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Abstract—In the continuing research to implement a plurality
of self-wiring synapses comprised of Field Programmable Gate
Arrays (FPGAs) on a Complementary Metal Oxide Semiconduc-
tor (CMOS) system to accommodate Artificial Intelligence (AI)
on a microprocessor, we delve into how a system can emulate
not just a self-wiring CMOS system, but also how it can
emulate brain growth at the connectome level. The enigma
of contemporary advancements in AI and chip manufacturing
diverging from bio-inspired systems is fascinating, especially
given that AI and microprocessor engineers readily acknowl-
edge the superior capabilities of biological brains. This paper
introduces a bio-inspired device made of steel, plastic, and
silica, which autonomously rewires itself, evolving and enhancing
its intelligence without human intervention. The research will
delve into the intricacies of the FPGA prototype’s functionality,
shedding light on both its technical aspects and the broader social
and technological implications associated with the development
of this neuromorphic chip. Next, we introduce the theoretical
ability for the CMOS to grow its connectivity to FPGAs as
does a human baby. Herein, we introduce the uniqueness of
applying the logistical growth function to the curve fitting of
the multidimensional measures of brain growth, on a CMOS
system.

Index Terms—Bio-Inspired; Neuromorphic; AI.

I. INTRODUCTION

The motivation for this research effort is that, despite signifi-
cant advances in neuromorphic systems, the AI systems based
on them are still far from their biological counterparts [1].
Such gaps exist because, while the world lauds the progress
of ChatGPT and other high-end AI systems, the engineers are
reticent to reveal that these systems consume approximately
200 terawatt hours of energy per year [2], shown in Fig. 1a.
The issue is that there is no financial impetus for chipmakers to
stop reaping the financial benefits of this explosion in proces-
sor requirements and take on high-risk bio-inspired chips. We
will illustrate how state-of-the-art systems such as TrueNorth,
Loihi, SpiNNaker, BrainScaleS, and NeuronFlow [3] have
been unable to synthesize biological neurons onto a solid-
state-device because: i) their neuromorphic hardware systems
are based on existing CMOS technology, and CMOS devices
can only numerically simulate biological neural networks [1],
and ii) neuroscientists do not understand exactly how neurons
function. Specifically, we do not understand how neurogenesis,
differentiation, and synaptogenesis work [4]. Yes, we know
that: i) neurons send and receive neurotransmitters, chemicals
that carry information between brain cells [5], and ii) depend-
ing on where a neuron is located, it can perform the job of
a sensory neuron, a motor neuron, or an interneuron, so there

is no single process that explicitly synchronizes the work of
all neurons [4]. We can show this flaw by considering the
following abridged neurological developmental scenario.
EXAMPLE 1 First Event: In Fig. 1b, the child is playing with
his red ball. He releases it and notices that the ball dropped
downwards onto the floor. We represent this by simplifying the
synaptic-dendrite connections and its neuron with a green dot.
We note that, for argument’s sake, he also receives 100,000
sensory items with the first six being: i) he is on a soft carpet,
ii) in the living room, iii) Mom is happy, vi) outside the sky is
bright blue, v) birds are singing, and vi) it is nice and warm.
Similarly, the last three of the 100,000 sensory item neurons
are labeled 99,998 99,999 and 100,000. Second Event: Two
weeks pass. In Fig. 1c, Mom and Dad visit a friend while the
child sleeps. At the end of the evening, while Dad carries him
outside and fastens him into the car seat, the child awakens
and again drops his red ball. He notices that, just like two
weeks ago, it dropped downwards again onto the floor of the
car. It did not go up. Again, his brain receives 100,000 sensory
pulses - the first six being: i) he’s in a car, ii) Dad is talking
on the phone, iii) Mom is not happy. iv) it is dark outside,
v) it is raining and vi) it is cold. As before, we label the
last three of the 100,000 sensory item neurons, 99,998 99,999
and 100,000. Note that the orange arrow in Fig. 2b represents
synaptic connectivity between the First Event and the Second
Event. This illustrates synaptogenesis, which is the formation
of synapses between neurons in the nervous system.

