
Impact of Population Size and Selection within a Customized NSGA-II for Biochemical
Optimization Assessed on the Basis of the Average Cuboid Volume Indicator

Susanne Rosenthal, Markus Borschbach
University of Applied Sciences, FHDW

Faculty of Computer Science, Chair of Optimized Systems,
Hauptstr. 2, D-51465 Bergisch Gladbach, Germany

Email: {susanne.rosenthal, markus.borschbach}@fhdw.de

Abstract—The key part in the area of peptide design is the
prediction of the peptides’ molecular features. The performance
of the drug design process depends on the identification of
peptides that optimize several molecular properties at the same
time. The synthesis of peptides for laboratory characterization is
very cost-intensive. Therefore, drug development is a wide field
of activity for multi-objective Genetic Algorithms (moGAs). A
customized NSGA-II has been especially evolved for biochemical
optimization with the focus on producing a great number of
very different high quality peptides within a very low number
of generations (under 20), termed early convergence. The main
task of this paper is to verify empirically the effect of early
convergence for this customized NSGA-II within a limited range
of population size. Furthermore, an insight into the impact
of the interdependence between the population size and the
selection procedure is examined with the objective of giving a
configuration rule for the selection parameter and the population
size exemplary determined for a three-dimensional biochemical
minimization problem. Although, this optimization problem is as
generic as possible. The performance is assessed on the basis of
a convergence indicator especially evolved for our preference of
comparing the convergence behavior of populations with different
sizes. Moreover, we propose a summarization of open source
Java tools that are discussed regarding the potential of an
easy implementation of the customized NSGA-II for biochemical
optimization.

Index Terms—multi-objective biochemical optimization; pop-
ulation size; average cuboid volume; open source Java tools.

I. INTRODUCTION

Small peptides are of special interest in the area of drug
design as they have some favorable features like conforma-
tional restriction, membrane permeability, metabolic stability
and oral bioavailability [1]. Nevertheless, for this purpose these
peptides have to optimize several molecular features at the
same time. As both the synthesis and the laboratory character-
ization of peptides is very cost-intensive [23], moGAs provide
an economical and robust method for peptide identification.
For this purpose, a customized Non-dominated Sorting Genetic
Algorithm (NSGA-II) has been evolved and introduced in [2]
with a considerable low number of generations and population
size, termed early convergence. The NSGA-II is customized
w.r.t. the encoding and the components mutation, recombi-
nation and selection. Different mutation and recombination
methods have been evolved for this purpose and are introduced
in [3][4]. These components and their parameter are not only
inter related, but are also responsible for the performance of

a GA. So far, less work has been done to gain an insight
in the influence of the population size on the performance
and in the interdependence with the selection operator and its
parameters in the case of moGAs. The population size is an
important topic in influencing the performance of evolutionary
algorithms [5]. Small population sizes tend to result in poor
convergence and large populations extend the computational
complexity of a GA in finding high quality solutions [6].
Therefore, an adequate population size that results in good
performance is challenging. Diverse results have been pre-
sented w.r.t. the choice and the handling of the populations
size for single-objective GA: Yu et. al [7] study the connection
between selection pressure and population size and ratify the
concept of interdependence of parameters and operators in GA.
The concept of self-adaption is used to overcome the problem
of determining the optimal population size. Two forms of self-
adaption are used: First, Bäck et al. [8] uses self-adaption
as a previous setup and configuration step for evolutionary
strategies. The population size then remains the same over
all iterations. Second, Arabas et al. [9] introduces a GA with
varying population size. The self-adaption of the population
size is used throughout the whole GA run and depends among
others on different parameters like the reproduction ratio.
Eiben et al. [10] provide empirical studies that self-adaption of
selection pressure and population size is possible and further
rewarding w.r.t. algorithm performance. In this case study,
the global parameters tournament size and population size are
regulated.

