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Abstract— Alzheimer disease (AD) is the most common cause 

of neurodegenerative disorder in the elderly individuals. To 

support the biomarker research on Alzheimer’s Disease 

progression, this study describes a bioinformatics pipeline for 

the evaluation of the mutations impact on the tertiary 

structure of AD causative genes.  
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I.  INTRODUCTION 

Proteins are large, complex biomolecules made up of 
amino acids. Proteins play a significant role in almost all 
biological processes. The functional properties of proteins 
rely upon their three-dimensional structures. The three-
dimensional structure arises because the polypeptide chains 
fold to produce (starting from linear sequences) compact and 
independent structural regions with specific structures. 
Predicting the three-dimensional structure of proteins by 
their amino acid sequence contributes to understanding their 
biological function. Prediction is not always possible: despite 
the remarkable efforts of recent years, the problem of folding 
remains one of the major problems in molecular biology. In 
addition, proteins that do not get the right configuration can 
bind abnormally to other biomolecules, as well as form 
aggregates that are highly toxic to the body [1]. Aggregates 
are organized into fibrillar structures, a common feature of 
many neurodegenerative diseases [2]. 

Alzheimer's Disease (AD), characterised as a protein 
misfolding disease, is the most common progressive form of 
dementia [3]. Typical pathological findings are misfolded 
and aggregated amyloid-β (Aβ) peptides and intracellular 
neurofibrillary tangles of tau protein. The most well-known 
predisposing genetic factor for the disease is the presence of 
the e4 allele of apolipoprotein E (ApoE) [4]. In the e4 allele 
(frequency 13.7%), the codon 112 has been replaced by 
arginine. However, the frequency of the e4 allele increases 
dramatically to ~ 40% in patients with AD. This mutation is 
associated with a change in the tertiary structure of the 
protein and the accumulation of β-amyloid in neurons, as 
well as with the induction of inflammatory responses, while 
it is the most prone isoform to proteolysis. In this context, 
changes in the tertiary structure of proteins, which are 
components of major signaling pathways of AD, could 
justify the genetic background of this heterogeneous 
disorder. 

In recent years, the correlation of the different tertiary 
structures of the isoforms of the ApoE gene with the 
pathogenesis of AD has been studied worldwide [5, 6]. In 
particular, a study published by the Paralvrez-Marin group in 
Sweden proposed a computational model of the abnormal 
interaction of the β-amyloid peptide with the e4 isoform of 
ApoE, due to the incorrect tertiary structure of the second 
[7]. However, apart from ApoE-related studies, to date, 
changes in the tertiary form of proteins due to gene 
mutations have not yet been investigated in AD. Prior to the 
discovery of mutations in genes associated with disease 
onset, no molecular signaling pathways were implicated. 
Recent genetic studies have identified many candidate genes 
that are associated with an inherited form of AD. Even if 
mutations in these genes account for a small proportion of 
Familial AD (FAD), knowledge of these genes and 
correlated biochemical cascades will provide several 
potential targets for treatment of AD and aging-related 
disorders. Also, the different pathogenetic mechanisms of the 
disease involve a combination of genetic factors (with 
different severity for the disease from person to person), 
indicating that it is essentially a set of disorders with 
common characteristics rather than a distinct disease. 

The present research paper aims to contribute to the 
reduction of the research gap created by the study of the 
tertiary structure, to understand the pathogenesis of the 
disease. In recent years, research interest has focused on 
identifying all the genetic sites associated with the disease 
and the different alleles of these genes using high-resolution 
technologies. In contrast, there is the tertiary form of these 
mutant proteins, which has not yet been studied in depth. In 
addition, some of the AD-related proteins have not yet had 
their crystal structure determined.  

