
Efficient Calculation and Simulation of Product Cost
Leveraging In-Memory Technology and

Coprocessors

Christian Schwarz, Christopher Schmidt, Michael Hopstock, Werner Sinzig, Hasso Plattner
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany
Email: {christian.schwarz, werner.sinzig, hasso.plattner}@hpi.de, {christopher.schmidt, michael.hopstock}@student.hpi.de

Abstract—Determination of product cost and resource consump-

tion during manufacturing, is a crucial scenario for manufac-

turing companies. While enterprises have the required data for

these calculations already, the computational complexity makes

it still hard to build interactive applications that can be used for

end-to-end simulation, from procurement to sales. Nevertheless,

these applications are required for collaborative product cost

simulations that support business experts to make fact-based

and data-driven decisions. Within this paper, we present the

generic calculation engine that can calculate product cost and

other resource based features of thousands of products within the

time-frame requirements for interactive applications efficiently.

The engine leverages the potential of today’s high-end in-memory

databases in combination with the computational power of

coprocessors. To solve the problem, we transfer the input drivers

and their interdependencies into a system of equations that

can be solved by either the coprocessor or a large scale multi-

processor system. For our evaluation, we use actual enterprise

data of a Fortune 200 company also providing the scenario.

We evaluate the approach based on this data, comparing our

enterprise application specific problem solution with standard

solution techniques of the same domain.

Keywords–in-memory database; enterprise coprocessing; busi-

ness data processing; product cost calculation.

I. INTRODUCTION

The knowledge about the costs of products and services
offered by a company is mandatory information to guarantee
the long-term success of a company. Therefore, the ability to
calculate product cost based on product and manufacturing
data is an integral part of enterprise systems. Cost drivers,
like material prices, labor cost, cost of machinery and others,
together with structural data, such as bill of material, and
process data, such as routing, influence the cost of a product.
Being able to determine the effects of changes of these cost
drivers presents an advantage for decision makers, as they can
make fact-based and data-driven decisions for the business
how to best react to these changes. Enterprise systems already
store the majority of the information required to calculate these
costs.

State-of-the-art enterprise systems use in-memory
databases to store and analyse huge amounts of data [1].
Those database systems are able to handle high volume
workloads, while still guaranteeing maximum performance
for database queries [2]. With the emerging trend of predictive
analytics and complex simulation models requiring more
business data, application logic is being transferred to the

database execution level to avoid expensive data transfer. In
addition, one can benefit from the available computational
resources of the database server, reducing requirements on
the client’s side. SAP’s HANA, one of the leading in-memory
database systems in the enterprise application market, for
example, offers a variety of tools to support developers with
algorithms for predictive analytics [3]. While these algorithms
benefit from the computational resources of the in-memory
database system, they differ in computational complexity from
transactional and analytical enterprise database operations.

The calculation of product cost fits into this category of
enterprise application logic. To calculate the cost of a product,
all relations can be expressed by a set of interdependant
equations. The system of equations is then populated with
data stored inside the database system and needs to be solved
numerically in order to determine the cost of every raw
material, semi-finished and finished good.

Within our research, we focused on calculating product
features, such as the costs of companies’ products, enabling
companies to run collaborative planning sessions, including
real-time simulation of changes to influential feature drivers.
While today’s product cost calculation systems focus on the
influence of changes on single products, our system aims to
provide end-to-end simulation capabilities. Therefore, we use
transactional enterprise data to build a matrix representation of
the relations between business entities. To solve the calculation
problem as fast as possible, we make extensive use of data
parallelization techniques and use coprocessors, such as Intel’s
Xeon Phi [4] and Nvidia’s 2nd Generation Maxwell graphic
processing units (GPUs) [5]. The use of these coprocessors is
beneficial in our scenario for two major reasons: performance-
price ratio and additional level of scalability.

These coprocessors offer computational resources for a
subset of enterprise problems for lower prices than CPUs. A
modern CPU (Intel Xeon E7-8890-v3 [6]) has a theoretical
performance peak at 558 GFLOPs for a price of $7,488, while
a current coporcessor (Nvida GeForce GTX Titan X[5]) offers
6,600 GFLOPs for $999. Even under the consideration that
coprocessors cannot be used for all operations a traditional
CPU can execute, the approximately 90 times lower price for
performance ratio makes the coprocessor a valid option to add
computational resources to the database node.

