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Abstract—Understanding the underlying principles of cancer is
a key endeavour in biomedical data mining. Although machine
learning methods have been successful in discriminating normal
from cancerous tissue with good accuracy, understanding of
progression and formation of cancer across various cancer types
is still restricted. Since cancer is a complex disease, being able
to identify subgroups and investigate them separately may help
in increasing the depth of our knowledge in terms of driver
genes and oncogenic pathways. Moreover, as genes never act
in isolation, methods that focus on single genes individually
may be less efficient in uncovering key underlying molecular
interactions. Algorithms that are capable of discovering the effect
of combinations of genes have the potential to pave the way
for extracting a new class of gene signatures that are neither
mutated nor expressed differently, but rather act as mediators in
forming oncogenic pathways. Here, we present a hybrid machine
learning model to find cancer subgroups and an associated set
of marker genes. In the proposed model, autoencoders are used
to create a rich compressed set of features to identify cancer
subgroups. Then, a two-step algorithm is developed based on
information theory and regression analysis to find a set of
discriminatory genes for each selected group for different types
of cancer. This analysis is conducted based on the combined
expression of genes to discover a new subset of genes associated
with cancer. We show that we can still predict cancer accurately
by decreasing the number of genes from thousands to tens for
each subgroup. Pathway enrichment analysis is performed to find
important pathways associated with a specific cancer type. The
model is extensively analysed on datasets across nine cancer types
and links between cancers are studied based on common gene
signatures.

Keywords–Machine Learning; Disease Classification; Cluster-
ing; Cancer Prediction.

I. INTRODUCTION

Cancer is a major cause of reduction in quality of life,
with about 18.1 million new cases and 9.6 million cancer
deaths noted recently (2018 [1]). Early detection of cancer can
significantly improve prognosis, therefore, understanding the
biology of cancer especially with regards to early detection is
vital. Traditionally, clinical features such as age, tumor size,
and cancer stage have been used to assist the prognosis of
cancer, however these are only useful in late stage diagnosis
and may not aid prediction [2].

High throughput technologies, such as microarray
gene expression profiling and next-generation sequencing
have produced an enormous amount of data which can

be used to dissect cancer more accurately [3]. Early
detection necessitates understanding the mechanism of cancer
development via relevant associated and biological pathways.
However, heterogeneity of tissues and genetics of patients
prevent the identification of robust biomarkers [4] and the
high dimensionality of expression data renders the selection of
relevant genes in different types of cancer difficult [5]. Finally,
as genes do not act in isolation and their combined effects
lead to a variety of resultant phenotypes, the complexity of
biomarker signatures increases [6].

Recently, machine learning and deep learning methods
have resulted in advancement in the capability of prediction in
many research fields with big and complex data, with notable
applications in cancer research [7]–[10]. Deep learning
methods have illustrated excellent potential in handling large
and complex datasets and, together with the availablity of
appropriate cancer profiling datasets [11], enable applications
that can divulge key biomarker genes and pathways for disease
types and increase our understanding of the mechanistic basis
of cancer [8].

Identifying subgroups of similar pattern facilitates
understanding of disease formation and progression. Once
cancer subgroups are extracted, feature selection can be
used for knowledge discovery through identification of
key gene signatures [12]–[14]. Typically, methodologies
rely on differentially expressed genes (for example, use
of SAM [15], RVM [16] and SMVar [17]). However,
these methods only focus on single genes and do not
reflect the fact that genes work in functional groups.
Additionally, there are genes contributing to cancer which
may not be differentially expressed but may rather act as
mediators in oncogenic pathways within a cancer network,
establishing the connections between genes that are mutated
or transcriptionally altered. Related work includes the work
by Ghanat Bari et. al [9] that employ many concurrent
Support Vector Machine models to derive a new class of
cancer-related genes (named Class II genes) that are neither
mutated nor differentially expressed, but proposed to act as
potential key mediators in creating networks of cancer.

This work reports the development of a pipeline where
the first stage involves application of an autoencoder, an
unsupervised deep learning-based model, to compress high-
dimensional gene expression data. Then, clustering is per-
formed on the compressed gene expression data to discover
different cancer subgroups, then each is assigned into two main
classes called, pure and mixed based on the relevant sample
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label. Tumours which are very different from normal tissues
form the pure groups, while tumours that are similar to normal
samples fit into the mixed subgroups (mix of normal samples
and tumours) . In the second stage, for each of these subgroups,
a subset of gene biomarkers is selected through unsupervised
(for pure subgroups) or supervised (for mixed subgroups) algo-
rithms. The supervised method is a two-step algorithm based
on information theory and regression analysis. Figure 1 shows
the proposed framework. This approach was implemented for
each of nine cancer types and it was shown that the derived
gene markers are efficient in disease prediction. To highlight
key cancer mechanistic details, pathway enrichment analysis
was also applied and the network between different cancer
based on common biomarkets was investigated. In Section II,
the materials and methods applied in this paper are reviewed.
Section III presents the results of the framework. Section IV
concludes the paper and goes over the future work.