The questions that we consider in this paper are: 1. Do
large populations speed up the convergence behavior of the
customized NSGA-II for a three-dimensional biochemical
minimization problem? 2. Is there a predictable impact be-
tween population size and selection? 3. Is there a range of
population size which is able to perform well?

These questions are answered in an empirical way: The
performance of the customized NSGA-II is assessed w.r.t. its
early convergence and a high diversity within the solutions.
Some metrics have been proposed to evaluate the convergence
behavior of a moGA [24]. These metrics, generally, measure
the distance of non-dominated solution sets to the true Pareto
front [24]. This makes a comparison of generations with
different sizes impossible. Therefore, a convergence indicator
is introduced especially for the comparison of the generations
with different sizes based on the hypervolume. The favorable
features of this indicator are also discussed. Furthermore, we

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

will discuss available open source Java tools that allow an easy
implementation of the customized NSGA-II to solve multi-
objective biochemical optimization problems.

The remainder of this paper is organized as follows: Section
II describes the components of the customized NSGA-II. Sec-
tion III provides a comparison of open source Java frameworks
focussed on a most simple implementation of the customized
NSGA-II. Section IV introduces the new convergence metric
and discusses the motivation for its evolution and the indicator
features. Section V provides the performance results of the
configurations with different population sizes. Section VI gives
responses to the questions raised in this section.

II. THE CUSTOMIZED NSGA-II

In this section, the customized NSGA-II is described as
used in the presented experiments. In the previous work
[2][3], we have assessed the performance and interaction
of different recombination and mutation operators. In these
experiments, we have selected the optimal combination of
recombination and mutation method that is used within the
following experiments. Additionally, we have customized the
encoding and selection for the purpose of peptide optimization.
The procedure corresponds to the procedure of the traditional
NSGA-II [3].

A. The encoding

The individuals are encoded as 20-character strings symbol-
izing the 20 canonical amino acids. This is the most intuitive
way of peptides encoding. The individuals have a fixed length
of 20 amino acids.

B. Three-dimensional biochemical minimization problem

We use three fitness functions predicting molecular features.
Two fitness functions make use of the primary structure and
the third works on the secondary structure. These fitness
functions provide physiochemical properties that are used
for drug design [11]. Moreover, this combination of fitness
functions describes important peptide properties [25].The first
fitness function is the calculation of the Molecular Weight
(MW) that is an important peptide feature for the purpose
of drug design [1]. This fitness function is selected from
the open source library BioJava [12]. The second fitness
function is the determination of the hydrophilicity (hydro)
of a peptide. A hydrophilicity value is assigned to each
peptide via the hydrophilicity scale of Hopp and Woods
with a window size of the peptide length [13]. These two
fitness functions work on the primary structure. The third
fitness function determines the optimal global similarity score
provided by the Needleman-Wunsch Algorithm (NMW) that is
also part of the BioJava library. These three fitness functions
act comparatively: individuals are compared to a predefined
reference-solution. Therefore, these three objective functions
have to be minimized.

C. The recombination operator

The n−point recombination operator is used, where n is
determined by a linearly decreasing function:

xR(t) =
l

2
− l/2

T
· t (1)

that depends on the peptide length l, the total number of the
GA generations T and the index of the actual generation
t. This operator results in combination with the following
mutation in the - so far - best performance.

D. The mutation operator

An adaption of the deterministic dynamic operator of Bäck
and Schütz is used to determine the number of mutation points.

paBS = (5 +
l − 2

T − 1
t)−1, (2)

Again, l describes the peptide length, T the total generation
number of the GA and t the index of the actual generation
number.

E. The Aggregate Selection

The flow diagram in Figure 1 depicts the selection methods.
The Aggregate Selection is tournament-based. From the tour-
nament set individuals are chosen from the first front with a
probability p0 and with a probability 1−p0 the individuals are
chosen via Stochastic Universal Sampling (SUS). The number
N of pointers is the number of fronts and the segments are
equal in size to the number of individuals in each front.