A. Synaptogenesis

The phenomena of synaptogenesis have been difficult for
neuroscientists to study. Consider what happens when synap-
togenesis fails: Fig. 3a represents that moment of time right be-
fore the orange arrow correctly connects synapses together. We
represent this moment and illustrate failed synaptogenesis by
randomly connecting First Event neurons with Second Event

(a) (b) (c)

Fig. 1. (a) Increase in computing power demands petaFLOPS [6].
(b) Baby lets go of his red ball. (c) Baby lets go of his red ball again.
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synapses. Here, the blue synaptic connection has incorrectly
connected the Living Room to the Car. If one believed this was
correct and asked the child; "Since your ball dropped when you
were in the Living Room it obviously will not drop when you’re
in the Car, it may go to the ceiling, right?" The child would
think that was absurd. Similarly, this paper shows why present-
day AI systems on both von Neuman and Neuromorphic chips
are NOT autonomous. In other words, both systems still need
humans to train the AI to learn. For example, Living Rooms
and Cars have nothing to do with the ball dropping. It is
important to remember that humans, coding the AI, would
have to train the AI to learn that the purple line in Fig. 2a
connecting Carpet with Mom Not Happy is wrong. Meaning,
we would have to train our AI that Birds Singing with Sound
of Rain and 100,000 with 99,998 have nothing to do with the
ball dropping.
EXAMPLE 2. Consider a video on YouTube called "Donkeys
laughing at a Dog that Electrocutes Himself ". Fig. 4b shows
that when the dog goes up to the donkeys, his nose touches
an electric fence, and he is shocked. Intuitively, we know that
the next time the dog passes the fence, he will not think: "It’s
dark now, or there’s no donkeys now, or it’s raining, so now
I can touch the fence!" As absurd as this sounds, we humans
have to code even the best AI systems to ignore millions of
these unrelated states and synapses.

B. IBM’s bump

When TrueNorth engineers and neuroscientists from Inter-
national Business Machines Corporation (IBM) studied how
to emulate synaptogenesis, as illustrated in Fig. 2b, they
assumed that the voltage inside the orange arrow was that
of a typical sine wave, the fundamental waveform they’d
seen many times in electroencephalograms (EEGs) and elec-
trocardiograms (EKGs), from which other waveforms such
as Gaussian curves may be generated. Here, they developed
a modular approach to map bio-inspired excitatory and in-
hibitory conductance-based neural elements onto hardware [7]
as illustrated in Fig. 3 where we see how our orange arrow
connects two neurons. Here, an incoming spike signal arrives
from the red horizontal axons, and is collected at the end of
the orange arrow by the red vertical dendrites.

However, while Defense Advanced Research Projects
Agency (DARPA) and IBM celebrated TrueNorth’s ability to
run at a very low rate of power, these Axon-Hillock neurons
inside the orange arrow were not connecting correctly [8].
Schmidt & Avitabile found that TrueNorth’s sinusoidal wave’s
orange arrow was randomly connecting, as illustrated in Fig.

(a) (b)

Fig. 2. (a) FAILED Synaptogenesis. Neurons randomly connect with
Second Event synapses. (b) IBM’s assumed signal over the neuron.

Fig. 3. Assumed signal onto spiking neuromorphic TrueNorth
hardware [11].

2a, to any neuron in the fully connected layer [9]. This explains
why IBM’s engineers were either: i) using a huge number of
cores as splitters to implement this fanout as shown in Fig. 4a
or ii) adding additional hardware resources to rearrange the
3D convolutional layers [10].

C. Houston, IBM Has a Problem

The authors were intrigued, and went back to Fig. 1 and
asked themselves: "How does the neuronal path of the red
ball neuron, illustrated by the orange arrow, know that it is
going to disregard: carpet, living room, Mom’s mood, etc. and
only connect the correct dendrites?" Surely the answer must
lie somewhere in the information on that neuron’s sinusoidal
wave, that guides it to the correct dendrite.

Going back to 1934, the studies of Hodgkin & Huxley
(H&H) seemed like a great place to start reexamining the con-
ceptual framework to understand neuromorphic spike propaga-
tion in axons and presynaptic inhibition on spike propagation.
Right from the beginning, when H&H clamped an oscilloscope
onto a giant squid’s neurons, which are about 100 times larger
than a human’s neuron since they have no skull [13]–[15],
the H&H research proved that dendrites are equipped with
not one, but many voltages from the Ca2+ dendritic and
axosomatic channels [12]. These channels proved to give rise
to local spikes in dendrites and dendritic spines, as illustrated
by Larkum et al, in Fig. 4c [13], where they examined
the timing and cause of a burst from a single Na+ action
potential. Here, H&H observed a biocytin-filled L5 neocortical
pyramidal neuron of a rat brain using four electrodes, visible
as silhouettes in Fig. 4c [16].