II. MATERIALS AND METHODS

Gene expression data corresponding to nine cancer types
were obtained from Gene Expression Omnibus (GEO) [18]
for Affymetrix Human Genome U133 Plus 2.0 platform
[9]. A total of 6957 cancer and 1850 normal tissue samples
were collected. Table I shows the list of cancer data
used in this paper. For pathway analysis, 188 KEGG [19]
pathways were downloaded from GSEA, Broad Institute
[20]. Raw Affymetrix data were normalised through Robust
Multichip Average (RMA) [21] through the R BioConductor
rma function [22]. Probes were mapped to genes by the
Affymetrix Human Genome U133 Plus 2.0 Array annotation
data (chip HG-U133 Plus 2) using the R Bioconductor
annotation package hgu133plus2.db [23]. In cases of
multiple probes mapping to the same gene, the average value
of these probes is taken.

Datasets were split into training (90%) and external
validation (test) set (10%) and on the training dataset all
metrics were calculated through a 10-fold cross validation
scheme, repeated 5 times. The training and test datasets are
scaled by StandardScaler. To balance data, we applied
Synthetic Minority Over-sampling Technique [24] using
SMOTE function from imbalanced-learn 0.4.2 Python package
to the training dataset to prevent overfitting on one class.
Since the number of features (genes) is much larger than the
number of samples, we should avoid to decrease the number
of sample for balancing the data, therefore, oversampling is
performed on training data.

To compress the expression of genes to the smallest set, au-
toencoder [25] was used. It is implemented using a multilayer
neural network with a hidden layer in the middle and consists

TABLE I. THE LIST OF CANCER DATA USED IN THIS PAPER

Cancer # of samples # of tumor
samples

# of normal
samples

Breast 2113 1984 129
Ovary 954 839 115
Colon 1765 1557 208
Prostate 389 299 90
Skin 621 357 264
Liver 588 279 309
Pancreatic 259 178 81
Kidney 1031 589 442
Lung 1087 875 212
Total 8807 6957 1850

of two parts of encoding (φ : χ→ F ) and decoding (ψ : F →
χ). The loss function is defined in a way that the output is
reconstructed from the input. Autoencoder is implemented by
using Tensorflow 1.12.0 with three hidden layers and Tanh ac-
tivation. Then, to identify groups of patients with similar gene
expression patterns, several clustering algorithms were imple-
mented (e.g., k-means, Spectral Clustering, Gaussian Mixture
Models) in Scikit-learn 0.21.2 with default hyperparameters.
As the successful method depends on the actual structure
of the dataset [26], we found that for the size and nature
of our data, k-means performed well (for an extensive study
of clustering algorithms on large datasets, see [27]). For the
implementation of clustering algorithm MiniBatchKMeans
function with random initializations number= 3, batch size=
100, and reassignment ratio= 0.01 was used. The best number
of clusters is selected by silhouette index [28]. After clustering,
each sample is assigned to one of the modules; Modules
with samples of the same label will be considered pure,
whereas clusters with mixed labels (normal and tumor) will
be identified as mixed.

Ci =


pure if nti/n

n
i < α

or nni /n
t
i < α,

mixed otherwise.

where Ci is the ith cluster, nti and nni are the number of
tumor and normal samples in cluster i respectively, and α is
a threshold set to 0.1.

The next stage involved finding a subset of biomarkers
that can best characterise samples in each cluster. For
pure clusters, since the label of all samples is the same,
unsupervised feature selection was used, whereas in the case
of mixed clusters, supervised feature selection was applied.
Specifically, in the pure cluster, Principle Component Analysis
(PCA) was applied to compress gene expression features and
the overall contribution of each gene forming the principle
components calculated by applying an inverse transform of
the PCA to an identity matrix to observe which features
had the highest contribution. For the implementation of the
first step of our feature selection algorithm, SelectKBest
function with mutual_info_classif score function
and for the second step LassoCV were used. Similarly, to
perform PCA, we used PCA. In the case of mixed clusters,
a two-step feature selection algorithm called BestLasso was
implemented based on combination of information theory and
LASSO (Least Absolute Shrinkage and Selection Operator)
[29]. In BestLasso algorithm, first a subset of the highest
contributing features is chosen by estimating the mutual
information [30] of every feature with the labels, then Lasso
was used to select the best set of features. The main reason for
performing this two-step process is because gene expression
data has high dimensionality and performing Lasso on all
data becomes prohibitively slow and complex. Algorithm 1
shows this procedure.

