
Compression- based Algorithms for Comparing Fragmented Genomic Sequences

Ramez Mina, Dhundy Bastola, Hesham H. Ali
College of Information Science and Technology

University of Nebraska at Omaha
Omaha, NE, USA

Email: {rmina,dkbastola,hali}@unomaha.edu

Abstract—Sequence comparison is a fundamental tool in
bioinformatics research since it helps to distinguish one se-
quence from another in terms of structure and function.
Typically, methods such as global or local alignment are the
preferred tools to measure a distance between sequence sam-
ples. Although they are often suitable tools for differentiation
work, they could give erroneous results when the sequence data
includes sequencing errors, gaps, repeats, and trans-locations
which interfere with alignment methods. Next Generation se-
quence assembly tasks produce an enormous number of contigs
and are reliant on alignment technologies to correctly place ad-
jacent contigs together in the final sequence. If these alignment
methods are confused by interruptions (i.e., fragmentation,
gaps, mismatches or other blemishes) in the sequence data, then
the assembly task may not be successful. We therefore suggest
that sequence comparison can be successfully performed using
alignment-free technologies and sequence compression methods
which are less sensitive to inherent faults in sequencing tasks.
In this paper, we evaluate different compression complexities
and describe the use of compression algorithms for comparing
biological sequence data. We analyze algorithm performance
using protein sequence data and mitochondrial genomes with
differing levels of interruption. Mitochondria is small data-
set but is a well studied medium and is suitable to describe
the effectiveness of the Lempel-Ziv complexity, Kolmogorov
complexity using Lempel-Ziv-Welch, and Kolmogorov com-
plexity using the Huffman coding schemes. We conclude our
study by showing that sequence comparison via compression
techniques is largely successful and could be a major help to
high-throughput next-generation sequencing projects.

Keywords-compression algorithms; Kolmogorov complexity;
Lempel-Ziv complexity; tree path difference; next generation
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I. INTRODUCTION

At the core of bioinformatics research is the comparison
of sequence data. Since the 1970’s, computational tools im-
plementing local and global alignments were recommended
methods to detect alterations between sequences. ClustalW
and ClustalX [1] are example of such tools widely used in
comparative work. However, they are not always appropriate
for expansive orders of data. For this reason, heuristics such
as Blast [2] and Blat [3] are alternative approaches.

Sequencing technology as well as the sequence assembly
algorithms are continiously evolving. The alignment algo-
rithms of complexity o(n2), which are used to determine
the read placements for genome construction, are often
slow to produce results [4]. Furthermore, as the sequencing

technologies begin to produce longer reads, these algorithms
may soon become obsolete and make way for other forms
of sequence comparison. More importantly, the analysis by
these alignment methods may be in accurate due to sequence
noise such as, mutations, trans-locations and similar natural
sequence altering factors [5].

Alignment-free methods are becoming increasing popular
due to increased number of sequencing projects. These meth-
ods do not depend on base-by-base comparison but, instead,
depend on the comparison of distributions of elemental
frequencies in the sequences. For instance, the similarity
of two sequences are determined by comparing frequency
distributions. The generation of the frequencies and their
comparison, typically a task of linear complexity, may easily
take less time to run than to employ a traditional alignment
algorithm of a o(n2) complexity. During a sequencing
project where much data must be applied to alignment
algorithms to determine adjacent reads in a genome, there
is clearly a mounting demand to spend less time in the
alignment bottleneck.

A. Next Generation Sequencing

Next generation sequencing, a major advancement of the
Sanger sequencing technologies of the 1980’s are able to
generate as much data in 24 hours as several hundred
Sanger-type DNA capillary sequencers [6]. They also pro-
duce a variety of different sizes of reads [7] [8]. When
these reads are placed together in the correct order then
a genome can be constructed. However, gaps often appear
in the scaffolding that must be manually filled-in using
reference sequences. This process can take a long time and
could result in many inaccuracies in the completed genome.