In 1940, Curtis & Cole [15] continued H&H’s experiments

(a) (b) (c)

Fig. 4. (a) Splitters on TrueNorth for increasing a neuron’s fan-out
[9]. (b) Shocked. (c) Neocortical pyramidal neuron of rat brain [12].
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(a) (b)

Fig. 5. (a) Membrane potentials of the squid axon from a capillary
electrode. (b) hypopolarization.

Fig. 6. Comparison of the architecture of the prototype and neuroC-
MOS/FPGA.

of measuring the voltage across a neuron by inserting a small
electrode through the membrane of a giant squid’s axon,
and then into the squid’s axoplasm. They found that this
yielded a relatively small amount of injury to the axon. Then,
they measured the potential between the inside and outside
electrode, yielding the result shown in Fig. 5a. It became
clear that during the three phases of the action potential
(depolarization, overshot, repolarization) we do indeed witness
a sinusoidal wave. However, as shown in Fig. 5b, there is a
short ’hidden state’ [17] of hypopolarization, which precedes
the depolarization, that forms a very small bump. This, in
a sense, piggy-backs on the trailing edge of the sinusoidal-
biological wave, as indicated by the red arrows in Fig. 5a &
b. Additionally, we note that in Fig. 7a, this addition of the
same small bump 1 onto the sinusoidal wave on our bio-
inspired chip 2 , corrects the sinusoidal wave in Fig. 2b, and
was most likely overlooked by IBM’s engineers.
PRELIMINARIES Fig. 6 illustrates how our prototype on the
left side, called NSF FuSe Prototype, is being converted into
our neuroCMOS/FPGA architecture on the right. The proto-
type’s Grey State FPGAs, highlighted by the pink box, are
replaced by section A in the neuroCMOS/FPGA architecture
that is comprised of 32-memristors. This means the chip can
autonomously re-wire neurons (FPGAs) between 32 states,
whereas our prototype only had four states. Additionally, the
neuroCMOS/FPGA architecture is comprised of neuromorphic
controllers based off the Linearized Hodgkin-Huxley circuits
designed in 1934 [18]. Note that the FPGAs highlighted by
the blue box, execute the trivial function of only allowing an
input from a sensor to move to the next available memristor,

(a) (b)

Fig. 7. (a) 2nd Order Diff Eq conversion. (b) 3D graphic shows the
path the first vertex takes through the brain from 1 month (pentagon)
to 24 months(hexagon)

and then order it in an n x n sequence in the memristor itself,
located in A . The realization of this small bump, shown as 1
in Fig. 7a, forms the basis for our hypothesis for this research
effort. Taking the 2nd order Differential Equation 3 of both
1 and 2 we split the combined area under the curve into

grey area 4 that constitutes the power necessary to project the
neuron’s signal 6 across the orange arrow to its destination
7 , while the orange area 5 is what we believe, carries the

neuron’s ROAD MAP that guides it to its destination 7 .
THE ISSUE FOR THIS PAPER is that we do not know:
i) how many FPGAs we will need to sort and order the
data in each memristor and ii) how we need to design the
neuroCMOS/FPGA architecture to expand its knowledge and
neuronal connection in a way that will mimic how brains in
nature grow and expand. Additionally, to complicate the issue,
the ’FPGA 8 & 9 ’ in the neuroCMOS/FPGA architecture
is not a square unit but rather a series of FPGA gates. These
gates do both the matrix mathematics and the synaptogenesis
of rewiring the connectors in the neuroCMOS/FPGA chip.

II. EXPERIMENTSA. Hypothesis

Our hypothesis is that the optimal means to design the
autonomous addition of synapses (FPGAs) is to leverage our
research measuring how the human brain expands and grows
connectomes in the infantile brain.

B. Mathematically Defining Connectome Growth

To code how our neuroCMOS/FPGA will autonomously
expand, we first need to mathematically define connectome
growth in the infantile brain. To accomplish this, we continue
our research from our last article in the BrainInfo2023 [19].
We bring in the MatLab poly5 fittings for the X, Y and Z
longitudinal values of the first vertex over 1, 3, 6, 9, 12, 18
and 24 months. Using the fitted curves for the coordinates
over time yields a very nice path as seen in the Fig. 7b.
We use these functions to build the unit tangent vector as
the directional vector for the directional derivative. Usually,
the directional derivative is built with the maximized gradient
on the surface, but we do not have a surface with the data
from the baby connectome data. The best we can build is the
unit tangent vector which we substitute in for the maximized
gradient. The functions for the smoothed curves of X from
"poly5" are fifth degree polynomials with coefficients: p1 =
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1.742e-05, p2 = -0.001163, p3 = 0.02857, p4 = -0.3194, p5 =
1.702, p6 = 141.5. This yields a function for the x variable of
the first vertex position in eq.(1).