Fig. 1. Aggregate selection strategy

Therefore, the selection method has two parameters, the
tournament size and the probability of choosing individuals

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

from the first front. The tournaments size of 10 has proven to
be an optimal choice. The parameter p0 is challenging w.r.t.
the population size.

III. OPEN SOURCE JAVA FRAMEWORKS

In this section, we summarize and describe different open
source Java tools that provide Genetic Algorithm implemen-
tations. The summarization is focussed on Java frameworks
for a most simple implementation of BioJava, which provides
several physiochemical properties via APIs. The main goal of
this framework analysis is the selection of a tool which allows
an easy implementation of the proposed customized NSGA-
II.

The framework Java API for Genetic Algorithm (JAGA)
in its current version 1.0 beta is a research tool developed
and supported by the Computer Science Department of the
University College London [19]. This tool does not include any
moGAs, but it provides a protein string sequence encoding us-
ing 20 different characters symbolizing the 20 canonical amino
acids. Among others, eight different scales like hydrophobic,
aliphatic, aromatic and polar are pre-defined for each canonical
amino acid. In addition, it contains for each genotype a
parameter-depending crossover and mutation method and a
elongation for amino acid patterns. The user interested in a
moGA application has to extend this tool for this purpose, but
the amino acid character encoding is a clear benefit. Other
useful functions are the opportunity of creating a random
initial population of protein sequences and the implementation
of the Needleman-Wunsch or Smith-Waterman Algorithm.

The framework Metaheuristic Algorithms in Java (jMetal) in
its current version 4.3 is an extensive and complex tool espe-
cially for moGA applications [20]. It contains beneath NSGA-
II the moGA variants: Pareto Envelope-based Selection Algo-
rithm (PESA), improved Strength Pareto Evolutionary Algo-
rithm (SPEA2), improved PESA (PESA2), S-Metric Selection
Evolutionary Multiobjective Evolutionary Algorithm (SMS-
EMOA), Indicator-Based Evolutionary Algorithm (IBEA) and
Multiobjective Evolutionary Algorithm based on Decomposi-
tion (MOEA/D). Further, different variation operators are im-
plemented like single-, two- point, Simulated Binary Crossover
(SBX) and polynomial, uniform and swap mutation. ’Rank-
ing&crowding selection’ is included as the traditional NSGA-
II selection method as well as tournament and PESA2 selec-
tion. Additionally, jMetal provides several established metrics
to evaluate the performance like the hypervolume, Inverse
General Distance (IGD), General Distance (GD) and a measure
for diversity. A definite advantage of jMetal is the intuitive and
clear program construction, which allows an easy algorithmi-
cally extension. The disadvantage is a missing character or
string encoding.

The framework Java-based Evolutionary Computation Re-
search System (ECJ) in its current version 21 is comparable
with jMetal in the issues functional complexity and potential
extension. ECJ is developed at George Mason University’s
Evolutionary Computation Laboratory [21]. It includes the
moGAs NSGA-II and SPEA2. Furthermore, different vector

representations with corresponding variation operators are
included as well as SUS and tournament selection, among
others. Moreover, it proposes the potential to read populations
from files. It does not show the intuitive and clear program
structure of jMetal.

Evolutionary Algorithms workbench (EvA2) is a Java
framework developed by the department of computer science
at the Eberhard Karls University in Tübingen [22]. It is not
only intended for research, but is also deployed for industrial
applications and is available under LGPL license. Its speci-
ficity is its easy-to-use graphical user interface and provides
a MATLAB interface to optimize functions in MATLAB
with standard algorithm implementations in EvA2. It also has
a client-server structure and provides NSGA-II, PESA and
SPEA2 as moGA implementations. A string or character en-
coding is not implemented and an implementation afterwards
is challenging, because encoding affects all parts of the tool
box.