Although recent research introduced alignment-based
methods for the next generation sequencing as in Schatz M.
C. [9], these new techniques did not eliminate the process
of predicting the gaps between the fragments. Therefore the
alignment-based method would still be a time-consuming
and inaccurate approach. In particular, sequence alignment
may fail to identify the distance between genomes, as the
filled gaps are based on references that could be incorrect
and produce inaccuracies. Therefore, alternative methods
which are able to deal with reads of different sizes and
orders are in demand such as alignment-free methods. These
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methods have been highlighted in the last two decades and
have attracted much attention to address the abundance of
data from bioinformatics research [10].

Compression-based techniques for comparing biological
sequences would be a better method for comparing these
reads. The fact that compression-based techniques generally
run in linear time and are capable of identifying the distance
between groups of reads by an analysis of elemental frequen-
cies may be able to create more accurate results and help to
expedite the completion of assembly projects. In this paper,
we intend to support our hypothesis that compression-based
techniques are comparable with alignment-based methods.
We provide evidence from experimental results on mito-
chondrial data-sets that fragmented sequence data is able
to be conveniently processed for sequence comparison by
compression algorithms based on Lempel-Ziv and Lempel-
Ziv-Welsh, Kolmogorov and nearest-neighbor clustering.

B. Alignment-free Methods

Earlier work has been done to evaluate compression-based
techniques for the comparison of mitochondrial genomes,
such as the works by [11] and [12].

However, to the best of our knowledge, comparing mi-
tochondrial genomes with interrupted or incomplete data
has not yet been addressed. Here we employ data from
mitochondria because it is generally of a convenient size
and is generally agreed upon to cover a large breadth of
sequence structure and form which may encompass many
of the kinds of obstacles encountered in nuclear DNA.
This paper is based on the hypothesis that, compared to
alignment-based techniques, compression-based techniques
will provide a better measure to determine the relatedness
between genomes, which are constantly being subjected to
various natural events such as rearrangements, inversion,
and trans-location. Additionally, there are many genome
sequences that show sequence assembly errors, many se-
quences that are incomplete from their unordered fragments.
Therefore these events, whether natural or simply associated
with the sequencing technology, may seriously affect the
development of software solutions used in the automation
of the genome assembly and sequence comparison process.

Consequently, closing the genomic sequencing is one
of the most time-consuming steps in the entire genome
sequencing and annotation pipeline. Therefore, the need for
computer algorithm(s) that accommodate the features of the
data and help to overcome the limitations associated with the
data is highly desirable. Alignment-free methods are suited
for this work since they analyze and compare elemental fre-
quencies across sequences. Their results can be conveniently
described by trees of relatedness. Therfore, in the present
study, we use a mathematical method to compare these trees,
which allows for a comparison of results obtained with
different alignment-free or compression-based techniques
for the same data-set. We used a standard algorithm for tree

comparison with a modified representation of the results in
order to normalize them.

C. Background on Compression

The development of data compression techniques in com-
puter science was motivated by the need to reduce network
traffic when transmitting large amounts of data. In addition,
storage was also a lending factor to this development. Com-
pression methods from computer science became popular
research topics in bioinformatics research when it was noted
that DNA, appearing random, could not be easily efficiently
compressed by Gzip or Bzip2 [13]. DNA has since been
shown not to be as random as previously thought [14], and
can be applied to compression techniques using only two
bits. It was established that DNA had a syntax for coding
genes [15] and furthermore that this information could be
applied to compression techniques. These techniques derived
elemental frequencies from the syntax to be compared with
other kinds of sequence data.

Lempel and Ziv, along with Kolmogorov, introduced the
concept of compression complexity, which later became
the gateway for introducing the Lempel-Ziv compression
technique in 1976. It is the complexity of a sequence
that enables us to evaluate whether or not a particular
compression algorithm is applicable. In [13] and [16] it was
discussed that, in higher eukaryotes, biological sequences
have tandem repeats and multiple copies of genes, which
make them a good subject for compression techniques. In
addition to these properties, DNA sequences are rich with
other properties that are hidden within the sequences. These
properties could be useful for compression since they include
natural evolutionary events such as random mutations, trans-
location, cross-overs, and reversal events. In [16] it was
discussed how compression would address such properties
and take advantage of them to compress the sequences. The
compression would then reflect the relatedness between the
sequences. By concatenating two sequences we would be
able to compress them effectively if they share common
information.

