimal active pathways of πK for a set of knockout genes
K. Actually, when the minimal active pathways of π are
obtained, we do not need much additional computation. All
minimal active pathways of πK are obtained by selecting
pathways that do not contain some r ∈ RK , where RK =
{r ∈ c′(g) | g ∈ K}. The procedure is given as follows:
(i) enumerate all minimal active pathways with respect to π
and z, (ii) delete minimal active pathways including some
r ∈ RK , where RK = {r ∈ c′(g) | g ∈ K}. As well
as the above procedure, there is another way to compute
all minimal active pathways with respect to πK and z. The
same is achieved by adding constraints, which inhibit the
activation of each reaction in RK , to the formula Ψz .

VII. EXPERIMENTAL RESULTS

This section provides experimental results. At first, we
describe experimental conditions. Then, we show the results
of our prediction of knockout effects for glycolysis and
amino acids biosynthesis.

A. Experimental conditions

We constructed extended pathways from EcoCyc [8]
and KEGG [9]. Specifically, we use EcoCyc to construct
metabolic pathways, which consists of 1222 metabolites
and 1920 reactions. Moreover, we use KEGG to construct
relations between enzymatic reactions and genes. In the

following experiments, the entire extended pathway is con-
structed from these two databases. Each experiment has been
done using a PC (3.2GHz CPU) running on OS X 10.6. For
computation, we use a SAT solver Minisat2 [10]. Koshimura
et al. proposed a procedure computing minimal models with
SAT solvers [11]. We follow their procedure to generate
minimal models by using a SAT solver.

To evaluate our method, we use the Keio collection as is
described in Section II. In particular, we use their results on
the MOPS medium whose main nutrient is glucose. Since
these comparative data are obtained from every single gene
knockout, in the following, we basically consider that the
set of knockout genes K consists of one gene. Moreover,
in the Keio collection, if a cell growth is less than 0.1 or
not applicable (N.A.) then we say that the cell is strongly
affected by a gene knockout.

B. Results for Glycolysis Analysis

First, we analyze the glycolysis pathway of E. coli. In ac-
cordance with the MOPS medium of the Keio collection [4],
we choose source metabolites as follows: β-D-glucose-6-
phosphate, H+, H2O, ATP, ADP, phosphate, and NAD+. In
addition, pyruvate is given as the target metabolite to analyze
glycolysis.

We then compute all minimal active pathways from the
entire metabolic pathway of E. coli. As we can see in
biological literature such as the work of Ferguson et al. [12],
glycolysis is known to a pathway constructed by eight steps.
However, if some reactions are disabled, then E. coli is ex-
pected to use other bypass pathways by additional reactions.
In this experiment, we thus give z = 12. Moreover, the
number of reactions included in each pathway is limited to
less than or equal to 12.

At first, we computed all minimal active pathways using
the above conditions and obtained 75 minimal active path-
ways. We then connected 61 genes to reactions included in
them by API on KEGG. Next, we computed minimal active
pathways of for each gene knockout. This experiment was
done within four seconds. Figure 3 shows the results of 61
gene knockouts. The x-axis denotes each gene knockout and
the y-axis denotes the number of minimal active pathways.
As is shown in the figure, we compute minimal active
pathways of πK1 , . . . , πK61 such that K1 = {b4025},K2 =
{b0963}, . . . ,K61 = {b2464}. However, since some of the
61 genes construct isozymes, such single gene knockout
Ki does not affect the number of minimal active pathways
|πKi |. However, for reference, we compute the effect of the
gene knockouts that disables all of them. For instance, b2133
and b1380 construct isozymes. In this case, the number
of minimal active pathways in the figure shows the case
of the gene knockout of both b2133 and b1380. For each
gene knockout, we computed the gain of ATP in each
minimal active pathway, which is calculated by counting the
number of both reactions with the coefficient of ATP: ones
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Figure 3. The Number of Minimal Active Pathways for each Gene Knockout on Glycolysis

consuming ATP and the other ones producing ATP. Minimal
active pathways that produce the positive number of ATPs
are more important than the others because producing ATP
is a main function of glycolysis.

