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Abstract—The authors’ main interest was to develop vascular
solid tumour growth model, implement efficient numerical
methods for simulations towards finding a solution of the
model and trying to optimise the influence of different types
of therapies. A system of partial differential equations was
introduced in order to simulate the growth of tumour and
normal cells as well as the dynamics of the diffusing nutrient and
anti-angiogenic or chemotherapeutic factors within the tissue. We
have implemented finite difference time-domain (FDTD) method,
which was formerly shown to produce numerical stable solutions.
In order to make calculations in larger space, which includes
a complex three-dimensional structure of capillaries, a single
processing unit is not sufficient. Hence, there is the need for using
high computing power in order to obtain the results at reasonable
time. Furthermore, over some computing space limit, the amount
of memory required to compute the solution extends the capacity
of single computing machine, making computer cluster is the
only choice. We are comparing the implementation of the
numerical method for multi-computer system (cluster) using the
message passing programming (MPI) paradigm with massively
parallel computing implementation using graphic computing
accelerators. The code was written in C++ and compared with
Matlab implementation with appropriate toolboxes (Parallel
Computing Toolbox and Distributed Computing Server). In
all cases, the use of parallel implementation speedups the
simulation time in comparison to the standard implementation
on a single processor computer. Our results showed that we can
reduce the simulation time significantly, when we use parallel
computing written in C++. The speedup depends on the size
of the computation domain, available memory size, the type of
processors used and realization accuracy. Parallelisation of the
code allows to perform optimisation of therapeutic protocols
included in the model.

Keywords - tumour growth model; parallel computations;
message passing interface; CUDA

I. INTRODUCTION

Solid tumour progression is inseparably connected with
vascular network, surrounding its volume [1], [2]. Tumour
needs to grow oxygen and nutrition factors, which will be
delivered through the vascular network. That is why, consid-
ering the network as well, as its dynamics is crucial in more

realistic models. In literature, we can find many aspects of solid
tumour models, based on cellular automation [3], structured
models [4], single cell-based models [5] and models based on
physical mass and momentum equations [6]. It is possible to
distinguish different phases of the tumour growth. There are
many models which focus on one particular phase, for example
on hiperplastic growth phase [7], tumour growth in situ [8],
invasion [9], angiogenesis [10], or process of metastasis [11].
The microvascular network plays crucial role in development
of the solid tumours. It constitutes a source of the nutrient
for the tumour and enables its continuous growth. However,
due to fast metabolism of the tumour cells hypoxic regions
may occur causing creation of tumour necrosis sites. The
phenomenon of hypoxia is important because it may lead to
the process of angiogenesis and additionally is a reason of
lower efficiency of different therapies. The model taking into
consideration processes mentioned above was developed and
its numerical solution has been performed. Independently of
the type of mathematical model, calculation of its solution is
always time and resources demanding (computations time or
computer memory) [12]. Presented here, the model of vascu-
lar tumour growth is described by set of partial differential
equations. We have implemented FDTD method which was
already shown to produce numerical stable solutions. In order
to make calculations in larger space, which include complex
three-dimensional structure of capillaries, single processor
computers are not sufficient. Hence, there is need to use more
computing power to obtain the results in a reasonable time. We
are comparing the implementation of the numerical method
for multi-computer system (cluster) with the message passing
programming paradigm [13] with massively parallel computing
implementation using graphic computing accelerators (Nvidia
CUDA) [14].
The structure of this article is divided into this introduction
section, next the description of materials and methods used
for simulations, mathematical model section and sections for
results presentation and, at the end, for discussion of presented
results.
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II. MATERIALS AND METHODS