D. Kolmogorov Complexity

For any two sequences x and y, we define conditional
Kolmogorov complexity, K(x|y), as the shortest binary
program that computes x in terms of y [4]. Also, the
Kolmogorov complexity of a sequence x we defined as K(x)
or K(x|λ), where λ signifies an empty string. We also define
the information distance ID between two sequences x and
y as, ID(x, y) = max{K(x|y),K(y|x)}

The Kolmogorov complexity of a sample of information,
such as text, is a measure of the computational resources
needed to specify the sample. Kolmogorov theory is a con-
cept more than a measure and does not offer a metric value
that could be used in constructing a tree of relatedness. The
Universal Similarity Metric (USM) was thus implemented to
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measure the complexity of Kolmogorov, where we represent
the compression of sequence x by C(x) and the compression
of sequence x appended by sequence y by C(yx). Three
practical approximations of Kolmogorov were suggested,
namely:
• Universal Compression Distance/Dissimilarity (UCD)
• Normalized Compression Distance/Dissimilarity

(NCD)
• Compression Distance/Dissimilarity (CD).
In mathematical terms, we have the following,

UCD(x, y) =
max{|C(xy)| − |C(x)|, |C(yx)| − |C(y)|}

max{|C(x)|, |C(y)|}

NCD1 =
{|C(xy)| −min{|C(x)|, |C(y)|}}

max{|C(x)|, |C(y)|}

CD(x, y) =
min{|C(xy)|, |C(yx)|, |C(x)|+ |C(y)|}

|C(x)|+ |C(y)|
then,

NCD(x, y) = min{NCD1(x, y), NCD1(y, x)}

E. Lempel-Ziv Complexity

Consider the sequence S = AACGTACC. Some of
its histories, or fashions of grouping and placing adjacent
components of the sequence together as defined by [5], are
the following:

1) H(S) = A ·A · C ·G · T ·A · C · C
2) H(S) = A ·AC ·G · T ·A · C · C
3) H(S) = A ·AC ·G · T ·ACC.
The exhaustive history, presented by the same authors, is

defined as the history where no substring has a repetition,
and no substring can be found in the whole sequence before
this substring. This means that if a substring is chosen at
the ith position, then the sequence of characters before this
position will not contain an occurrence of this substring. A
mathematical representation for this concept could be the
resulting number of components which making up an entire
sequence, here called a unique history. Upon examining the
histories in the previous example, we note that the first
two cannot be exhaustive histories since ‘A’ and ‘C’ are
repeated, but the third one is exhaustive. The Lempel-Ziv-
complexity is defined as the least exhaustive history of a
sequence and is noted as C(sequence) implying the number
of components in a an exhaustive history of a sequence.
Consider the following three sequences:
• S = AACGTACCATTG
• R = CTAGGGACTTAT
• Q = ACGGTCACCAA

With the component words, separated by dots making
up the entire sequence, the exhaustive histories for the
sequences are the following:
• HE(S) = A ·AC ·G · T ·ACC ·AT · TG

• HE(R) = C · T ·A ·G ·GGA · CTT ·AT
• HE(Q) = A · C ·G ·GT · CA · CC ·AA
The total number of components of these exhaustive

histories are the following:

• c(S) = c(R) = c(Q) = 7

The exhaustive histories for SQ and RQ are:

• HE(SQ) = A ·AC ·G · T ·ACC ·AT · TG ·ACGG ·
TC ·ACCAA

• HE(RQ) = C · T ·A ·G ·GGA · CTT ·AT ·ACG ·
GT · CA · CC ·AA

• c(RQ) = 12 and c(SQ) = 10

This implies that S is closer to Q than R is to Q, which
is evident by the following:

• S = AACGTACCATTG
• Q = ACGGTCACCAA
• Q = ACGGTCACCAA
• R = CTAGGGACTTAT

Lempel-Ziv complexity itself is not a distance measure
between sequences. It is instead a form of distance mea-
surement.