While the coprocessor calculates the product features, the
CPUs of the database server are available for other compu-
tational tasks, such as database transactions. This becomes

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-467-1

BUSTECH 2016 : The Sixth International Conference on Business Intelligence and Technology

even more important, as enterprise systems have to handle
the workload of many hundreds and thousands of users. All
results in this paper are based on a dataset we got from a
Fortune 200 company, manufacturing goods for the consumer
packaged goods market.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview of related work in the area of linear
equation system solving, followed by Section III presenting the
calculation logic of product cost in detail. Section IV describes
the insides of the implemented inversion algorithms and other
important parts of the prototype. These implementations are
evaluated in Section V. The paper concludes and gives an
outlook on future work in Section VI.

II. RELATED WORK

As the costs of a product can be expressed as a system of
linear equations, we will present related work in the area of
equation solving. The optimization of linear equation solving
is a well-established field of research. Linear equations are
known to be executable efficiently on GPUs, in either format
as sparse or dense matrices [7], [8], [9]. To solve both sides
of a linear equation system, matrices need to be inverted.
Ezzatti et al. [10] compared CPU only, GPU only and hybrid
implementations of matrix inversion, using an LU factoriza-
tion from LAPACK [11] and the Gauss-Jordan elimination
algorithm. Their investigation indicates that the Gauss-Jordan
elimination is a well-suited algorithm for parallel computing.
Additionally they show that hybrid implementations, exploiting
the underlying platform features can still outperform pure GPU
versions.

One issue arising with transferring computations to a co-
processor are the memory constraints. In comparison to today’s
available large main memory systems, the memory of copro-
cessors is still rather small. To reduce the memory required
during the inversion of matrices, DasGupta [12] proposes a
modified version of the Gauss-Jordan elimination calculating
the inverse within the original matrix space. Another possible
approach to solve this issue is to split the calculation into sub
matrices [13].

A different approach to solve linear equations in a general
form is to use linear solvers instead of an inversion and
matrix-vector multiplication. Krüger and Westermann [14]
have proposed a framework for implementing linear algebra
operators on GPU and used it to implement an efficient sparse
conjugate gradient solver. More work on linear solvers on GPU
includes Tomov et al. [15], who present solver implementations
on hybrid systems, which are GPU accelerated.

For our work, we focused on using the inverse calcula-
tion approach, as it is beneficial for our use case in two
aspects. Firstly, we only have to calculate the inverse of
the matrix once, while the calculation is executed multiple
times, either for different input parameters or different features.
This reduces the overall application runtime overhead of the
inverse calculation in comparison to the interactive simulation
process. Lastly, the inverse matrix can be used for fast search
of materials and cost center activities, as it condenses all
information for specific materials and cost center activities
either in its corresponding rows or columns. Thereby the
inverse matrix enables fast filtering on materials that is not
required by the product cost calculation directly, but it enables
an interactive navigation through the material database. The

inverted matrix can even be used to reduce the load on
the database management system, by providing an index-like
structure for the material hierarchy, at the cost of additional
memory requirements. The additional memory is also required
for the algorithms in any case, which is why it is not considered
to be a drawback.

III. PRODUCT COST CALCULATION

While we aim to calculate multiple product features, in-
cluding carbon dioxide, water requirements and energy usage,
which indicate the environmental impact of a product, we
started with the calculation of monetary features of a product
within the prototype based on the data obtained. Neverthe-
less, the calculation of product cost is a common scenario
in enterprises and therefore poses a relevant use case to
build a prototype on. Based on the data and complexity of
today’s products, this calculation is computational intensive.
We present a solution for the problem, using parallelizable
algorithms for modern hardware. All manufacturing and non-
manufacturing related expenses of a company determine the
costs of a product. The prototype enables a group of experts
to change cost drivers according to predictions and to evaluate
the influence on product cost instantly. Due to the immedi-
ate feedback, these planning sessions become interactive and
collaborative.

Within this section, we present the calculation process of
the prototype, the equations used for the calculation, and the
real dataset provided by our industry partner.