Differentially Expressed (DE) genes were selected by
calculating t-test in R Limma 3.26.9 package. The p-
value was adjusted by the moderated t-test for multiple test-
ing by BH-adjusted (Benjamini-Hochberg method). We
used topTable function from limma with log-fold-change
(logFC)> |2|. [-23pt]

Once features were selected, classification was performed
by learning a model on the selected features to predict
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Figure 1. Overview of the proposed model to infer cancer subtypes and gene signatures (data here relate to the breast cancer dataset). 1.Preprocessing data.
2. An Autoencoder applied to compress the high-dimensional set of genes 3. The samples are grouped into different subgroups based on the encoded features.
The cluster labels are added to each sample 4(a). All the genes of the subgroups that have same tissue types (pure clusters) are fed to PCA to select their
highest contributing genes. 4(b). All the genes of the subgroups with mixed tissue types along with their labels are then input into a feature selection algorithm,
BestLasso. 5. The selected features are used in a neural network to learn a model able to predict their labels. 6. The whole model is evaluated on the test set 5
times 10-fold cross-validation.

Algorithm 1 BestLasso algorithm. XN×m is the gene expres-
sion data of N samples and m genes. Y is the label for each
sample (0 and 1). k is the number of desired features from
Mutual Information algorithm. µ(fi) is the probability density
for sampling fi.

1: procedure BESTLASSO(XN×m, Y, k)
2: feature scores← [ ]
3: for i = 1→ m do
4: fi ← X[:, i]
5: sia ←

∑
Y

∫
µ(Y, fi) logµ(fi|Y )dfi

6: sib ←
∫
µ(fi) logµ(fi)dfi

7: si ← (sia − sib)
8: feature scores[i]← si
9: X ′N×k ← Top k features with highest feature scores

10: return Lasso(X ′, Y )

tissue type (normal or tumor) in mixed clusters as sam-
ples in pure clusters. Different techniques were evaluated,
including Logistic Regression, Support Vector Machine and
Random Forrest, and neural networks in Scikit-learn 0.21.2
with default hyperparameters. Among them neural networks
had roughly better average performance on 9 cancer datasets.
Then, neural networks hayperparameters were tuned using
GridSearchCV and a model with an input layer, two hidden
layers (30 and 5 nodes, ’relu’ activation function) and an output
layer with ’sigmoid’ activation function was chosen. Five times
10-fold cross-validation was done on the training data and
the test set data was used for evaluation of the classification
procedure through accuracy, F1 score, and area under ROC
curve (AUROC) metrics.

III. RESULTS AND DISCUSSION

Cancer is a heterogeneous disease with different
histopathological and molecular subtypes, each with different
diagnosis and therapies [31]. The goal of this work is
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to propose a way to find these subtypes by maximising
the intra-group and minimising inter-group similarity [32].
Sample stratification is difficult when relying only on clinical
data, therefore the use of gene expression facilitates more
meaningful pattern extraction and sample stratification. To
achieve this target, machine learning clustering methods
can identify groups of patients with similar gene expression
patterns. In this section, we present the results of our method
in selecting pure and mixed subgroups on nine different cancer
types. We then introduce the genes related to cancer for each
subgroup and report the high performance of the model using
these genes. Lastly, we conduct pathway enrichment analysis
and show that some of these results can provide validation
through existing relevant literature.

In order to discover subgroups, a key step in clustering
is determining the optimal number of clusters. A common
method to perform this is by evaluating clusters using cluster
validity indices, where samples are closely linked within
the same cluster and are well-separated from members of
other clusters [28]. To identify the optimal number of cancer
subgroups, the average Silhouette score of 5 different number
of clusters was computed. For breast cancer for example, the
best way of subgrouping data is with three clusters (Figure
1 section 3). One of these subgroups is a mix of normal and
tumor tissues, while the other two contain only tumor samples
i.e., pure cluster. For all cancers, Table II shows the average
Silhouette scores for each type respectively. In most cases,
clustering has been able to separate the samples well using
the compressed set of genes.

TABLE II. DIFFERENT SIZES OF CLUSTERS AND THEIR AVERAGE
SILHOUETTE SCORE

Cancer \ Number of Clusters 2 3 4 5 6
Breast 0.80 0.82 0.60 0.55 0.49
Ovary 0.68 0.73 0.46 0.47 0.36
Colon 0.73 0.55 0.42 0.41 0.38
Prostate 0.59 0.70 0.55 0.60 0.54
Skin 0.53 0.56 0.61 0.58 0.51
Liver 0.41 0.52 0.50 0.39 0.39
Pancreatic 0.55 0.62 0.58 0.48 0.42
Kidney 0.69 0.50 0.48 0.44 0.41
Lung 0.51 0.44 0.34 0.33 0.35