Distance measure 1:
d(S,Q) = max{c(SQ)− c(S), c(QS)− c(Q)}

Distance measure 2:
d∗(S,Q) = max{c(SQ)−c(S),c(QS)−c(Q)}

max{c(S),c(Q)}
Distance Measure 3:

d1(S,Q) = c(SQ)− c(S) + c(QS)− c(Q)

Distance Measure 4:
d∗1(S,Q) = c(SQ)−c(S)+c(QS)−c(Q)

c(SQ)

These distances would be the same as the scoring values
of any sequence alignment method and would be used
in building the tree of relatedness of the data-set. Notice
that the shorter the numerical distance, the closer the pair
sequences are to each other.

The rest of this paper is organized as follows:

• Section 2. Two different compression techniques are
tested with different parameters, namely Kolmogorov
complexity and Lempel-Ziv complexity, on a nucleic
acid sequence (mitochondria) and on protein sequences
from different species. Random incomplete genome
fragments are then generated with different percentages,
where these fragments could be ordered or disordered.
Trees are then generated for both compression-based
techniques and for multiple sequence alignment, a
method of comparing similarity across more that two
sequences.

• Section 3. These trees are compared against the stan-
dard tree, which serves as a reference for each data-set,
while calculating the distance between the two trees.

• Section 4. We present our conclusions regarding the
usefulness of the compression-based algorithms for
sequence comparison.
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II. METHODOLOGY

We start with the experimental design, then collect the
data-sets, and finally apply the steps of each experiment to
evaluate our hypothesis.

A. Experimental Design

The experiments consisted of three phases including data-
set assembly, scoring matrices compilation and calculation,
and evaluation of results.

The Lempel-Ziv-Welch and Huffman compression algo-
rithms which rely on prefix coding, were the seeds for Kol-
mogorov complexity metrics. The Lempel-Ziv complexity
has its own algorithm to measure the complexity before
seeding it to the metrics, implemented with a modified
algorithm published by Borowska et al. [17]. All four
of the distance measures were calculated for Lempel-Ziv
complexity.

B. Dataset Collection

Our data-sets varied according to the experiment. The first
experiment used both protein and whole genome mitochon-
drial sequences (CK-36-PDB and AA-15-DNA). The other
four experiments used only a mitochondrial data-set (AA-15-
DNA). These two data-sets were used to test the viability of
compression techniques in comparing biological sequences.
This data has been previously used and consists of 36 protein
domains in the amino acid sequence set and the genome data
consists of complete DNA sequences 15 different organisms
[4].

The second experiment focused on comparing incomplete
sequences, containing only 10 - 90 percent of total genome
sequences, and the start positions varied as shown (Figure 1).
The third experiment evaluated incomplete genomes made
from separate segments, but the total length contained 10
- 90 percent of the whole genomes (Figure 2). The fourth
experiment explored genomes that were 10 - 100 percent
incomplete, containing several shuffled fragments combined
together (Figure 3). The fragments were placed in random
order using the Fisher-Yates algorithm, an algorithm which
generates a random permutation of a finite set [18]. The fifth
experiment dealt with sequences with variants. The variants
were obtained with different percentages and reflected point-
mutations seen in nature.

C. Sequence Comparison

For each experiment, multiple sequence alignment was
used to analyze each data-set. To accomplish this, the MUS-
CLE [19] package, a software used to compute the multiple
sequence alignment for protein and nucleotide sequences,
was also employed.

The comparison between trees was accomplished by es-
timating the path-length-difference metric as described in
Felsenstein [20]. For this, a matrix was constructed for each
tree. The size of the matrix is m2, where m is the number

Figure 1. Cartoon diagram depicting the imperfection in genome sequence
generated by choosing different fragment lengths from the original whole
genome sequence.

Figure 2. Cartoon diagram depicting the imperfection in genome sequence
generated by choosing fragments from different regions of the whole
genome.

Figure 3. Cartoon diagram depicting the imperfection in genome sequence
generated by choosing fragments of different length and order in the whole
genome

of tree leaves (the species), and each cell in the matrix has
the number of branches that separates the species of the
corresponding row and column. The squared difference was
computed between each cell in a matrix and its represen-
tative in the gold standard tree matrix. The distance was
then calculated by finding the square root of the sum of the
cells where we took care not to include duplicate values.
The distance was normalized by dividing the distance by
the summation of the distances between each of the cells in
the gold standard tree.