The framework Java Class library for Evolutionary Com-
putation (JCLEC) in the current version 4 includes the evo-
lutionary features NSGA-II and SPEA2. It proposes differ-
ent encodings with various variation operators except string
or character encoding, but provides an expendable program
structure. Further, selection strategies like tournament and SUS
based selection are also included.

Figure 2 gives an overview of the reviewed Java frame-
works. These frameworks are compared under the aspects of:
(i) configuration of a character or string encoding as an option,
(ii) an implementation of NSGA-II, (iii) potential of a simple
extension, and (iv) an intuitive program structure according to
the moGA components.

TABLE I
OVERVIEW OF THE SPECIAL FRAMEWORK ASPECTS

JAGA jMetal ECJ EvA2 JCLEC
(i) x
(ii) x x x x
(iii) x x x
(iv) x

Table I reveals that none of the open source Java frame-
works attains all required aspects in an adequate level. As
a consequence, the experiments are conducted with an user-
specific implementation of this customized NSGA-II. In other
cases, the open source tool jMetal is a possible alternatives
for a user-specific implementation.

IV. EVALUATION MEASURES FOR CONVERGENCE AND
DIVERSITY

Firstly, the convergence measure is introduced, which has
been especially evolved to evaluate generations with different
sizes. Subsequently, the features of this indicator are discussed
followed by the presentation of measurement for diversity.

A. Introduction of the average cuboid volume
In the past, several metrics have been proposed to evaluate

the convergence behavior of populations produced by a moGA.

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Usually, they act on the distance of the non-dominated solution
set of a generation to the true Pareto front. The hypervolume
or the S-metric measures the overlapped space of the non-
dominated solution set to a predefined anti-optimal reference
point [14]. The hypervolume is a very established convergence
metric with its favorable mathematical properties as one rea-
son. Another convergence metric is the D-metric [24]. The D-
metric makes use the hypervolume and calculates the coverage
difference of two solution sets. A reference set is needed to
assess the convergence to the true Pareto front. The C-metric
is an appropriate measure to compare the dominance of two
Pareto optimal sets [14]. The Error Ratio (ER) is a percentage
measure for the number of solutions in a set that are to be
found on the true Pareto front [24]. GD is a measure of the
average distance between a Pareto optimal solution set to the
true Pareto front [15]. It includes the minimal component-
wise distance of a solution set to the nearest one on the true
Pareto front. The convergence metric of Deb also measures
the distance between a solution set and a reference set of the
Pareto front [16]. It calculates the average normalized distance
for all solutions in the solution set. A recently published
convergence metric is the Averaged Hausdorff Distance ∆p

[17]. It is based on GD and the IGD [18].
The reasons for the evolution of a new convergence metric

in this paper and in the scientific community in general are
multiple: The disadvantage of the metrics D-metric, ER, GD,
∆p and the convergence metric of Deb is their dependency on
the true Pareto front or at least a reference set of Pareto optimal
solutions that are usually unknown in the case of real-world
MOPs. Furthermore, these metrics are not useful indicators
for an entire ranking between generations of different sizes.
However, the populations in moGAs are generally limited
in size. From a more global point of view, the evaluation
and comparison of the global convergence behavior of whole
populations - not only the non-dominated solution set of a
generation - is required with respect to the influence of the
population size or the selection pressure.

For this purpose, a new metric is presented that reflects the
convergence behavior of a whole population and is a ’fair’
indicator for comparison of generations of different sizes.
This Average Cuboid Volume (ACV) is evolved according
to the model of the hypervolume. The motivation for the
exploitation of the hypervolume model is to profit from its
preferable properties as mentioned above. The benefit of
this new metric compared to the hypervolume is the low
computational complexity as no point ordering is required.

In the following, we assume that the underlying optimiza-
tion problem is to minimize. The metric calculates the average
cuboid volume of the cuboids spanned by the solution points
to a pre-defined reference point r:

ACV (X) =
1

n

n∑
i=1

 k∏
j=1

(xij − rj)

 , (3)

where n is the population size, k is the number of objectives,
xi are the solutions on the population X and xij is the j− th

component of a solution xi. It holds (xij−rj) > 0 as the pre-
defined reference point is chosen as the theoretical minimal
limit of the true Pareto front. The lower the indicator values
the more positive is the global convergence behavior as the
reference point is chosen as a theoretical optimal point.