X(t) = p1 ∗ t5 + p2 ∗ t4 + p3 ∗ t3 + p4 ∗ t2 + p5 ∗ t+ p6

X(t) = 1.742e− 05 ∗ t5 +−0.001163 ∗ t4 + 0.02857 ∗ t3

+− 0.3194 ∗ t2 + 1.702 ∗ t+ 141.
(1)

The functions for the smoothed curves of Y from "poly5"
are fifth degrees polynomials with the following coefficients:
p1 = -9.346e-07, p2 = 7.466e-05, p3 = -0.0008573, p4 = -
0.05254, p5 = 1.396, p6 = 118.2.

Next, we used the unit tangent to find the directional
derivative over 1 month to 24 months in one tenth of a
month interval. This directional derivative is a better repre-
sentation of the growth rate than the previously presented
derivatives in each of the axis (X, Y, Z). With the first data
collection at one month, the first growth rate we observe is
approximately 3.46 mm. The growth rate then spikes back
up to 0.482478 mm/month at 24 months of age. This same
analysis can be performed on any of the 163,842 vertices
tracked in the diffusion tensor magnetic resonance imaging
(DT/MRI). This directional derivative could then be curve
fitted to provide coefficients of growth to represent a particular
vertex for a particular patient with specific traits. Using the
baby connectome data from the human connectome project
we have devised a method to provide coefficients of growth.
These coefficients could then be used to find correlation
between growth and behavioral traits. There is most likely
some correlation between the coefficients and DNA. Of course,
we will need long term DT/MRI data from thousands of
patients over the first two years of life to obtain the big data
necessary for machine learning.

C. Logistical Growth Function Solved for ρ

From differential equations [20] we have the logistical
growth model. Let us first review exponential growth. The rate
of change of a population’s growth is dependent on the current
population. Here y is the population and dy/dt is the rate of
population change over time as seen in (2). Replacing the f(y)
with r representing the rate of growth that is proportional to
the population, it yields (3).

∂y

∂t
= f(y) (2)

∂y

∂t
= ry (3)

Note that for infantile brain growth we will only examine
positive r, rate of growth. Divide both sides by y and multiple
both sides by ∂t yields (4), then after integrating both sides
we get (5) to which we take the exponential of both sides and
yield (6).

∂y

y
=

r

∂t
(4)

ln(y) = rt+ c
(5)

y = ert+c = ecert

(6)

Going to the logistic growth, we replace the r with a
function of y, h(y) = r. We need to choose h such that when y
is either small or large, h(y) > 0 it reflects the start of growth,

and limits factors of starvation. Here, h(y) = (r−ay) satisfies
these conditions. Applying applicable algebra in (7 & 8).

h(y) = r(1− ay

r
) (7) ∂y

∂t
= r(1− ay

r
)y (8)

We let k = a
r where r is intrinsic growth rate and K

becomes the equilibrium for a sustained population greater
than zero. Note that we will not attain K as we know the
brain continues to grow after two years of age as shown in
(9), and with zero growth in (10).

∂y

∂t
= r(1− y

K
)y (9) 0 = r(1− y

K
)y (10)

This is satisfied when either y = 0 or when (1 − y
K ) is

zero, hence y = K. We know that at birth, the brain has some
volume of neurons, therefore we will not consider y = 0 or
a population of zero. Dividing both side by (1 − y

K )y and
multiplying both sides by ∂t:

∂y

(1− y
K )y

= r∂t (11)

Perform Partial Fractions
1

(1− y
K )y

=
A

y
+

B

(1− y
K )

(12)

1

(1− y
K )y

=
A

y
∗ (

1− y
k

1− y
k

) +
B

(1− y
K )

∗ y

y

A ∗ (1− y

k
) +B ∗ y = 1

letting y
k = 1 or y = k we get B ∗ y = 1, and then

dividing by y and substituting k for y we get B = 1
k and

then substituting back into (13 & 14),

A∗(1− y

k
)+

y

k
= 1 (13) A =

(1− y
k )