Figure 4. Two hypothetical trees. We show the calculations to determine
tree distance between reference and generated trees.
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Consider the two trees in Figure 4, where the tree on the
left represents the gold standard tree (species A, B, C, and
D), and the second tree on the right represents the output
tree of an algorithm (species A’, B’, C’, and D’). The scoring
matrices of Table I were calculated by summing the edges
between two nodes in a tree. The distance between these two
trees was calculated by finding the mean root square, noted
in Figure 4. Their distance,

√
3, is normalized by division

of the sum of the distances between the species in the gold
standard tree. The calculation of this sum of distances is the
following: (AB + AC + AD + BC + BD + CD) = (2 + 4 +
4 + 4 + 4 + 2) = 20. The normalized distance between the
two trees is

√
3

20 ≈ 8.66%.

Table I
SCORING MATRIX FOR TREES IN FIGURE 4

A B C D A’ B’ C’ D’
A 0 2 4 4 A’ 0 3 4 4
B 2 0 4 4 B’ 3 0 3 3
C 4 4 0 2 C’ 2 3 0 2
D 4 4 2 0 D’ 4 3 4 0

III. RESULT AND ANALYSIS

The results show the performance of compression-based
methods over different kinds of data-sets. To evaluate these
methods over data-sets with different features that reflected
imperfection in the input sequence data, we started with a
data-set that was error-free (according to NCBI), then we
picked a genomic data-set and manufactured data-sets with
errors to incorporate imperfection in the sequence data.

Results are shown for the phylogenies generated from the
compression-based methods from multiple sequence align-
ment (Table II). The purpose of having results from multiple
sequence alignment is to evaluate whether compression-
based methods were similar, worse, or better than multiple
sequence alignment with data-sets of different quality. These
results are the distances between the calculated trees and
the gold standard tree. These distances reflect the quality of
clustering for the species, based on the pair-wise distances
generated from the methods, (i.e., the scoring matrices).
The column labeled as Variant, lists the different distance
measures which calculated for the first experiment. Table
II shows the results from trees created by neighbor-joining
methods, and also the UPGMA methods.

Shaded cells in Table II indicate the cases where
compression-based algorithm performed better than multiple
sequence alignment

A. Analysis of Datasets with No Errors

The first experiment determined the feasibility of using
compression-based algorithms in phylogenetic analysis of
sequence data. The goal was to test the algorithms against
regular data-sets that are error-free and helps to evaluate

Table II
COMPARISON OF COMPRESSION ALGORITHMS AND MULTIPLE

SEQUENCE ALIGNMENT FOR THE PROTEIN DATASET CK-36-PDB IN
EXPERIMENT 1

.

Test Protein data-set
CK-36-PDB

Algorithm Variant Neighbor-Joining UPGMA

Kolmogorov using CD 2.395244 3.169468
Huffman coding NCD 2.328382 2.264505

UCD 2.328382 2.264505

Kolmogorov using CD 2.176959 2.165911
LZW compression NCD 2.210704 2.215544

UCD 2.305268 2.238781

Lempel - Ziv Dist 1 2.345943 2.280642
complexity Dist 2 2.330589 2.219562

Dist 3 2.26719 2.287058
Dist 4 2.272324 2.306048

Multiple Sequence 2.370071 1.937603
Alignment

whether these methods are capable of measuring the dis-
tances of normal data-sets. We compare the results ob-
tained from various versions of compression-based sequence
comparison with results obtained from multiple sequence
alignment. In this experiment, two data-sets were used: a set
of protein sequences and a set of complete mitochondrial
genomes. The gold standard trees for both data-sets were
available to provide the base line comparison. Tables II and
III display the results for the first experiment. The shaded
cells reveal the compression techniques that surpassed mul-
tiple sequence alignment. In the protein data-set (Table III),
the consistently desirable results were derived from UPGMA
clustering using the scoring matrices of both Kolmogorov
and Lempel-Ziv complexities.