After the optimal subgroups and the type of clusters (pure
or mixed) are identified, gene signature subset selection was
performed to extract useful information in each subgroup and
reduce dimensionality (out of more than 22,000 genes). Since
each cluster represents a different cancer subgroup, studying
the selected genes in each cluster individually will lead to the
identification of relevant gene signatures. One of the common
methods of ranking genes associated to cancer is by selecting
genes expressed differently in tumor and normal tissue using
statistical methods. Selecting only Differentially Expressed
(DE) genes results in genes being considered individually,
regardless of their inter-relationships. As traits and phenotypes
are caused by interactions of groups of genes [33], here we use
a powerful machine learning strategy that can test for different
combination of genes sets as means for deriving robust cancer
biomarkers that have the ability of predicting cancer with
high accuracy. Table III contains the list cancer subgroups
and the number of their gene signatures. For example,
breast cancer consist of two pure and one mixed subgroups
with different number biomarkers selected in each. A list of
the biomarkers for each cancer subgroup is given in Table IV.

TABLE III. LIST OF OPTIMAL SUBGROUP TYPES AND NUMBER OF
GENE SIGNATURES IN EACH OF THEM

Cancer Cluster Types (# of Gene Signature)
Breast Pure (28) Pure (36) Mixed(70)
Ovary Pure (41) Mixed (90) Mixed(19)
Colon Pure (normal) Mixed (82)
Prostate Mixed (29) Mixed(53) Mixed(25)
Skin Pure (normal) Pure (49) Pure(38) Mixed(28)
Liver Mixed (34) Mixed (27) Mixed (45)
Pancreatic Pure (27) Mixed (26) Mixed (9)
Kidney Pure (normal) Mixed (59)
Lung Pure (30) Mixed (56)

Moreover, methods that rely on just differentially expressed
genes ignore mediator genes which are contributing to cancer
but may not mutated. Recently, methods that aim to delineate
such genes active in connecting oncogenic pathways are
reported [9]. From all the gene signatures selected by our
framework, some of them are differentially expressed and
some are not, which may indicate mediator genes. As an
example, mediator genes in breast cancer found by our
model are as follows: ABCA8, ARCN1 [34], ARHGAP20
[35], ATP5B [36], CA4 [37], CLDN5 [38], DCTN2, FAM13A,
GLYAT, GRIP2, GSTM5 [39], H3F3A, HIST1H3I, KIF23 [40],
NUP210 [41], RAB7A [42], RPL7A [42], RPLP0, RPS12,
SIN3A [43], SPTBN1, TUBA1C [44].

Since there are multiple gene signatures common between
each cancer, a network of cancers can be outlined. Figure
2 shows this network comprised of all the chosen gene
signatures by our model colored based on the 9 different
cancer types. Each cancer has their own gene signature
while some of them share specific genes, as indicated in
the figure. Our analysis showed that ABCA8 is a hub gene
shared between four cancers and known to be involved in
multiple cancers in literature [45]–[47]. Another interesting
observation is the many common gene signatures between
breast and lung cancers: CA4 [37], FIGF [48] , LDB2 [49],
GPIHBP1 [50], COL10A1 [51], SLC19A3 [52], LYVE1 [53],
IGSF10 [54] , MYZAP [55], SPTBN1, ADH1B [56], ABCA6
[57], PIR-FIGF. Almost all of them are also reported as being
associated with lung and breast cancer. It is note that lung is
the most likely tissue for cancer metastasis from breast [58]
[59].

The results of the prediction of the proposed model on the
test set are presented in Table V. The model is performing
with higher than 90% accuracy and F1-score in all cases
which means that the set of selected genes are capable of
accurately distinguishing between cancer and normal tissues.
The two cancers with the lowest accuracy are Prostate and
Pancreatic cancers, for which the lowest number of samples
was available. It is noted that the model may improve upon
availability of a larger data size for these cancers.

Once all important genes are selected and validated by
our method, we can gain further insight through pathway
enrichment analysis for each subgroup. To this end, the number
of selected gene signatures in each pathway is determined
and normalised by the total number of genes in the pathway,
the counts therefore serving to demonstrate the importance of
the pathway in the cancer subgroup. Some key pathways are
already known as pathways associated with cancer and some of
them have not been studied specifically yet and can be aimed
for further research. Full list of the most important pathways
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TABLE IV. LIST OF BIOMARKERS FOR EACH SUBGROUP

Cancer Subtype Biomarkers
breast (mixed) ABCA6, ABCA8, ADAMTS5, ADH1B, ADH1C, ALDH1L1, ANXA1, ARHGAP20, ARID5B, ATOH8, C2orf40, CA4, CD300LG, CEP55, CLDN5,