A. Multiphase Product Cost Calculation
To demonstrate the feasibility of using coprocessors to

solve enterprise equation systems, we implemented a prototype
focusing on manufacturing related product cost of a company.
The prototype is split into a lightweight user interface for result
visualization and a server application executing all calculations
for the requested production periods. We aim to enable the
user to calculate and modify product cost and single cost
components to support an interactive simulation scenario. The
logic executed in the server could be integrated at a later stage
into procedures for the database system. At the time of writing,
we left this open for future work.

We use the transactional data entered and stored in an
enterprise resource planning (ERP) system as a base for the
calculation of product cost. The data contains information
about raw material prices, operational expenses, product de-
sign, production process, foreign currency exchange rates, and
many more. These cost drivers are parts of the equation system.

The product cost calculation process is split into three
phases: virtual data model creation, data retrieval and homog-
enization, and cost calculation.

1) Virtual Data Model Creation: The virtual model is
created during the design phase of the application. It is required
to create a simplified view on the ERP data model to be
accessible for the product cost calculation. Within this phase,
we create non-materialized views that fit the needs of data
granularity, based on tables of an ERP system. These views are
a logical description that is populated during query execution
time, rather than having a materialized representation inside
the database.

A simplified version of these views used within the proto-
type is depicted in Figure 1. For ease of readability, text fields

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-467-1

BUSTECH 2016 : The Sixth International Conference on Business Intelligence and Technology

source_volume

target_material (material)
source_material (material)

BillOfMaterial

Material

lot_purchase_price
currency
unit_of_measure
lot_size

material
plant

cost_rate
currency
capacity_load

cost_center
activity

Expenses

price
currency
unit_of_measure
quantity

material
plant
cost_center
activity

Routing
17,304

327

30,838

34,578

Figure 1. Simplified Virtual Data Schema

and additional information are removed from the illustrated
model.

In the simulation prototype, the data is stored within a
database and retrieved from it.

a) Material: The Material view contains the data of
all materials. Information about lot purchase price and corre-
sponding currency, lot size and unit of measure is available in
the view.

b) Bill of Material: The Bill of Material (BOM) con-
tains the list of all raw materials, parts, intermediates, sub-
assemblies, commodities, semi-finished goods and finished
goods required to construct or repair a product. Therefore, it
stores the relational network between materials. Specifically,
the number of units of a source material that is required to
produce a lot of the target material is represented in the table.
Furthermore, the BOM can be seen as a directed graph, having
nodes representing materials and edges representing amounts
required to produce the material at the end of that edge.

c) Routing: Routing describes how many units of a spe-
cific cost center activity are required during the manufacturing
process of a specific material. In addition, the costs per unit
and additional meta-data are stored.

d) Expenses: The Expenses view contains all expected
expenses by general ledger account for the combination of
cost center, activity, and work center. These expenses are not
necessarily bound to a specific manufacturing step or material.

2) Data Retrieval and Homogenization Phase: The data
retrieval and homogenization phase relies on features available
in the in-memory database engine. In this phase, the views are
requested and executed to transfer the data to the application.
During the query execution, all volumes are translated into
their base measure and are unified into a common target size,
either lots or units. We decided to convert everything into lots,
due to the more meaningful values for business users. Cur-
rencies are converted using SAP HANAs currency conversion
feature [1]. The majority of the data is retrieved at application
start time and is prepared for the feature calculation. At the
end of this phase, a block matrix containing multiple weighted
adjacency matrices is available inside the server application.

3) Cost Calculation: The Cost Calculation (CC) represents
the simulation part of the application. The user changes input
drivers for the calculated features. For the prototype, we
decided to use monetary values, such as purchase price and

cost center activity rates. These can also be replaced by other
factors, while a change of the matrix part of the equation is
not required. The influence on the costs for all materials is
calculated and the result is returned to the client. The fast
response time enables an interactive and collaborative use of
the application. The calculations are either done on a multi
core CPU or preferably on a coprocessor, like Intel’s Xeon Phi
or a GPGPU. Using the coprocessor for calculation decreases
the load in the CPU, making resources available for database
query processing. In addition, the simulation benefits from
the parallel execution of the calculation on the coprocessor
to deliver results within a smaller time-period than the CPU.

B. Problem Formalization

Multiple cost drivers, e.g., material prices, labor costs,
machinery hours, transportation, and more influence product
cost. Based on the calculated cost per unit, the costs of goods
sold can be determined, applying this rate to the sales volume.