From the figure, we can see that E. coli keeps almost all
minimal active pathways even by more than half of single
gene knockouts. This is considered to indicate the robustness
of E. coli. However, some gene knockouts dramatically
reduce the number of minimal active pathways. In particular,
the single gene knockouts of b1779, b2926, and b2779
destroy all minimal active pathways producing ATPs. Thus,
they are predicted to strongly affect the glycolysis of E. coli.

To evaluate the above predictions, we compare them
with the Keio collection. Table I compares the first 11
gene knockouts regarding the number of lost minimal active
pathways. Column 1, Gene ID, shows identifiers of genes
other than wild, which denotes an empty set of knockout
genes, e.g., K = ∅. Other rows denote the result of single
gene knockout. Column 2, Total, shows the total number
of minimal active pathways, i.e., |πKi |. Columns 3 to 6
show the number of minimal active pathways, each of
which denotes the gain of ATPs. Column 7, MOPS24hr,
and Column 8, MOPS48hr, show the cell growth of E. coli
after 24 hours and 48 hours, respectively. Note that N.A.
(not applicable) refers to essential genes [4].

As the first row of Table I shows, we found 14 minimal
active pathways that produce the positive number of ATPs
on the wild cell of E. coli while there are 75 in total.

Distinguished single gene knockouts are K8 = b1779,
K10 = b2926, and K11 = b2779. Each gene knockout
effect with respect to ATP production is Ea+

K8
= Ea+

K10
=

Ea+
K11

= 14 and it is the strongest gene knockout effect with
respect to ATP production, which is the important function
of glycolysis. For this prediction, the Keio collection shows
“N.A” for each gene knockout. Thus, in glycolysis, our
predictions successfully agree with the results of the Keio

Table I
11 SINGLE GENE KNOCKOUTS FOR GLYCOLYSIS

Gene ID
# of Minimal Active Pathways Keio Collection [4]

Total ATP Gain MOPS24hr MOPS48hr2 1 0 <0
wild 75 4 10 15 46 0.219-0.392 0.216-0.480

b4025 20 0 2 3 15 0.137 0.542
b0963 27 4 10 8 5 0.293 0.371

b2133a 27 4 10 8 5 0.303 0.366
b1380a 27 4 10 8 5 0.357 0.393
b2615 41 4 8 10 19 N.A. N.A.
b2465b 46 4 8 11 23 0.311 0.315
b2935b 46 4 8 11 23 0.317 0.327
b1779* 47 0 0 7 40 N.A. N.A.
b1852 49 4 8 12 25 0.231 0.223
b2926* 50 0 0 7 43 N.A. N.A.
b2779* 50 0 0 7 43 N.A. N.A.

Table II
CRITICAL GENE KNOCKOUTS FOR AMINO ACIDS BIOSYNTHESIS

Gene ID Unsynthesized Target Keio Collection [4]
MOPS24hr MOPS48hr

wild - 0.219-0.392 0.216-0.480
b2153 MET N.A. N.A.

b2615 VAL, LEU, THR, ILE,
LYS, MET N.A. N.A.

b0004 THR 0.000 0.000
b0003 THR 0.004 0.010
b3870 TRP, MET 0.005 0.015
b2329 TRP, PHE, TRP 0.009 0.020
b2838 LYS 0.012 0.021
b3389 PHE, TRP, MET 0.010 0.032
b0074 LEU 0.026 0.034
b3177 MET 0.283 0.293
b4019 MET 0.357 0.509

collection.
On the other hand, our method predicted that there are still

minimal active pathways that produce the positive number
of ATPs after the single gene knockouts of b4025, b0963,
and b1852. Those remaining pathways are supposed to be
used as bypass pathways. For instance, b4025 encoding
glucosephosphate isomerase gene of glycolysis pathway that
transfer D-glucose 6-phosphate to D-fluctose 6-phosphate.
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However, pentose phosphate pathway is available as a bypass
pathway from D-glucose 6-phosphate, resulting in the gene
knockout slow-growth at starting MOPS24hr and same level
of wild cell final growth at MOPS48hr. Moreover, the
knockouts of b2133, b1380, b2465, and b2935 do not affect
to the cell growth since they construct isozymes.