CLEC3B, CNRIP1, COL10A1, COL11A1, COPG2IT1, DPT, FAM13A, FIGF GINS1, GJB2, GLYAT, GPIHBP1, GSTM5, HELLS, HSPB2, HSPB7,
IGFBP6, IGSF10, INHBA, ITIH5, KIF14, KIF23, KLF15, LDB2, LINC01614, LRRN4CL, LYVE1, MAMDC2, MATN2, MME, MYZAP, NPR1,
NUP210, PAFAH1B3, PAMR1, PGM5, PLAC9, PLIN1, RGN, RRM2, SBK1, SCARA5, SCN4B, SIK2, SLC19A3, SMC4, SPATS2, SPTBN1,
TMEM246, TNMD, TNXA, TRIM59, TSHZ2, UHRF1, VIT

breast (pure) SNHG7, LOC283674, RPS6KA2-AS1, C9orf50, RPL13A, TSPAN16, FLJ31713, RPS12, CFAP100, LINC00967, RPL7A, LOC101928602,
LOC100288123, XKR7, HPR, LOC101929738, LOC101929144, FCAR, ACTG1, ZCCHC13, ARCN1, RPLP0, LOC101929680, TUBA1A, TUBA1C,
ATP5B, TMEM203, SNORA74A

breast (pure) HIST1H3I, RFFL, LOC100505716, GRIP2, SLC6A17, LOC645513, RBM26, NENF, C5orf51, APMAP, MLLT10, DHRS7, HDGFL1, IL10RB-AS1,
LDLRAD4-AS1, SIN3A, PRDM2, LOC100506858, FKSG29, DANT2, LOC105370977, CACNG6, RAB7A, TMEM161B-AS1, LRRC43, EMC7,
DCTN2, USF3, H3F3A, TRAFD1, LOC84843, MTPN, LINC00641, REST, TH2LCRR, RNF152

colon (mixed) ABCA8, ABCG2, ADAMDEC1, ADH1C, ADTRP, AJUBA, AMPD1, APPL2, BEST4, C15orf48, C2orf88, CA1, CA2, CA7, CDH3, CDKN2B, CEMIP,
CHGA, CHP2, CLCA4, CLDN1, CLDN23, COL11A1, CSE1L, CWH43, DHRS11, DUSP14, EDN3, ENTPD5, ETHE1, FKBP1A-SDCBP2, FLJ36848,
FOXQ1, FUCA1, GCG, GPAT3, GPD1L, GTF2IRD1, GUCA2B, HAPLN1, HIGD1A, HILPDA, HPGD, INHBA, ITM2C, KIAA1549, KLF4, KRT80,
LIFR, LINC00675, LPAR1, LRRC19, MOGAT2, MRGBP, MTHFD1L, NAAA, NFE2L3, NR3C2, P2RX4, PDCD4, PLCL2, PLP1, PRDX6, PYY,
SCARA5, SLC25A34, SLC51B, SLC6A6, SLC7A5, SMPDL3A, SNTB1, SPPL2A, SST, TEAD4, TMCC3, TPH1, TRIB3, TSPAN1, TSPAN7, UGDH,
VSTM2A, ZG16

kidney (mixed) ABAT, ACOX2, ALAD, APEH, AQP2, ASS1, ATP6V0D2, CA9, CALB1, CAPN3, CLCNKB, CLDN10, COL23A1, CRYAA , CTSH, DCXR, EFCAB3
, EGLN3, ENPP6, ERP27, FBP1, FBXO16 , FOXI1, FXYD4, GATA3, GGH, HRG, HS6ST2, IGFBP3, IRX1, KCNJ1, KLHL13, KLHL14, KNG1,
LARS2, LINC00887, LOC100130278, LOC101928574, LOC102723468, MT1G, NOL3, NPHS2, OAT, PTH1R, RDH11, RGS1, S100A2, SCNN1G,
SERPINA5, SLC12A1, SLC25A5, TFAP2B, TMEM213, TMEM30B, TMEM52B, TMPRSS2, TNFAIP6, VIM, ZNF395

liver (ixed) ADAMTS13, ANXA3, BEX1, BIRC5, BMP5, CFP, CNDP1, COL15A1, CYB5D1, CYP2C8, DACH1, DBH, DCUN1D3, DPF3, F9, GPM6A, HHIP,
HSPB1, ITLN1, KAZN, KIAA0907, LCAT, LHX2, LINC01296, MAP2K1, MT1G, MYOM2, NSUN5, NSUN5P1, OLFML2B, PLAC8, PLVAP, POGZ,
PROM1, PTH1R, SLC16A5, SLC46A3, SLC5A1, SLCO4C1, SNX27, STAB2, TARBP1, TCF21, THY1, WDR66