In order to find a solution for the mathematical model,
appropriate numerical methods have had to be used. Among
the explicit numerical methods, one-step Lax-Wendroff method
[15] was chosen for transport equations, and the standard
forward time centered space was chosen for the diffusion
equations. Numerical simulations have been done on the
basis of synthetic micro environment created to reflect real
environment in the tissue. Except for the normal cells fraction,
tumour cells fraction and ECM (see the model description in
the next section), syntetic vascular network has been included
in the environment. It creates the distribution pathways for
nutritients, oxygen and therapeutic agents. Parameters of the
model has been based on a literature.
Computations have been performed in Mathworks Matlab for
testing purposes (finding optimal and stable numerical method,
non-parallel implementation) and in C++ language for parallel
version using MPI (Message Passing Interface) libraries and C
language for CUDA with thurst, CUBLAS and STL libraries.
Each implementation details are presented in Fig. 1. For
CUDA entire computational domain is processed by graphic
accelerator processing units. For MPI, domain is divided for
some subdomains and sent to workers (slaves) to compute
new subdomain. After that results are sent to master node
and new domain (for next time step) is merged. The code is
based on dynamic task allocation, so the number of workers
(S) is lower than the number of subdomains. This technique
keeps the balance of workers load. For both implementations
parallelisation is done only in one time step. Next time step is
dependent from the previous one, that is reason for which it
has to be calculated sequentially.
Calculations were carried out using the computer cluster
Ziemowit [16] funded by the Silesian BIO-FARMA project
No. POIG.02.01.00-00-166/08 in the Computational Biology
and Bioinformatics Laboratory of the Biotechnology Centre
in the Silesian University of Technology. Every node used
for MPI calculations has 2 six-cores Intel Xeon CPUs and
36GB RAM. Computer for CUDA computing was equipped
with Nvidia Tesla C2075 graphic accelerator and Intel Xeon
processor.

III. MATHEMATICAL MODEL

A set of partial differential equations was introduced in
order to simulate growth of tumour and normal cells as well as
the dynamics of the nutrient, anti-angiogenic and chemother-
apeutic particles diffusing within the tissue. For modelling
the tumour growth, different approaches are used. Unlike in
[17], [18] we do not distinguish proliferative, quiescent and
apoptotic cells. Cell behaviour is determined by the oxygen
concentration in the tissue. The equations for the cell dynamics
originate from the multiphase theory [19], [20], [21]. The
main constituents of the multiphase part of the model are
normal cells, tumour cells and extracellular matrix (ECM),
thus variable n denotes volume fraction of normal cells,
a denotes volume fraction of tumour cells, and m denotes
volume fraction of the ECM. For simplicity volume fraction
of ECM is assumed to be homogeneous and constant. The
models in which the dynamics of the ECM is investigated
can be found in works by Chaplain et al. [22] or by Psiuk-
Maksymowicz [21]. The overall volume fraction occupied
by the cells spread on the ECM must satisfy the inequality

Figure 1. Diagrams of CUDA and MPI implementations for 2D compu-
tational domain. For CUDA whole computational domain is processed by
graphic accelerator processing units. For MPI domain is divided for some
subdomains and is sent to workers (slaves) to compute new domain.

ψ = n + a + m ≤ 1. In order to close the model, the
porous media assumption is applied [23]. In order to provide
physiological picture, the heterogeneity of concentration of
the nutrient and xenobiotics is ensured. Mathematical model
consists of five partial differential equations (PDE) :

∂n

∂t
= ∇ · (nK Σ′∇ψ) + nF (c− cP )[αn(1− ψ)− kndch]− γnnF (cA − c),

∂a

∂t
= ∇ · (aK Σ′∇ψ) + aF (c− cP )[αa(1− ψ)− kadch]− γaaF (cA − c),

∂c

∂t
= Dc∇2c− (knP

n+ kaP
a)F (c− cP )− (knQ

n+ kaQ
a)F (cP − c)F (c− cA) + S1(e),

∂da
∂t

= Dda∇2da + S2(e)− kdadae− λdada,

∂dch
∂t

= Ddch∇2dch + S3(e)− kdch(n+ a)F (c− cP )− λdchdch.