B. Discussion of the average cuboid volume

The question regarding the suitability of a metric for eval-
uation depends on the intention of the investigation object
and the preferences. ACV is intended to evaluate the global
convergence behavior of a whole population with the ultimate
aim of comparing solution sets of different sizes according to
the proximity to the true Pareto front.

The first expectation that is important for the use of ACV
is that the convergence quality shall not change if the number
of equally solutions increases. ACV does not fulfill this aver-
aging strategy: Let x ∈ Rk be a solution of the optimization
problem and X = {x}. Further, Y = {x, ...x} is a set of n
equally copies of the solution x, then ACV (Y) = ACV (X).

The second expectation is described by the following ob-
servation: An intuitive indicator reflecting the quality of ap-
proximation sets of different Pareto front refinements requires
’better’ indicator values for the finest approximation set. This
effect is demonstrated for ACV by an example also used in
[10]:

Example 1: The Pareto front is the line segment between
the points y1 = (0, 1) and y2 = (1, 0) meaning

PFtrue = {i · y1 + (1− i) · y2|i ∈ (0, 1)}. (4)

We consider the following three approximation sets of
increasing refinement of the Pareto front

Y1 = {(i · 0.2, 1− i · 0.2)|i ∈ {1, 2, 3, 4}}, (5)
Y2 = {(i · 0.1, 1− i · 0.1)|i ∈ {1, 2, ..., 9}}, (6)
Y3 = {(i · 0.01, 1− i · 0.01)|i ∈ {1, 2, ..., 99}}. (7)

The indicator values of ACV for the approximation sets
with the reference point (0, 0) are: ACV (Y1) = 0.2,
ACV (Y2) = 0.183 and ACV (Y3) = 0.167.

The third preferable expectation of this indicator is the
averaging effect. It is trivial that a dominating solution x yields
better indicator values than the dominated one y, because
ACV ({x}) =

∏k
i=1(xj−rj) <

∏k
i=1(yj−rj) = ACV ({y}).

From this observation it can be interpreted that
if one dominated solution x1 in the solution set
X = {x1, x2, ..., xn} is replaced by a dominating one
x̄1, then ACV ({x1, x2, ..., xn}) > ACV ({x̄1, x2, ..., xn}).
The averaging effect of ACV is illustrated by the example
which has also been used for ∆p [17]:

Example 2: The true discrete Pareto front is described by
P = {pi|pi = (0.1·(i−1); 1−(i−1)·0.1) with i = 1, ..., 11}.
Two solution sets are given by X1 = {x1,1, p2, ..., p11} and
X2 = {x2,1, x2,2, ..., x2,11} with the elements x1,1 = (ε, 10)
and x2,i = pi + (ε2 , 5) with i = 1, ..., 11. For the outlier x1,1

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

the values ε = 0.001 is used for numerical evaluations. X1 is
a better approximation of the true Pareto front, but it contains
the outlier x1,1. On the other side, X2 is close to the true
Pareto front and the difference of each element to the Pareto
front is less than the one of the outlier. As we are interested in
an averaging effect, the indicator values of X1 has to be better
than the one of X2. This is true for ACV as ACV (X1) = 0.15
and ACV (X2) = 2.65.

C. The diversity measure

The measure for diversity calculates the average distance of
all pairs of solutions (see [4]):

∆ =
∑

i,j=1,i<j,i 6=j

|dij − d̄|
N

with N =

(
n

2

)
. (8)

di,j symbolizes the Euclidean distance of two solutions xi
and xj , d̄ is the mean of all measured distances and n is the
population size.