1) Bill of Material: An entry bst in the bill of material
describes how many units of material s are required to produce
one unit of material t. Instead of units, lots can be used as well.
St represents the set of materials required for a target material
t, while T represents the set of all materials that are produced.
Ts represents all materials t that require s for their production.

2) Routing: Routing A describes how many hours of a
specific cost center activity are required during the manufac-
turing process for one lot of a target material. In particular, ait
represents the amount of a specific cost center activity ai that
is required to manufacture material t. The cost center activity
rate is determined by ri.

3) Manufacturing Costs: As an example feature, we cal-
culate the manufacturing costs mc of a product t. These costs
describe, how many working hours and how many source
materials are required for the production of t. The purchase
price pp is part of the equation to cover the manufacturing
costs of raw materials.

mct = ppt +
X

ai2A

aitri +
X

s2St

bstmcs (1)

While 1 uses the purchase price as variable input factor for the
cost feature, any other linear factors for other features could
also be part of the equation.

4) Capacity Load: The capacity load of a cost center
activity is defined by the sum of hours spent for the specific
cost center activity during the production process. Ti represents
the set of all materials that require cost center activity i.

li =
X

t2Ti

�
ait(pdt +mdt)

�
(2)

The demand dt of a material t is defined by two parts:
primary demand and manufacturing demand. The primary
demand pdt determines the amount of material t that is sold
to the markets. The manufacturing demand mds determines
the amount of material s that is required to manufacture all
demands of materials t that require s during production cycle.

mds =
X

t2Ts

�
bst(pdt +mdt)

�
(3)

14Copyright (c) IARIA, 2016. ISBN: 978-1-61208-467-1

BUSTECH 2016 : The Sixth International Conference on Business Intelligence and Technology

C. Solving the System of Equations
To solve the system of equations, multiple methods exist:

using a linear system solver or by executing matrix operations.
General feedback is that using a linear solver, like the funtions
provided by Intel’s Math Kernel library[16] (sgetrf to
compute the LU decomposition, followed by sgetrs , which
solves the linear equations), is preferable for performance
reasons, especially if a matrix has to be inverted. This is
due to the optimized implementations and reduced number
of calculations required to solve an equation system. For the
presented use case, we decided to go for the matrix operation
path, because we saw benefits for operation parallelization.
Based on the previously defined equations, all summations and
multiplications can be done using a matrix-vector multiplica-
tion.

✓
ppt
pri

◆
=

✓
bst ait
0 li

◆
⇥

✓
mcs
ri

◆
(4)

The matrix stores all relevant relations between materials
and cost center activities. It stores the adjacencies between
these to be used for the calculation and is logically partitioned
into four quadrants, as shown in4. For our implementation,
we use row major ordering based to early experiences with
the Xeon Phi and Intel’s Math Kernel Library. In early
experiments, we have seen that the usage of a transposed
matrix vector multiplication was faster than matrix vector
multiplication.

The first quadrant (upper left) represents the BOM. The
quadrant is aligned by source materials on the vertical and
target materials on the horizontal axis. The entries bst represent
the inventory change that will be applied if the specified source
material is used for production.

The second quadrant (lower left) contains only 0 and is
therefore called Zero.

The third quadrant (upper right) stores the routing infor-
mation ait. This represents the amount of hours spent during
each manufacturing step.

The last quadrant (lower right) contains the capacity load
li of all cost center activities. It represents the total amount of
hours spent by a specific cost center activity in the time period
stored inside the matrix. The numbers in this quadrant depend
on the material demands and routing data factors of the other
quadrants.

IV. PROTOTYPE ARCHITECTURE AND ALGORITHMS

To calculate multiple versions of the manufacturing costs,
the matrix presented in4 has to be inverted. Matrix inversion is
hereby preferred to linear equation solvers, due to the number
of different configurations of the equation system. To speed-up
the cost intensive inversion process, the implemented inversion
algorithm reuses knowledge about the matrix’s quadrants and
data stored inside the database. Within this section, we present
some of the implemented inversion algorithms and other
relevant parts of the architecture.