(1− y
k )

= 1 (14)

It yields (15) and now we integrate both sides by breaking
the left side apart as seen in (16)

(
1

y
+

1
k

(1− y
k )

)∂y = r∂t (15)

∫
1

y
∂y = ln|y| (16)

for (17), then using a u substitution we get (18).

int
1
k

(1− y
k )

∂y (17) ∂u = −1

k
∂y (18)

by the chain rule, with g(x) = uf(u) = 1
u∫

f(g(x))g′(x) =

∫
f(u)∂u = ln|u| = ln|1− y

K
|

therefore ∫
(
1

y
+

1
k

(1− y
k )

)∂y =

∫
r∂t (19)

becomes
ln|y| − ln|1− y

K
| = rt+ c (20)
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otherwise known as the logistical growth model.
Note that the neuron growth does not depend on the

number of neurons as population growth does. Rather, neuron
growth depends on the number of radial glial cells which are
dependent on the number of neuroepithelial cells [21]. The
number of these different cell types are unavailable at this time.
Thus, our challenge is to build a logistical brain growth model
that shows the dependencies on the different cell populations
and to do this we move from the logistical growth function to
the Reaction Diffusion Equation.

From the Mathematical Biology text [22] and Konukoglu et
al. [23] we have:

∂u

∂t
= ∇ · (D∇u) + ρu(1− u) (21)

with D∇u · n⃗ρΩ = 0 Where u being density, D is the
Diffusion tensor, ρ is the proliferation rate, Ω the brain domain,
and ρΩ the brain boundaries [23] "The traveling wave solution
of Equation 21 has the form

u(x, t) = u(x− vt) = u(E) (22)

where E is the moving frame and v is the asymptotic speed
of this frame, the wavefront. When this solution is plugged
into the reaction-diffusion equation 21 we obtain the ordinary
differential equation" known as the Eikonal Equation.

n′Dn
∂2u

∂E2
+ v

∂u

∂E
+ ρu(1− u) = 0 (23)

The Eikonal equation has been used to describe brain tumor
growth [23]. Konukglu et al. discerned the growth rate differ-
ence of brain tumors in white matter vs. grey matter. Since
DT-MRI do not provide density Konukglu et al. switched
their parameter to the moving front of the tumor cell. With
the data from the Baby Connectome Project (BCP), we have
polygons (triangles) of area. We also have no diffusion data.
And we see that the area of the triangles are increasing. We
make the presumption that there is no diffusion. Eliminating
the diffusion term from the reaction diffusion equation yields
the logistical growth function (24).

∂A

∂t
= −ρA(1− A

K
) (24)

The same result can be obtained by using the Fisher-
Kolmogoroff equation from [24] [22] and setting the diffusion
term to zero. With K(capacity) being the max surface area
attained. For this work, we are only looking at the growth
from 1 month to two years. The max surface area will be the
surface area at two years of age. We attain ∂A

∂t by curve fitting
the surface area over time and taking the derivative. Then we
can attain ρ, the growth function for the area of the entity
being investigated. Dividing both sides by A (1− A

K )

∂A
∂t

A(1− A
K )

= −ρ (25) ρ = −
∂A
∂t

A(1− A
K )

(26)

Thus, we have produced a differential equation ρ(t) equal
to the first derivative of brain surface area over time divided

by a function of surface area over time. Several neuroscientists
have noted that different lobes and white matter pathways
develop at different times and rates. With this methodology
we can construct the logistical growth functions, ρi(t), to
reflect those differences by constructing a sum of ρi(t) where
t is all the triangles of a given lobe. Brain growth is re-
flected by several measures, those being increasing surface
area, increasing volume and vertex movement through the
skull which is also growing. The grey matter has 14 layers
which comprise the grey matter lobes. The 42 white matter
pathways grow underneath the gray matter layers. For each
of these measures, we define the characteristic to describe
the individual lobe/pathway to be time dependent, hence the
characteristics to be solved for are:

Ci(t) = ρi(t),∀i = lobes, pathways (27)

where i represents the brain lobe/pathway under consideration.