In the mitochondrial data-set (Table III), only Lempel-Ziv
outperformed multiple sequence alignment. These results
clearly indicate that compression-based sequence compar-
ison provides a valid measure of similarity for biological
sequences.

These measurements are comparable to the ones produced
by multiple sequence alignment and outperform alignment
in several instances. It is also clear that a careful selection
of the clustering algorithm, compression methods, and asso-
ciated distance measure can improve the overall results. As
in Table II, shaded cells in Table III indicate outcomes that
are better than multiple sequence alignment.

The purpose here was two-fold: first, to determine if
the imperfection in the quality of sequence data and the
choice of compression-based methods used impacted the
outcome, and second, to determine which method would be
a better solution for the type of imperfection in the data-
sets. For this purpose, the mitochondrial genomes were used,
incrementally removing percentages of genome and using
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Table III
COMPARISONS OF COMPRESSION ALGORITHMS AND MULTIPLE

SEQUENCE ALIGNMENT FOR THE MITOCHONDRIAL GENOME DATASET
AA-15-DNA, IN EXPERIMENT 1

Test Mitochondrial Genome
data-set AA-15-DNA

Algorithm Variant Neighbor-Joining UPGMA

Kolmogorov using CD 7.871585 7.871585
Huffman coding NCD 7.871582 7.871582

UCD 7.871582 7.871582

Kolmogorov using CD 3.034474 3.034474
LZW compression NCD 2.797647 2.797647

UCD 2.878755 2.878755

Lempel-Ziv Dist1 1.554705 1.357058
complexity Dist2 1.554705 1.357058

Dist3 1.554705 1.357058
Dist4 1.554705 1.357058

Multiple Sequence 1.5547053 1.878762
Alignment

an algorithm to randomly choose the starting position of the
remaining genome (refer back to Figure 1).

Upon examining the neighbor-joining method and UP-
GMA (Figures 5 and 6), Lempel-Ziv complexity surpassed
multiple sequence alignment in all the trials (with both
neighbor-joining and UPGMA clustering), except for in one
case. Kolmogorov with Lempel-Ziv-Welch had viable results
but was not competitive to Lempel-Ziv. These results showed
that Lempel-Ziv complexity offered the most likelihood of
revealing the similarities between the genomes. Despite the
variations in the length of the genomes, Lempel-Ziv was
able to address the dissimilarities between the sequences.

B. Analysis of Sequences Data with Incomplete Fragments
that Are Not Continuous

This experiment was an expansion of the second exper-
iment, where the genome was broken into several pieces,
and the total size of the sequence was reduced to the same
10-90 percent but where each fragment was allowed to be a
different random size (refer back to Figure 2).

Multiple fragments were then combined together and
tested. The results obtained here with both the neighbor-
joining method and UPGMA (Figure 7 and 8) mirrored the
earlier results (in the second experiment) in that Lempel-
Ziv complexity outperformed multiple sequence alignment
in almost every percentile. Also, Kolmogorov using Lempel-
Ziv-Welch compression and Kolmogorov, using Huffman
coding, failed to perform better than multiple sequence
alignment (results not presented).

Figure 5. Analysis of the mitochondrial genomes using Neighbor-Joining.

Figure 6. UPGMA clustering on the distances obtained with different
algorithms.

C. Analysis of Datasets with Incomplete Fragments that Are
Not Continuous and Not in Order

This experiment was designed to establish the goodness
of fit of multiple sequence alignment and compression
algorithms. The genomes for this experiment were cut into
multiple fragments, randomly decreased in length to a total
10-100 percent of the original size, and then rearranged
(refer back to Figure 3).

While the compression algorithms returned results similar
to the previous experiments, multiple sequence alignment
performed much worse (Figure 9). For the incomplete
genomes less than 50 percent in length, Kolmogorov using
Lempel-Ziv-Welch and Lempel-Ziv both surpassed multiple
sequence alignment, but Kolmogorov was overtaken by
multiple sequence alignment at 60 percent and above.