liver(mixed) ADGRG7, ADK, ANGPTL3, BLOC1S1-RDH5, C1orf168, CAP2, CENPF, COL25A1, DGAT2, EPS8L3, ESR1, FREM2, KCNJ16, LAMC1, MT1H,
NAPSB, PAMR1, PEG3-AS1, PLCB1, PPM1H, RANBP3L, RPS6KA6, SESTD1, SHC1, SSR2, STEAP3, TREH

lung (mixed) ABCC3, ADCY4, ADRA1A, AGR2, AKAP2, AMOTL1, ARHGAP6, ASPRV1, BVES, CA4, CCBE1, CDH5, COL10A1, DACH1, FGD5, FGFR4,
FOXF1, FUT2, GCNT3, GPRC5A, GRK5, HABP2, HSH2D, IGSF10, KDELR3, LIN7A, MAGI2-AS3, MUC20, MYCT1, NCKAP5, P2RY1, PAK1,
PEAR1, PHF2, PPM1F, PROM2, RASIP1, RHBDL2, SDC1, SEMA6A, SGCG, SH3GL2, SH3GL3, SLC19A3, SLC39A11, SOX17, SPINK1, SPOCK2,
SPTBN1, STARD13, TAL1, TGFBR3, TMPRSS4, TSPAN18, WFDC2, ZBED2

lung (pure) LDB2, LYVE1, SDPR, ABCA6, FAM150B, ARHGAP6, RHOJ, AGER, ADH1B, EMCN, GPIHBP1, MMRN1, GRK5, GPM6A, MYZAP, ABCA8,
S1PR1, FIGF, ASPA, ANGPTL1, NME1, GRIA1, CA4, EDNRB, PTPRB, SCN7A, TCF21, PCAT19, TEK, FHL1

ovary (pure) P4HB, NOP10, SRP9, FTL, CDC37, MIF, NBPF10, CHMP2A, ARF1, COPZ1, MRPL37, NDUFAB1, SCAND1, RHOA, PGRMC1, XRN2, PSMC3,
POLR2E, EIF4A1, DDOST, SPCS2 , GNB2, TUBA1C, ABHD17A, PRPF31, NDUFA3, PCBP1, RPS27, OST4, OAZ1, APEX1, UBC, RNF181, JTB,
TMEM258, RPS5, MRPL34, HSPA8, H3F3A, CHCHD2, LSM7

ovary(mixed) ABCA8, ABHD11, ABHD17C, ADGRD1, ANKRD29, AOX1, AP1M2, ARHGAP8, ARMCX5-GPRASP2, ARX, ASS1, ATP10D, BAMBI, BDH2,
C14orf37, C1orf186, CACNB2, CD24, CELF2, CHD7, CLDN4, CLDN7, CNIH3, CNRIP1, CP, CPED1, CSGALNACT1, CXXC5, CXorf57, DFNA5,
ECM2, EPCAM, FAM153A, FAM153A , FLRT2, GHR, GNG11, GPRASP1, GRHL2, HAND2-AS1, HOXC6, IDH2, KCNT2, KLHL14, KPNA5,
L3MBTL3, LEMD2, LIN7A, LOC728392, MAF, ME1, MECOM, MUC1, MUM1L1, NBEA, NDNF, NR3C2, OLFML1, PEG3, PID1, PLCL2,
POLR3GL, PPM1K, PPP4R4, PRSS35, RNASE4, RPL36A, SERP2, SIGLEC11, SLC30A4, SLC34A2, SLC44A2, SNCA, SORT1, SPINT1, STON2,
SYTL1, TCEAL2, TCEAL3, TCEAL7, TES, TFPI, TLE4, TMEM139, TMEM150C, TRIM68, TRPC1, TSPAN5, WFDC2, WHAMMP2

ovary (mixed) ARID4B, CASP2, FMN2, GS1-259H13.2, HIST1H3I, HPS3, KLHL24, NCOA2, NICN1, PCED1B, PLXND1, PPIAP21, PSMG3-AS1, RAB4A,
SHROOM2, TOPBP1, TUBB4B, VSIG1, ZDHHC20

pancreatic (mixed) FBXO25, HOXC6, NRG4, PDIA2, PRR11, RPL14, SLC25A13, SND1, TNFAIP1
pancreatic (mixed) AFAP1-AS1, ARMC9, CALU, CLDN1, CLDN4, CST1, CTTN, HIST2H2AA3, HOXB7, HOXC6, KRT18, LOC340340, MAMDC2, MROH6, MSLN,

NAT14, NME1-NME2, PKM, PLXNB2, PYGB, RPL23A, SDC1, SDC4, SLPI, TTTY5, VGLL4
pancreatic (pure) CPEB2, SNHG10, LOC642862, COQ10B, AFF4, HIST1H4B, C6orf106, ARID5B, CDK9, LOC100129112, CCDC117, BOLA2, NOCT, POLR2A,