D. Logistical Growth Function Applied to Brain Surface Area
Growth

The polygons are actually triangles. We found the polygons
are stable over time, and they have the same vertices at the
seven times utilized in this work. The numbered polygons,
327,680 of them, have the same vertices, in the same order,
for all seven times, 1, 3, 6, 9, 12, 18 and 24 months of age.
Since the brain is growing, we expect the area of the polygons
will grow over time. We use the three-dimensional distance
formula to obtain the length of each of the three sides of the
triangle in (28). We then use Heron’s Formula [25] (28).

l =
√
(X1−X2)2 + (Y 1− Y 2)2 + (Z1− Z2)2 (28)

Rather than calculating the base and the height of the
triangle, Heron’s formula is simplistic in its three subtractions,
three multiplications and one square root in (29).

area =
√
s ∗ (s− a) ∗ (s− b) ∗ (s− c) (29)

We examined the first polygon in the Visualization Toolkit
(VTK) files. It consists of vertices 1, 40965, and 40963. Over
time we found the areas were 0.0312, 0.0426, 0.0555, 0.0606,
0.0648, 0.0665, 0.0730. And yes, the area of the polygon
is increasing over time. We apply curve fitting methodology
for polygon 1 area. Polygon 1 consists of vertices 1, 40965,
and 40963. These positions are subsequently used for the
monthly area calculations. The curve fitting of the Area over
time produced a piecewise solution of six equations. The
first equation is used from one month to three months. The
second equation is used from three months to six months
and so forth. Third equation, six to nine months, forth, nine
to twelve months, fifth, twelve to eighteen months, sixth,
eighteen to twenty-four months. These equations were used
to plot the line in Fig. 8 where each equation is of the form
a ∗ t3 + b ∗ t2 + c ∗ t + d yielding the coefficients for the
six equations for the resulting coefficients for the piece-wise
solution to the curve fitting of actual polygon 1 area at 1, 3,
6, 9, 12, 18, and 24 months, as seen in Table I.

15Copyright (c) IARIA, 2024.     ISBN:  978-1-68558-127-5

BRAININFO 2024 : The Ninth International Conference on Neuroscience and Cognitive Brain Information



TABLE I
COEFFICIENTS FOR THE SIX EQUATIONS

eq # a b c d months
1 -3.2754e-05 0 0.0052 0.0321 1-3
2 -1.9036e-05 -1.9653e-04 0.0048 0.0422 3-6
3 2.3455e-05 -3.6785e-04 0.0031 0.0544 6-9
4 3.3306e-06 -1.5676e-04 0.0016 0.0612 9-12
5 1.2741e-05 -1.2678e-04 7.0962e-04 0.0645 12-18
6 -5.6974e-06 1.0255e-04 5.6424e-04 0.0670 18-24

To build the six equations for area growth we start with the
first derivative yielding growth rate. Each equation is of the
form: a∗t2+b∗t+c yielding coefficients for the six equations
as shown in Table II.

TABLE II
FIRST DERIVATIVE YIELDING GROWTH RATE

eq # a b c months
1 3*-3.2754e-05 0 0.0052 1-3
2 3*-1.9036e-05 2*-1.9653e-04 0.0048 3-6
3 3*2.3455e-05 2*-3.6785e-04 0.0031 6-9
4 3*3.3306e-06 2*-1.5676e-04 0.0016 9-12
5 3*1.2741e-05 2*-1.2678e-04 7.0962e-04 12-18
6 3*-5.6974e-06 2*1.0255e-04 5.6424e-04 18=24

With the function for Area over time and the first derivative
for Area over time, we can now solve for ρ, the logistical
growth function of Area over time. Using the definition of ρ
from the previous section we have:

ρ = −
∂A
∂t

A(1− A
K )

(30)

where K is the area of the polygon at max growth in Fig.
8a.

(a) (b)

Fig. 8. (a) The difference between the actual areas (points) and fitted curve
for area and the calculated area from the fitted vertices over time. (b) The
Logistical growth function for the polygon 1 area of the brain from one month
to twenty-four months of age.

III. CONCLUSION & FUTURE WORK

Because our neuroCMOS/FPGA is in an "infantile" state,
we barely have to go beyond the infantile state for a human.
Here we have concluded that, with this statement in mind,
we can set K to a number greater than the area obtained at
two years of age, avoiding the divide by zero anomaly. We
currently set K to twice the polygon 1 area at two years of
age and plot this logistical growth function from one month
to twenty-four months as shown in Fig. 8b. Next, we model
the aforementioned onto a simulated software version of our
neuroCMOS/FPGA, that will show we can procure a chip that
rewires itself and grows like an infantile’s brain grows.
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