A. Prototype Architecture
To evaluate the approach of using a coprocessor for product

feature calculation, we build the prototype depicted in Figure 2.
A frontend application is provided to the user, enabling the

user to configure and run simulation scenarios. The fron-
tend application communicates via HTTPS with the backend
that sends JSON responses. The frontend communicator is
written in C++ and uses mongoose and rapidjson for
data serialization. When a user triggers a simulation run,
the simulator executes the given simulation scenario. The
simulator fetches all required data from the database and sends
it to the engine, which is the central computation unit. The
engine itself consists of three subparts: the matrix inverter, the
demand calculator, and the matrix-vector operator. The matrix
inverter is responsible to execute an inversion algorithm and
returns the inverse matrix that is used later on for the matrix-
vector multiplication executed by the matrix-vector operator.
The demand calculator is required to calculate the load for
all cost center activities for the given production period, and
it is part of the matrix inversion. All elements of the engine
can be replaced by different implementations and are either
executed on the CPU, the coprocessor, or both. The engine
builder is responsible to set the implementations of the engines
algorithms, to provide a user defined engine that can be used
by the simulator. Within the prototype, the user is able to set
different engines to enable a comparison of the implemented
execution strategies. The database connector is responsible to
fetch the data from the database. For our prototype, we used
SAP’s HANA in-memory columnar database. The database
connector uses nanodbc to communicate with the database
via ODBC.

B. Inversion Algorithms
To invert the matrix containing the enterprise equation

system, we implemented several algorithms: Naiv inversion,
AVX inversion, upper triangular transformation, and CUDA
inversion. These algorithms are presented in detail within this
section.

The current implementations require twice the amount of
memory than what is required to store the data in dense matrix
format, due to the implemented Gauss-Jordan inversion. The
memory is required as space for a temporary working copy
and the identity matrix of the same size as the original matrix.
Each operation described later on is applied to the temporary
copy and the identity matrix. Optimizations for the Gauss-
Jordan elimination have been proposed by DasGupta [12] and
Amestoy et al. [13] and can be applied in future versions of
the inversion.

1) Naiv Inversion: At first, the quadrant containing the cost
center load is inverted. Because only the diagonal value is set,
the number of cost center activities determines the number of
divisions required to finish this step. Based on initial perfor-
mance measurements, an OpenMP parallel for pragma
is used to parallelize the operation on a per cost center activity
base (row level).

The next quadrant to be modified, contains the routing data.
All columns of a row that are not equal to 0 get a multiple
of the corresponding load line subtracted. Because the zero
quadrant only contains zeros, we do not modify the bill of
material quadrant in neither the temporary nor the identity
matrix. Thus, additional computations can be eliminated, as
the subtraction has to be done on the routing columns only.
To speedup the execution, this step gets parallelized with
an OpenMP parallel for pragma using the rows for
parallelization.

15Copyright (c) IARIA, 2016. ISBN: 978-1-61208-467-1

BUSTECH 2016 : The Sixth International Conference on Business Intelligence and Technology

Matrix
Inverter

Demand
Calculator

Matrix-
Vector

Operator

Matrix Versions

Engine BuilderFrontend Communicator

<HTTPS/JSON>

Database Connector

<ODBC>

In-Memory Database

Frontend Application

Structural Data

Feature Factors

Intermediate Results

Simulator Engine

R

Figure 2. Architecture of the Product Feature Calculation Prototype

Figure 3. Matrix reordering enables the use of upper triangular matrix
inversion

Finally, the BOM quadrant is converted to the identity
form. This quadrant has two properties that are beneficial
for the inversion process: the diagonal is set to 1.0, due to
restrictions we applied during the virtual data model creation
phase. This quadrant is also a lower triangular matrix. Thus the
inversion can be done iteratively, starting at the first row and
subtracting it from all other rows that have a value not equal
to 0 at the corresponding position. This is done in parallel on
row level, picking one row that can potentially be subtracted
from all other rows. After this last step, an inverted matrix is
calculated and the temporary copy of the matrix is removed.

2) AVX Inversion: During the second and third step of
the naiv inversion, rows are subtracted from each other. This
operation had a major performance impact on the inversion and
therefore is a subject for performance optimization. To speedup
the process, three changes to the initial implementation were
made: the algorithm is NUMA aware, all memory is aligned to
its AVX requirements, and we make use of Intels AVX instruc-
tion set, applying the same operation to multiple values at once.
The implementation uses the functions _mm256_set1_ps,
_mm256_load_ps, _mm256_mul_ps, _mm256_sub_ps
and _mm256_store_ps, defined in immintrin.h.