The single gene knockout of b2615 is different to the
above gene knockouts. Our method predicts that this knock-
out does not affect the cell growth in terms of glycolysis.
However, the Keio collection shows that this is an essential
gene for E. coli. One assumption is that it affects other
functions in the cell. In relation to this, we have additional
experiments for amino acid generation in Section VII-C.

C. Results for Amino Acids Generation

We also applied our prediction method to predict gene
knockout effects of the cell growth in terms of amino acid
biosynthesis. Since we want to involve more genes for
our prediction, we particularly focus on essential amino
acids for humans, whose synthesis needs more reactions
than others. In the experiments, we separately constructed
pathway instances, each of which consists of the following
eight amino acids as a target metabolites: L-valine (VAL), L-
leucine (LEU), L-phenylalanine (PHE), L-isoleucine (ILE),
L-threonine (THR), L-lysine (LYS), L-tryptophan (TRP)
and L-methionine (MET). In addition, to produce the
above amino acids, we added the following metabolites
to the source metabolites used in the glycolysis analysis:
coenzyme-A and sulfite. For each of the eight amino acids,
the computation time is on average 255 seconds and the
longest computation time is 877 seconds.

In contrast to the result of glycolysis, we found there are
11 single gene knockouts that destroy all minimal active
pathways without the limitation of z. That is, no pathway
can synthesize each target on the entire metabolic pathway of
E. coli with those single gene knockouts. Obviously, they are
predicted to be critical to produce each amino acid. Table II
shows the cell growth of Keio collection. Column 1, gene ID,
shows knockout genes predicted as critical by our prediction.
Column 2, unsynthesized target, shows target amino acids,
which cannot be synthesized with the knockout of the gene
in Column 1. Columns 3 and 4 show the cell growth of E.
coli after 24 hours and 48 hours, respectively. At first, the
gene knockout of b2615 is predicted as critical for the cell
growth in terms of six amino acids biosynthesis. This result
is also supported by the Keio collection. We thus consider
the essentiality of b2615 to be caused by its knockout effect
in amino acids biosynthesis rather than glycolysis. Table II
also shows that our method predicts that no way to produce
target metabolites with each single gene knockout: b0004,
b0003, b3870, b2329, b2838, b3389, and b0074. However,
the Keio collection shows that E. coli survives with very
low cell growth. One explanation for the results is that they
are suspected to keep living by consuming unsynthesized

amino acids from other individual cells. In this case, since
the amino acids cannot be sustainably produced, those genes
are recognized to be approximately essential for E. coli.

Furthermore, the result of the Keio collection shows that
the knockouts of b3177 and b4019 are not critical, although
our method predicts them to be critical. We have detailed
discussions on these gene knockouts in the following section.

VIII. DISCUSSION AND RELATED WORK

This section provides detailed discussion about the dif-
ference of our prediction and the cell growth of the Keio
collection. Figure 4 shows the glycolysis pathway obtained
from KEGG [9]. Each enzyme label is replaced to its
corresponding gene identifier. The figure also shows four
essential genes in terms of the glycolysis pathway confirmed
by the Keio collection. Our method predicted three out of
four essential genes. However, b2925 is not expected to be
critical for the cell growth since the gene knockout cell keeps
almost all minimal active pathways that gain ATPs even if
we delete both b2097 and b2925. Specifically, the knockout
lost only four minimal active pathways that gain one ATP
(see Figure 3). Thus, two hypotheses come up. One is that
the four lost minimal active pathways are the most important
pathways in glycolysis. The other is that the essentiality is
caused by the breakdown of other cell functions, similar to
the case of b2615. Exploring this issue is a future topic.