V. SIMULATION ONSET AND EXPERIMENTS

The test runs are performed for different configurations.
The configurations are composed of a differing population
size (30, 50, 70, 100, 130, 150) and the selection parameters
p0 = 0%, 30%, 50%. These parameters have been emphasized
by previous experiments. The selection parameter p0 = 0%
stands for SUS exclusively. Each multi-objective configuration
is repeated 20 times until the 18th generation - for statistical
reasons. The test runs are evaluated by the convergence
indicator ACV and the diversity measure as introduced in the
last section. ACV uses the theoretical minimal limit (0/0/0)
of the Pareto front as an optimal reference point. Therefore, a
good performance is achieved if the ACV value is as low
as possible and the diversity value is as high as possible.
Boxplots are created for each configuration and for each
objective of evaluation (Fig. 2 - Fig. 8). The values of ACV
and diversity are scaled under the same criterion for a better
graphical presentation. The figures are ordered according to
the population size. The standard population size within the
customized NSGA-II is 100 [2][3] (Fig. 5). Therefore, the
results are discussed w.r.t. an increase and an decrease of this
size: In general, a decrease of the population size to 70 and
50 results in an increase of the ACV values and a decrease
of the diversity values (Fig. 3, Fig. 4). This means that the
convergence and the spread within the solutions is reduced
caused by decreasing the population size. The ACV values
decrease for a population size of 30 (Fig. 2) independent of
the choice of the selection parameter. Moreover, the diversity
also decreases and results in the lowest diversity among all
configurations. An increase of the population size to 130
results in a decrease of ACV and in an increase of the
diversity, once more independent of the selection parameter
(Fig. 6). A further increase of the population size to 150 and
200 results in a stagnation of the ACV and diversity values
(Fig. 7, Fig. 8).

Further, the effect of the selection parameter is discussed:
Varying the population size from 50 to 100 (Fig. 3- Fig. 6),

Fig. 2. Population size 30

Fig. 3. Population size 50

Fig. 4. Population size 70

Fig. 5. Population size 100

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

Fig. 6. Population size 130

Fig. 7. Population size 150

Fig. 8. Population size 200

the ACV values are comparable for p0 = 0% (denoted as
’SUS’ in the figures) and p0 = 30% (denoted as ’30% front
1’ in the figures), though the diversity improves evidently for
p0 = 30% compared to SUS. Independent of the population
size, p0 = 50% (denoted as ’50% front 1’ in the figures) results
in a remarkable increase of the ACV values and only a slight
improvement of diversity compared to SUS and p0 = 30%.
For the population sizes from 130 to 200, the influence of
the selection parameter is reduced (Fig. 6- Fig. 8): There is
only a slight improvement to report in diversity for p0 = 30%
compared to SUS. The convergence is remarkable reduced for

p0 = 50%, though the diversity is improved.
The best performance of the configurations is received with

a population size from 70 to 100 and a selection parameter
of 30% as the values for ACV are at most low, whereas the
diversity values are at most high. At least, the performance of
the configurations with a population size from 50 to 100 with
p0 = 30% are comparable in convergence and diversity with
the performance of the configuration population size of 130
and SUS. Concluding, the best configuration is expectable with
a population size in the range from 70 to 100 and a selection
parameter of p0 = 30%.

Regarding the questions presented in the introduction we
conclude that an increase of the population size does not result
in better performance. The customized NSGA-II provides
good performance regarding convergence and diversity within
a limited range of population size for the presented three-
dimensional minimization problem. Empirically, there is no
interdependence between population size and selection: The
choice of p0 = 30% usually results in the best performance
independent of the population size. Therefore, it is not possible
to speed up the convergence by increasing or decreasing of
the population size and a suitable adaption of the selection
parameter.