3) CUDA Inversion: A CUDA-enabled implementation of
the matrix inversion allows the execution of the algorithm on
the GPU and outperforms a GPU baseline inversion algorithm
from the Cula dense library [17]. The implementation focuses
on reducing the access to global memory to gain performance.
Utilizing the GPU’s shared memory during the subtraction in
the third step of the naiv inversion achieves the performance
improvement.

4) Upper Triangular Transformation: In order to evaluate
and compare the performance of our inversion algorithm, we
required a baseline we could measure against. Based on the
initial matrix format, we evaluated the LAPACK methods for
general inversion (sgetrf and sgetri), which solved the
problem. In order to use an optimized inverter implementation,
we decided to implement row and column reordering for
the inversion process, thus enabling the use of LAPACKs
triangular matrix inversion.

The process of reordering is visualized in Figure 3. In the
original format (left), the linear equation part of the bill of
material quadrant (black) is a lower triangular matrix. During
the first phase, the rows of the bill of material and routing (dark
grey) are reordered (middle). In a second phase, the columns
of the bill of material are reordered to convert the matrix into
an upper triangular format (right). The quadrant containing
the cost center load (light grey) is not modified during the
conversion. White spaces contain only 0 values.

Afterwards we were able to use strtri for matrix inver-
sion, which delivered faster results than the general inversion.
In all measurements done for this paper, the time of row
and column reordering is excluded and thus not part of the
inversion time.

C. Scenario Data
Having described the construction of the matrix in detail,

we will examine now the data sources for each part and
give some characteristics of the dataset used by the current
prototype. This dataset will later also provide the basis for the
performance evaluation in Section V.

The data is a limited dataset provided by a manufacturing
company. It contains data for a single location the company
operates in. It consists of 17,304 materials and 327 cost
center activities, resulting in a 17,631 ⇥ 17,631 sized matrix.
Hence, the dominant part of the matrix is the bill of material,
being over 50 times larger than the cost center activity related
quadrants. Besides the general size of the matrix, it is also
helpful to look at the number of raw materials, which is
6,379 and the number of products 2,978. This leaves 7,947
materials to be semi-finished goods and packaging materials.
To get an understanding of the structure of the bill of material

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-467-1

BUSTECH 2016 : The Sixth International Conference on Business Intelligence and Technology

and the routing the following measures are helpful. Starting
from products moving down the material hierarchy, there is
an average depth between two and three levels of intermediate
products included, with a maximum of five. This means when
not using the matrix structure, but a tree-like structure, it
is necessary to calculate the product cost for each of the
intermediate products on the different levels, before the product
cost for one product could be determined.

Another measure to consider is the ratio of non-zero values
compared to zero values. On average, seven different raw
materials or semi-finished goods are needed during each man-
ufacturing step, resulting in a rather small number of values
other than 0 in the bill of material quadrant. The maximum
count is 27. Taking the average results in a ratio of non-zero
data fields compared to data fields containing a zero of 1:2,472.
Similar for the cost centers an average of six are required
during each manufacturing step, with a maximum number of
39. The average ratio of non-zero data fields compared to data
fields containing a zero is 1:55 within the routing quadrant.
Therefore, the matrix in general is a sparse matrix.

We calculate the inverse of the matrix and it is not
guaranteed that an inverse of a sparse matrix is also going to
be a sparse matrix. While this may lead to additional overhead
for runtime memory allocations for these new non-zero data
fields in the inverted matrix, we consider a dense matrix for
out implementation. When considering bringing the algorithm
on to a GPU, this results in performance loss due to branching
within kernels.

V. EVALUATION

Within this section, we will evaluate the central com-
ponents of our simulation prototype: matrix inversion, and
matrix-vector multiplication. To compare our solutions with
standard methods, we compare our implementation with LA-
PACK implementations that are part of Intel’s MKL [16]. All
experiments were executed on a two-socket server, equiped
with Intel Xeon E5-2640 CPUs. For the CUDA inversion,
we used an Nvidia K20Xm Tesla card. The matrix-vector
multiplication was executed on an Intel Xeon Phi 5110P.