Approaches that allow the prediction of three-
dimensional structures of proteins through computers are 
relatively new in the medical sciences [8], but their 
contribution is increasingly recognized as a tool for 
characterizing changes in the structure of proteins and 
detecting rare molecular events. These principles make it 
easier for us to understand how the protein structure is 
created, to identify common structural issues, to relate 
structure and function, but also to see the fundamental 
relationships between different proteins. Deciphering the 
mechanisms of the loss of the tertiary structure of a protein is 
essential for understanding the pathogenesis of diseases, such 
as AD and essential for explaining neuronal damage during 
aging. 
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This pipeline is described by four steps: (a) the 
evaluation of the online prediction tools and the selection of 
the most suitable for AD protein structures, (b) the prediction 
of the mutated structures, (c) the AI/ML classification of the 
tertiary structures into discrete groups and (d) the evaluation 
of the pathogenicity of each group to gain evidence for the 
impact of the mutations and to suggest a characterization for 
the mutations with unclear etiology. This is an on-going 
research and thus preliminary results on Presenilin one will 
be presented here. 

II. METHODS 

The first step towards the implementation of the pipeline is 

to collect data from biological databases, to evaluate the 

existing data and finally to apply machine learning 

approaches and classify proteins into groups with similar 

characteristics. 

A. Data Consolidation 

Here some of the most AD pathogenic mutated alleles 

will be studied. As many of these mutations affect protein 

stability, modeled protein structures for the mutant proteins 

will be compared with the native protein to evaluate stability 

changes. The genetic loci that will be analysed further 

through protein 3D structure include APP (Amyloid 

precursor protein), PSEN1 (Presenilin one), PSEN2 

(Presenilin two), CLU (Clusterin), CR1 (Complement 

receptor 1), PICALM (Phosphatidylinositol binding clathrin 

assembly protein), BIN1 (Myc box- dependent- interacting 

protein 1), ABCA7 (ATP binding cassette transporter 7), 

MS4A (Membrane- spanning 4- domains, subfamily A), 

EPHA1 (Ephrin type-A receptor 1), CD33 (CD33 antigen), 

CD2AP (CD2 associated protein), SORL1 (Sortilin-related 

receptor 1), ΤΡΕΜ2 (Triggering receptor expressed on 

myeloid cells 2) [9]. These genes are linked to 

inflammation, oxidative stress, vascular regulation, immune 

system function, and the function of specific proteases.  

Successful mapping of these genes and their association 

with the onset of the disease has led to the formulation of 

the amyloid hypothesis [10]. This hypothesis sets as the 

main pathogenetic mechanism the increased production of β 

amyloid peptide fragments. Nevertheless, there are cases 

where the onset of symptoms occurs at a much younger age. 

In a unique clinical case so far, the onset of the disease 

occurred in the mid-forties and in some people from the age 

of thirty. Members of this family had a mutation in the 

PSEN1 gene (Presenilin 1 E280A) [11]. The mutations 

related to the proteins were identified through literature and 

used for the next steps of this pipeline. More particular, so 

far 69 mutations were identified for APP, 112 for MART, 

326 for PSEN1, 68 for PSEN2, and 68 for TREM2.  

B. Evaluation of Protein Structures 

Since the three-dimensional shape of most of the related 

proteins is not determined through experimental 

methodologies, the most established servers were evaluated 

for predicting the mutated structures and estimate the impact 

of the mutations to the 3-dimensional structure. A list of the 

selected methodologies is presented on the Table I below:  

TABLE I.  LIST OF SELECTED METHODOLOGIES 

Methodology Description How was used 

Uniprot [12] A comprehensive resource 
for protein sequence and 

annotation data 

To understand the 
protein function, and 

the most related protein 

structures 

PolyPhen-2 

[13] 

A tool which predicts 

possible impact of an 

amino acid substitution on 
the structure and function 

To understand how 

mutations affect the 

structure and function 
of the protein 

iTASSER 

[14] 

A hierarchical approach to 

protein structure prediction 

and structure-based 
function annotation 

To predict the mutated 

and unmutated 3D 

protein structures 

PDBeFold 

[15] 

An interactive service that 

allows you to identify 
structures that are similar 

to that of your reference 

protein 

To compare the 

mutated and unmutated 
structures on residues 

level 

CATH / 
Gene3D [16] 

A protein family 
classification methodology 

To identify if there is 
any relationship 

between mutations 

impact and protein 
families 

 

The methodologies are currently used based on the order 

of the table, to determine the protein structures and 

understand in detail the impact of the mutations to the 

proteins. Furthermore, STRING [17] server is used to 

analyse protein-protein association networks and assess any 

change that might occur on the mutated protein networks 

(Figures 1&2). 