VI. CONCLUSION AND FUTURE WORK

The interdependence of the population size and the se-
lection parameter in this customized NSGA-II is exemplary
examined on a generic three-dimensional biochemical min-
imization problem focused on three central questions: The
first question is aimed at the influence of large populations
on the convergence speed. Early convergence as a main goal
of our moGA is defeated since an increase of the population
size results in higher speed of convergence. The experiments
show that the optimal population size w.r.t. convergence and
diversity is in a limited range from 70 to 100. An increase
of the population size above 100 results in a stagnation of
the convergence behavior and the diversity. A population
size lower than 50 does not provide a convincing diversity
within the solutions. Our second question is focused on the
impact of the population size and the selection parameter.
A configuration rule for the selection parameter depending
on the population size is necessary in the case of a large
dependence of both. However, the experiments do not reveal
an interdependence of the population size and the selection
parameter. Though, the diversity of the configurations with
a population size from 50 to 100 is remarkably improved
with a selection parameter of 30% compared to p0 = 0%
(SUS). Higher values for p0 are not advisable as the speed of
convergence is reduced. The third question asks for a range
of the population size providing the best performance: This
range is fixed to a population size from 70 to 100 based on
the evaluation of the experiments.

The convergence performance of the experiments is as-
sessed via a newly introduced convergence indicator, which
is especially evolved to compare the convergence behavior of
populations with different sizes. It is based on the established

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

hypervolume and calculates the average cuboid volume of
the cuboids spanned by the solution points to a pre-defined
reference point, which is chosen as a theoretical optimal
point. The benefit of ACV compared to the hypervolume
is the lower computational complexity and the choice of the
reference point. It is easier to determine an optimal point than
an anti-optimal one for real world applications. Furthermore,
a comparison of Java frameworks is submitted as a guidance
for a simple implementation of the customized NSGA-II. The
frameworks are compared to the aspects of a character or string
encoding, the implementation of NSGA-II and the potential of
a most simple extension.

For future work, we currently work on the confirmation of
these results on a four-dimensional biochemical optimization
problem. Further, we will evolve a selection strategy based on
ACV for ongoing improvements.

REFERENCES

[1] D. J. Craik, D. P. Fairlie, S. Liras, and D. Price, ”The Future of Peptide-
based Drugs,” Chemical Biology & Drug Design, 81(1), 2013, pp. 136-
147.

[2] S. Rosenthal, N. El-Sourani, and M. Borschbach, ”Introduction of a Mu-
tation Specific Fast Non-dominated Sorting GA Evolved for Biochemical
Optimization,” SEAL 2012, LNCS 7673, 2012, pp. 158-167.

[3] S. Rosenthal, N. El-Sourani, and M. Borschbach, ”Impact of Different
Recombination Methods in a Mutation-Specific MOEA for a Biochemical
Application,” L. Vanneschi, W. S. Bush, and M. Giacobini (Eds.): EvoBIO
2013, LNCS 7833, 2013, pp. 188-199.

[4] S. Rosenthal and M. Borschbach, ”A Benchmark on the Interaction of
Basic Variation Operators in Multi-Objective Peptide Design evaluated by
a Three Dimensional Diversity Metric and a Minimized Hypervolume,”
M. Emmerich et al. (eds.): EVOLVE - A Bridge between Probability, Set
Oriented Numerics and Evolutionary Computation IV, 2013, pp. 139-153.

[5] J. T. Alander, ”On Optimal Population Size of Genetic Algorithms,” in
Proceedings of the IEEE Computer Systems and Software Engineering,
1992, pp. 65-69.

[6] V. K. Koumousis and C. P. Katsaras, ”A Saw-Tooth Genetic Algorithm
Combining the Effects of Variable Population Size and Reinitialization to
Enhance Performance,” IEEE Transactions on Evolutionary Computation,
vol. 10, no. 1, 2006, pp. 19-28.

[7] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan, ”Population sizing
for entropy-based model building in genetic algorithms,” Illinois Genetic
Algorithms Laboratory, University of Illinois, Tech. Rep., 2006.

[8] T. Bäck, A. Eiben, and V. der. Vaart, ”An empirical study on GAs
without parameters,” in Proceedings of the 6th International Conference
on Parallel Problem Solving from Nature, 2000, pp. 315-324.