where K is a coefficient related to the permeability of
the medium, Σ is a stress function, c stands for oxygen
concentration, da stands for the concentration of anti-
angiogenic treatment agent, dch stands for the concentration
of chemical treatment agent, e stands for the binary function
denoting occurrence of blood capillaries. Growth of the cells
is of logistic type, where αn and αa stands for growth rate
for normal and tumour cells, respectively. Normal and tumour
cells undergo apoptosis with γn and γa rates, respectively.
Growth and degradation of the cells is dependent on the
oxygen availability, therefore in both terms sigmoid function
F (·) is present. In growth terms it is dependent on the
proliferation oxygen concentration cP , and in degradation
terms it is dependent on the apoptotic oxygen concentration
cA. In reaction-diffusion equations Dc, Dda, Ddch are present
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Figure 2. Spatial changes of the cellular density due to anti-angiogenic
therapy (top row) and chemotherapy

denoting oxygen, anti-angiogenic agent and chemotherapeutic
agent diffusion coefficients, respectively. Source terms are
denoted by Si(·), i ∈ {1, 2, 3} functions dependent on the
position of the blood vessels. Different types of stress-volume
ratio relations can be taken into account. The simplest feature
characterising stress is that below the value ψ0 it vanishes,
and increases for ψ > ψ0 and tends to infinity as ψ − 1, e.g.

Σ(ψ) = E(1− ψ0)

(
ψ − ψ0

1− ψ

)
+

, (1)

where (f)+ denotes the positive part of f and E is the value
of the derivative inψ = ψ0, a sort of Young’s modulus for
moderate compressions.

IV. RESULTS

Example of model result with the drugs acting on healthy
and tumour cells are presented in pictures collected in Fig.
2. The colors correspond to density of the cells after anti-
angiogenic therapy (top row) and after chemotherapy (bottom
row). For the top row, the higher density of the cells corre-
sponds also with localisation of the vessels network.
The main results of our work present a comparison of the

speedup of parallel implementation with the basic Matlab
computations (Fig. 3). We have compared the speedups of
MPI implementations with different domain sizes (100x100
and 400x400 points). The speedup is increasing up to about
12 cores then is slightly lower when the number of processing
units increases (Fig. 3). This is caused by the architecture -
single computing machine has 12 physical cores and, when
increasing this number, we are causing that processes needs to
communicate through the computer network which is always
slower than shared memory architecture (even for Infiniband
QDR connection). When spatial computational domain was
increased 16 times the speedup increased up to 8 and the
absolute computation times ratio increased maximum to about
10 times (Fig. 4). Comparing MPI (with 11cores) and CUDA
implementation (Fig. 5) we can see that the speedup is higher
for smaller domains but when increased the performance is
significantly lower.

V. DISCUSSION

The presented results show that when the computing prob-
lem is relatively small, parallelisation using MPI technique
and the usage of big cluster architecture is not the best choice,
as long as the speedup is figurative. However, using CUDA
architecture we can obtain very interesting results. With the

Figure 3. Speedup of the calculations time in dependence with the number
of processing units. Two series are compared - with smaller spatial domain
(100x100, boxes) and with large domain (400x400, circles).

Figure 4. Time ratio after 16 times increase of the spatial domain (T400/T100)
depending of the number of processing units.

growth of the size of the problem CUDA application meets its
limitations related to memory bandwidth limits and hence MPI
implementation seems to be a reasonable choice. We could also
observe that, if the problem can be solved using single multi-
core machine it will give us slightly better performance than
using more machines.
Single simulation, having relatively small data domain (as
in our case 400x400), is possible to compute using single
computing machine and it takes about an hour (or less) to
compute. However, switching the space domain to the third
dimension only MPI implementation should be considered.
Parallelisation of presented numerical simulations serves us not
only to study different methods of parallelisation performance,
but it is a crucial step toward trying to find optimal therapeutic
protocols of implemented chemo- and antyangiotherapy. To
complete any optimization algorithm it is required to perform
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Figure 5. Speedup of MPI with 11cores (light grey colour) and CUDA (black)
implementation for different spatial domain sizes (100x100 and 400x400).

thousands of repetitions of model simulation. Even for rela-
tively small 2D domains and using a single computing machine
the computation time is unacceptably long without using the
parallelisation.
Further works will include implementation of meta-heuristic
methods as simulated annealing, genetic algorithms, ant colony
optimisation and others to find the optimal solution. However,
this methods are inherently connected with multiple model
simulation so even apparently small speedup of execution
time, multiplicated during optimisation step, will contribute
significanlty to the overall execution time.
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