C. Clustering of protein structures 

To analyze further the mutated structures, an established 

methodology from the field of 3D object recognition was 

applied [18]. The combination of the above local descriptors 

was applied to the 3D structures to extract the appropriate 

features for the comparison. 

 
Figure 1. Example of APP network in STRING network analysis.  
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In order to evaluate the accuracy of clustering using the 

3D descriptors, a first round of experiments was conducted, 

using an annotated dataset. This dataset included every 

mutated structure while the label of each structure was 

aligned with the pathogenetic impact of each mutation 

according to literature data.   

 

 
Figure 2. Structural Analysis of the protein. Each protein is mapped to the 

experimental determined structures (one or more) included in PDB(e).   

 

 
Figure 3. Example of PolyPhen-2 output for the A673V mutation of the 

APP protein. Percentage of prediction is taken into consideration for the 
annotation of the clustering output. 

 

The k-medoids, Agglomerative Hierarchical clustering 

and Density-based spatial clustering of applications with 

noise (DBSCAN) methods were used to cluster the data 

using the extracted descriptors [19]. After extracting 

descriptors from each pair of aligned proteins, the root-

mean-square distances (RMSD) between each pair of 

descriptors is computed, forming a square distance matrix.   

 

In this computational analysis work, preliminary results 

of our study on PSEN1 mutations are presented and are 

compared to available clinical data for PSEN1 variants 

known to cause AD (Figures 3&4). To the best of our 

knowledge, this is the first study of its kind investigating 

performing comparative and ab initio prediction of protein 

structure for mutated forms of PSEN1. The experimental 

results verify that the use of 3D descriptors can be 

effectively applied to distinguish structural differences of 

proteins based on the pathogenic categories of the 

mutations. 

 

 

 
Figure 4. Results of hierarchical clustering are presented for the PSEN1 

protein based on the 3DCS and the RSD descriptors type that was applied 

to each case. 

 

The same process will be repeated for all the other 

proteins related to the AD progression described in the Data 

Consolidation section. However, due to the limitations in 

the prediction time of the online servers, the proof of 

concept of the PSEN1 is presented here.  

III. CONCLUSION 

It is known that there is no cure for AD to date. The 

collective failure of recent clinical trials in the treatment of 

AD suggests the need for a fuller understanding of the 

complex biological processes underlying this disease to 

develop effective, targeted therapeutic approaches. To date, 

several genetic sites have been identified that are involved 

in the onset or evolution of AD. Also, AD, like other 

neurodegenerative diseases, seems to be a biological 

phenomenon distinct from the phenomenon of normal aging 

and not an accelerated and pathological version of it. These 
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data indicate the multiplicity of etiological factors that 

contribute to the occurrence of AD. 

The therapeutic targeting of protein folding has created 

unique challenges for the discovery and development of 

new drugs. To achieve this, we must first understand the 

dynamic nature of the protein species involved and discover 

the structure and folding of each protein (formation of 

monomers, oligomers or insoluble aggregates) as well as 

whether this leads to cell toxicity. To date, our lack of 

understanding of how proteins interact with other cell 

proteins and the lack of well-characterized biomarkers that 

can be used in clinical trials is another bet for the research 

community. 

In the present study, a comprehensive methodology for 

the analysis of the impact of the AD related proteins is 

presented. Based on the approach, a combination of well-

established online tools can support the prediction of 3D 

protein structures that have not been determined 

experimentally yet.  Furthermore, the use of Poly-phen2 and 

CATH can support the identification of evidence of the 

impact of mutations to the protein structure. Finally, a 

combination of bioinformatic and object recognition 

clustering methodology is applied to group the tertiary 

structures. The annotation of the groups based on the 

pathogenic characterization of the mutations along with the 

networks produced by STRING server can reveal evidence 

on how each mutation affects the protein network.  

As mentioned in Section II, the prediction process 

through online servers consumes significant time and thus a 

proof of concept is presented here. Since this is an on-going 

work, the complete analysis will be available as soon as the 

models are obtained. 
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