[9] Z. M. Jaroslaw Arabas and J. Mulawka, ”GAVaPSa genetic algorithm
with varying population size,” in Proceedings of the IEEE International
Conference on Evolutionary Computation, 1995, pp. 73-78.

[10] A. E. Eiben, M. C. Schut, and A. R. Wilde, ”Is Self-Adaption of
Selection Pressure and Population Size Possible? a Case Study,” in
Parallel Problem Solving from Nature - PPSN IX, vol. 4193, 2006, pp.
900-909.

[11] T. Sovany et al., ”Application of Physiochemical Properties and Process
Parameters in the Development of a Neural Network Model for Prediction
of Tablet Characteristics,” AAPS PharmSciTech, vol. 14(2), 2013, pp.
511-516.

[12] BioJava: CookBook, URL: http://www.biojava.org/wiki/BioJava/ [re-
trieved: December, 2013].

[13] T. P. Hopp, K. R. Woods, ”A computer program for predicting protein
antigenic determinants,” Mol Immunol, 20(4), 1983, pp. 483-489.

[14] E. Zitzler and L. Thiele, ”Multiobjective Optimization using Evolution-
ary Algorithms - a Comparative Case Study,” in A. E. Eiben, T. Bäck,
M. Schoenauer, and H. P. Schwefel (EDS.), Fifth International Conference
on Parallel Problem Solving form Nature (PPSN-V), 1998, pp. 292-301.

[15] D. A. Van Veldhuizen and G. B. Lamont, ”Multiobjective Evolutionary
Algorithm Test,” in Proceedings of the 1999 ACM Symposium on Applied
Computing, San Antonio, Texas, 1999, pp. 351-357.

[16] K. Deb, S. Jain, ”Running performance metrics for Evolutionary Multi-
objective Optimization,” Kan GAL Report No. 2002004, Kanpur Genetic
Algorithms Laboratory, Indian Institute of Technology Kanpur, 2002.

[17] O. Schütze, X. Esquivel, A. Lara, and C. A. Coello Coello, ”Using the
Averaged Hausdorff Distance as a performance measure in evolutionary
multiobjective optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 16(4), 2012, pp. 504-522.

[18] C. A. Coello Coello and N. Cruz Cortis, ”Solving Multiobjective
Optimization Problems using an Aritifical Immune System. Genetic,”
Programming Evolvable Mach., vol. 6 (2), 2005, pp. 163-190.

[19] Java API for Genetic Algorithm (JAGA), URL: www.jaga.org/ [re-
trieved: January, 2014].

[20] Metaheuristic Algorithms in Java (jMetal), URL:
www.jmetal.sourceforge.net/ [retrieved: January, 2014].

[21] Java-based Evolutionary Computation Research System (ECJ), URL:
www.cs.gmu.edu/∼edab/projects/ecj/ [retrieved: January, 2014]

[22] Evolutionary Algorithms workbench (EvA2), URL: www.ra.cs.uni-
tuebingen.de/software/EvA2/introduction.html/ [retrieved: January, 2014]

[23] N. Röckendorf, M. Borschbach, and A. Frey, ”Molecular Evolution of
Peptide Ligands with Custom-tailored Characteristics,” PLOS Comput
Biol 8(12), 2012

[24] G. Grosan, M. Oltean, and D. Dumitrescu, ”Performance Metrics for
Multiobjective Evolutionary Algorithms,” Proceedings of Conference on
Applied and Industrial Mathematics (CAIM), 2003

[25] D. Heider et al. ”A Computational Approach for the Identification
of Small GTPases based on Preprocessed Amino Acid Sequences,” in
Technol. Cancer Res. Treat 8, 2009, pp. 333-341.

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-335-3

BIOTECHNO 2014 : The Sixth International Conference on Bioinformatics, Biocomputational Systems and Biotechnologies