PRDM2, ZFX, C16orf72, B4GALT1, GATAD2A, ATXN2L, LOC101926943, AHNAK, CCNK, RAB7A, CDR1, MTPN, ZNF460
prostate (mixed) ACSS2, CDKN2A, CPSF7, ENTPD3, FADS1, FAP, IGSF1, KANK4, LINC00328, LINC00869, LOC100996741, LOC158863, LOC441666, NETO2,

NFAT5, PCSK5, RNF24, SALL3, SMIM10L2A, SPPL3, ST3GAL5, TMCO3, TMEM241, ZNF595, ZNF93
prostate (mixed) ACOX2, AMACR, CFC1, COL9A1, CYP4B1, EFS, FHL2, FLRT3, FOXQ1, HADHB, LSAMP, MME, MSMB, MSMO1, NEFH, NPM1, PCAT4,

RBBP7, SMIM5, WIF1
prostate (mixed) ADCY4, ADORA2A, ADRB1, ARHGEF15, ARRDC2, ATHL1, ATP7A, BCKDHB, C10orf10, C1R, CADM3, CHST7, CLEC14A, CLIC2,

CNBD2, DMBT1, DOCK9, FAM193B, FECH, FES, FHL5, GIMAP1, IGFBP5, IL15RA, KCNMB2, LCLAT1, LGR4, LINC01503, LOC100507291,
LOC100996583, LOC10537679, LOC286071, LYPLA1, MAP3K3, MFAP3, MS4A14, MSC-AS1, NPR2, PDGFRA, PDLIM1, PNPLA4, PPP6R1,
PSMA5, SHC1, SLC39A9, TIE1, TMEM218, TMEM255B, TMOD1, TRIP10, TSC22D1, TTR, UGP2

skin (pure) SMAD1, SLC46A2, CCDC186, NIPAL1, DENND4C, XG, NET1, MYO6, HLF, ATP8B1, THRB, FOXN3, BCL11B, GIPC2, RAPGEFL1, ABHD5,
LNX1, CEBPG, MAF, LRBA, LOC284023, RORA, TMTC3, CCDC6, TTC39B, GLTP, DENND2C, MPZL3, F3, PPM1L, ABLIM1, ELOVL4, FBXW7,
TUFT1, GAN, ACVR2A, ELL3, LOC101927164

skin (pure) TBC1D8, LOC102724593, THRA, TMEM262, SIPA1L3, MMP19, XGY2, RPARP-AS1, LOC100132319, SPAG8, ELMSAN1, ESRG, SPIDR, CYP4Z1,
PCNT, ADIRF-AS1, LOC101928988, IL17RE, NUDT17, CCDC153, SAPCD1-AS1, LOC283713, EEF1D, LIPH, YPEL2, CDR1, MIR4697HG,
DCST2, RPRML, LOC105369671, UBE2NL, SLC9A3R2, AGAP11, ANKRD19P, CENPT, TYSND1, AP1G2, RRN3P3, HSPA1B, LOC101928595,
LOC105375061, LOC105379661, SKIDA1, ACTA2-AS1, LOC102723600, GATB, RNF31, FOXH1, CYP21A1P

skin (mixed) ADAM12, APOBEC3C, ARPC1B, ATL1, BCL2A1, BMP2, BTC, CLDN23, CLDN8, CP, EPB41L4B, FCMR, HN1, HPGDS, IFI27, IGFL1, ITPA,
LOC105378074, MIR503HG, MSH5-SAPCD1, NDC80, OASL, PIK3CD, PRDM6, RTP4, SGCG, SLC8A1, TMEM206
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Figure 2. Gene signatures selected by our framework coloured according to
cancer type. The common genes connecting more than one cancer are shown
in orange.

TABLE V. THE ACCURACY, F1 SCORE, AUROC OF OUR MODEL ON 9
CANCER TYPES

Cancer Acurracy f1score AUROC
Breast 0.99 0.99 0.96
Ovary 0.97 0.98 0.90
Colon 0.99 0.99 0.99
Prostate 0.93 0.98 0.89
Skin 0.98 0.98 0.98
Liver 0.97 0.96 0.97
Pancreatic 0.91 0.93 0.93
Kidney 0.99 0.99 0.99
Lung 0.99 0.99 0.99

among KEGG pathways for each subgroup summarized in
Table VI. Moreover, from our analysis, there are several
pathways repeated in multiple cancer subgroups and all these
pathways are cited in the literature as associated to cancer.
Table VII shows key pathways identified through the KEGG.

IV. CONCLUSION AND FUTURE WORK

With the advent of massively parallel profiling of genes
and their products, as well as improved machine learning
technologies to handle large and heterogeneous datasets,
enhancing analyses for cancer is possible. In this work, we
present a hybrid machine learning computational procedure
that includes analysis of datasets from multiple cancer
types, integration of supervised and unsupervised learning
procedures in the same computational framework and the use
of autoencoder step that can effectively compress the high
dimensionality of the gene expression profiles to discovering
cancer subgoups.