In this experiment where the data-set depicted trans-
location of DNA fragments, multiple sequence alignment
performed very poorly and failed to detect the related-
ness between the genomes. However, the compression-based
method of Lempel-Ziv still detected the relationships among
genomes and gave an accurate clustering. Even Lempel-Ziv-
Welch was competitive with multiple sequence alignment in
finding the right dissimilarities between the genomes.
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Figure 7. Analysis of sequence data of unequal length with data-set as
shown in Figure 2 using neighbor-joining.

Figure 8. UPGMA clustering of the distances obtained with shown
algorithms.

Figure 9. Analysis of sequence data of varying length with data-set as
shown in Figure 3 using neighbor-joining (top figure) and UPGMA (bottom
figure) clustering of the distances obtained with shown algorithms.

D. Analysis of Sequence Data-sets Containing Mutated Nu-
cleotides

This experiment was designed to evaluate the performance
of the compression-based methods on a mutated data-set.
As the sequences mutate, it is difficult for methods like
multiple sequence alignment to identify the relatedness
among species. Mutations (point mutations) were taken with
percentages of 1, 3, 5, and 7 percent. Comparison of the
results to multiple sequence alignment was conducted in
the same manner described earlier for sequence data with
different fragment lengths and for measuring the distance
between the resulting trees to the gold standard tree. The
results obtained from this experiment are shown in Table
IV.

As we can see, the shaded cells contain the results of
Lempel-Ziv complexity, which performed relatively bet-
ter than other compression or non-compression methods.
With reasonable mutations, which typically would result in
changes in the functions of the species but not in an evolu-
tion of the species itself, Lempel-Ziv complexity performed
best and was able to detect the similarities among the species
when compared to the multiple sequence alignment method.
Kolmogorov complexity failed to detect similarities with this
data-set.

IV. CONCLUSION

Compression-based techniques provide a viable alterna-
tive to multiple sequence alignment that is typically used to
compare biological sequence data. In cases where the data-
sets contained errors, gaps, or the arrangement of DNA frag-
ments, compression-based techniques performed better than
alignment in our experiments. Compression algorithms were
also faster than alignment, particularly for large sequences.
Of the three compression techniques examined in this study,
Lempel-Ziv complexity performed the best in classifying the
incomplete and highly imperfect data-sets.

To summarize these results, Lempel-Ziv complexity led
in performance to the alignment-free techniques and even
outperformed multiple sequence alignment in several cases.
From the results obtained with the different experiments, we
can see that compression techniques in general, and Lempel-
Ziv in particular, were able to capture the relatedness among
the input sequences and were less impacted by the incom-
pleteness or rearrangement of the fragments.
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Table IV
COMPARISON OF THE PERFORMANCE OF COMPRESSION AGAINST MULTIPLE SEQUENCE ALIGNMENT ON A MUTATED DATA-SET WITH MUTATION

PERCENTAGES OF 1, 3, 5, AND 7 PERCENT.

NJ (1 percent) UPGMA (3 percent) NJ (5 percent) UPGMA (7 percent)
Kolmogorov using
Huffman coding

CD 7.184 7.872 7.184 7.872 7.184 7.872 7.184 7.872

NCD 7.054 7.872 7.054 7.872 7.054 7.872 7.054 7.872
UCD 7.054 7.872 7.054 7.872 7.054 7.872 7.054 7.872

Kolmogorov using
Lempel-ZivW
compressions

CD 3.201 3.266 3.443 3.152 3.643 3.097 3.696 3.009

NCD 3.272 2.996 3.278 2.791 3.324 3.487 3.387 2.964
UCD 3.41 3.041 3.128 2.99 3.278 2.707 3.537 3.003

Lempel and Ziv
complexity

Dist1 1.357 1.357 1.357 1.774 1.858 2.101 2.054 2.276

Dist2 1.357 1.357 1.357 1.357 1.357 1.53 1.357 1.357
Dist3 1.357 1.357 1.357 1.774 1.357 2.7 1.159 2.276
Dist4 1.357 1.357 1.357 1.542 2.017 1.426 1.357 1.357

Multiple Sequence
Alignment

1.555 1.879 1.555 1.774 1.555 1.357 1.685 1.879
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