The difference between b3177 and b4019 in terms of
amino acid biosynthesis also introduces interesting is-
sues. At first, we consider b4019, which constructs an
enzymatic reaction methionine synthase. Its conversion
is as follows: 5-methyltetrahydrofolate + L-homocysteine
= tetrahydrofolate + L-methionine. In both KEGG and
EcoCyc databases, there are two alternative reactions
and their corresponding genes to the above reaction and
b4019. A reaction S-adenosyl-L-methionine uses S-methyl-
L-methionine instead of 5-methyltetrahydrofolate. On the
other hand, a reaction 5-methyltetrahydropteroyltriglutamate
uses 5-methyltetrahydropteroyltri-L-glutamate. However,
both metabolites cannot be synthesized from the source
metabolites. Specifically, S-methyl-L-methionine can be
synthesized only from methionine, which is the target amino
acid, and there is no reaction in the metabolic pathway of
EcoCyc that can synthesize 5-methyltetrahydropteroyltri-L-
glutamate. The gene b3177 is on folate biosynthesis and
there is no alternative in the databases. Two hypotheses
are as follows: there are unknown complementary genes,
or there are unknown bypasses. For the above issues, we
need to do more research on more databases and literature.

There are several researches on metabolic pathway anal-
yses. Schuster et al. proposed a method called elementary
mode analyses [13]. They focused on metabolic flux dis-
tributions corresponding to sets of reactions in metabolic
pathways. A different point from our method is that their
approach needs to define source metabolites strictly with a
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Figure 4. Glycolysis Pathway of E. coli K-12 MG1655 from KEGG [9]

fixed amount that must be consumed in flux. In contrast,
our method treats them as candidates that will be utilized;
thus, we can flexibly give source metabolites. Handorf et
al. proposed the inverse scope problem [14]. This is the
problem of finding necessary source metabolites from target
metabolites. The two differences between their problem and
our proposal are as follows. One is that they only computed
the cardinality minimal solution. Unlike their approach, we
can generate subset minimal solution by minimal model
generation. Another one is that each of their solutions
includes all reactions, which are activatable from source
metabolites needed to generate target metabolites. For in-
stance, if there are two ways to produce a metabolite from

source metabolites then both are mixed in one solution, that
is, we cannot distinguish between them. On the other hand,
our method can distinguish between the two ways, and we
think that it is important to identify functionally minimal
active pathways. Schaub and Thiele applied answer set
programming (ASP) to solve the inverse scope problem [15],
while we use propositional encoding and minimal model
generation to compute minimal active pathways.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a method to predict the knockout
effect by enumerating minimal active pathways. We formal-
ize the extended pathway and show the definition of minimal
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active pathways on it. In addition, we present a computation
method for the prediction. An advantage of our method is
that it allows us to trace the reason for the prediction results,
e.g., we can suggest the reason for the essentiality of three
genes in the glycolysis pathway. This is an important feature
that other methods do not have.

In the experiments, we applied our method to extended
pathways of E. coli and made comparisons using the Keio
collection. For the prediction of the knockout of 61 genes
in the glycolysis pathway, our method predicted three es-
sential genes, which correspond to the results of the Keio
collection. Moreover, we found two essential genes and nine
approximately essential genes in amino acids biosynthesis.
However, for the knockout of b2925, b3177, and b4019,
our prediction indicated different results from the Keio
collection. Revealing the reason for this difference is a future
work. Moreover, we plan to evaluate the efficiency of the
computation method and compare it with other methods.
Although we treat relations between genes and enzymatic
reactions that have one-to-one relations, we intend to extend
them to relations that are more complex such as multiple
relations and consider interactions among genes. Following
that, we plan to apply our method to other organisms such
as mice. In addition to E. coli, mice are well known model
organisms for human study, and information available on
them has been accumulated in the last decade. In particular,
chromosome substitution strains are used to reveal the func-
tion of genes [16]. In addition to gene knockouts, we could
adapt our method to such strains. Although there is a large
difference between E. coli and mice, the basic metabolism
is same. This fact tells us that our method can also be a
potential prediction method for mice.
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