Using this approach we identified a set of genes involved
in cancer, some of them being recently reported in literature.
As another means of validation, we were able to perform
classification with very high accuracy using these biomark-
ers on the test set. In addition to being able to accurately
predict cancer, our goal was to increase understanding of
the underlying mechanisms by performing analysis on the
selected genes and their pathways. Therefore, a network was

TABLE VI. LIST OF IMPORTANT KEGG PATHWAYS FOR EACH
SUBGROUPS OF ALL THE NINE CANCERS.

Cancer Subgroup KEGG Pathway
breast (mixed) RENIN ANGIOTENSIN SYSTEM

ONE CARBON POOL BY FOLATE
breast (pure) PATHOGENIC ESCHERICHIA COLI INFECTION
breast (pure) VASOPRESSIN REGULATED WATER REABSORPTION
colon (mixed) NITROGEN METABOLISM
kidney (mixed) VALINE LEUCINE AND ISOLEUCINE

BIOSYNTHESIS FOLATE BIOSYNTHESIS
liver (mixed) DORSO VENTRAL AXIS FORMATION
liver (mixed) BETA ALANINE METABOLISM
liver (mixed) RETINOL METABOLISM
lung (mixed) GLYCOSPHINGOLIPID BIOSYNTHESIS GLOBO SERIES
lung (pure) ABC TRANSPORTERS
ovary (mixed) GLYCOSAMINOGLYCAN BIOSYNTHESIS

CHONDROITIN SULFATE
ovary (mixed) DORSO VENTRAL AXIS FORMATION
ovary (pure) PROTEIN EXPORT
pancreatic(mixed) PATHOGENIC ESCHERICHIA COLI INFECTION
pancreatic (mixed) ERBB SIGNALING PATHWAY
pancreatic (pure) GLYCOSAMINOGLYCAN BIOSYNTHESIS

KERATAN SULFATE
prostate (mixed) PRIMARY BILE ACID BIOSYNTHESIS
prostate (mixed) GLYCOSAMINOGLYCAN BIOSYNTHESIS

CHONDROITIN SULFATE
prostate (mixed) GLYCOSPHINGOLIPID BIOSYNTHESIS GANGLIO

SERIES
skin (pure) THYROID CANCER
skin (pure) RNA POLYMERASE
skin (mixed) ARRHYTHMOGENIC RIGHT VENTRICULAR

CARDIOMYOPATHY ARVC

TABLE VII. LIST OF IMPORTANT KEGG PATHWAYS IN NINE CANCERS

Pathway Reference(s)
PURINE METABOLISM Purines play a critical role in cell proliferation

and their broken metabolism has recently been
recognized to be related to cancer progression [60]

PATHWAYS IN CANCER KEGG has identified a pathway which is related
to cancer [19]

LEUKOCYTE TRANSENDO
THELIAL MIGRATION

Leukocytes cells are exploited by tumour cells for
extravasation [61]

PYRIMIDINE METABOLISM Edwards et al. [62] have extensively studied hu-
man skin cutaneous melanoma (SKCM) and found
pyrimidine metabolism as a major pathway in its
progression.

MAPK SIGNALING PATHWAY The role of mitogen-activated protein kinase
(MAPK) pathways in cancer is studied in [63].
Changes in MAPK pathways can mainly affect
Ras and B-Raf in extracellular signal-regulated
kinase pathway.

FOCAL ADHESION Focal adhesion kinase (FAK) plays an important
role in tumor progression and metastasis because
it is in charge of cancer cell signalling, cell pro-
liferation, cell survival and cell migration [64].

NEUROACTIVE LIGAND
RECEPTOR INTERACTION

He et al. [65] studied the gene expression in
prostate cancer and found the neuroactive ligand-
receptor interaction as one of the enriched path-
ways.

created to show common biomarker genes among different
types of cancer, that can reveal relationships between cancer
types, e.g., breast and lung, as previously noted. Additionally,
pathway enrichment analysis on our data identified the most
important KEGG pathways, with some of them known to
have a role in cancer formation and progression. Finally,
differentially expressed genes were computed and compared
with the selected genes to identify a new set of genes that
are believed to act as mediators. The suggested pipeline for
subgrouping cancer represents a novel contribution towards
analysing transcriptomic cancer tissue data and aiding the
development of sophisticated machine learning methods for
big, complex and noisy data. In future work, clinical aspects
of each subgroup can be taken into consideration by including
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them as relevant features, using them as prediction outcomes
or validating biomarkers against them (e.g., use of survival
data for validation). The desired outcome will be to enhance
accurate cancer diagnosis, while also paving the way for
evaluating therapeutic interventions.
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