A. Matrix Inversion
To calculate the product features based on different fea-

ture drivers, the equation system needs to be transformed.
Therefore, the matrix representing the equation system is
inverted. An additional inversion might also be necessary,
if structural changes, e.g. product design changes or new
manufacturing machinery, are part of the simulation process.
Therefore, the inversion represents an important step during the
feature calculation. The results for the presented algorithms are
shown in Figure 4, depicting an average of 20 executions per
algorithm.

To make sure to get as close to the theoretical performance
as possible, we created a fine-tuned version of the AVX
inversion algorithm. As a next step, the coprocessor based
implementation needs to be tuned. It has to be noted that the
system executed one inversion at a time exclusively, executing
no other operations at the same time. Additional background
load would decrease the performance of the CPU based
inversion. To transfer the data to and from the coprocessor,
additional 827 ms are required. In the case that the matrix-
vector multiplication is run on the same coprocessor, the data

 0

 1

 2

 3

 4

 5

 6

 7

 8

STRTRI Naiv AVX Cuda (K20Xm)

E
xe

cu
tio

n
 t

im
e

 in
 s

e
co

n
d

s

Implementation

Matrix Inversion of a Square Matrix With 17,631 Rows

Figure 4. Performance evaluation for the matrix inversion algorithms

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60

E
xe

cu
tio

n
 T

im
e

 in
 S

e
co

n
d

s

Number of Simulations

Required Execution Time

Coprocessor

CPU

Figure 5. Performance evaluation for the execution of simulations.

can be reused and the transfer time gets amortized. Overall
using available business knowledge leverages the performance
of the matrix inversion compared to a standard library version
and can be further improved by exploiting the underlying
hardware.

B. Matrix-Vector Multiplication
The central component for simulating a new set of product

feature input parameters is the matrix-vector multiplication.
The results can be seen in Figure 5. The initial data placement
to the coprocessor is dominating its execution time. The CPU
has no off-load attached but the computational performance
is lower than on the coprocessor, which is why the initial
cost for offloading the inverted matrix gets amortized after
22 simulations.

Using the Intel library pragma offload_transfer

preprocessor macros, we were able to offload the necessary
simulation data in 0.98s, using the Intel Xeon Phis PCIe 2.0
connection.

Offloading all data for every simulation is inefficient and
reduces the performance advantages of the coprocessor. Since
base and modified costs are the only changing features in
our scenario, they need to be transferred for every single
matrix-vector operation, while the inverted matrix has to be
offloaded only once. This allows us to reduce the overall
transfer overhead.

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-467-1

BUSTECH 2016 : The Sixth International Conference on Business Intelligence and Technology

It has to be noted that there was no additional activity
on the server during our tests, which would influence the
execution performance of the CPU negatively.

VI. CONCLUSION AND FUTURE WORK

With our prototype, we have shown that enterprise systems
can benefit from the use of coprocessors. The usage of these
specialized hardware components had a benefit from a runtime
performance point of view. We showed with this prototype the
influence of the increased performance from an application
perspective based on actual enterprise data, enabling an inter-
active product feature simulation. While these results clearly
demonstrate how a hybrid architecture, consisting of CPUs
and coprocessors, can leverage business scenarios, such as the
presented product feature calculation and simulation.

While the nature of database operations as parallelizable
operations on sets and the parallel computing resources of
coprocessors are a good fit, advanced application logic is
different. To use the theoretical performance in an enterprise
environment, data and algorithms have to be aligned to make
efficient use of these parallel computation resources.

To solve this initial issue, supporting structures have to be
defined, which enable the user to determine applications that
will benefit from hybrid execution. Based on these findings,
data structures have to be modeled that are suitable to deliver
a data representation a coprocessor will be able to work on
as directly as possible, reducing the upfront cost of execution
time and memory during the virtual data model creation and
data retrieval and homogenization phases. To avoid further
continuous transfer of matrix versions between main memory
and the coprocessors memory, the use of different sparse
matrix representations might be necessary. Thereby the focus
should not only be on memory consumption, but on the cost
to construct them from the data fetched from an in-memory
columnar database as well. Providing the enterprises with the
ability to model different versions of the matrix, compare
them with each other and even base their simulations upon
them, enriches the foundation for their decision making. This
extension requires to calculate the product features for multiple
matrices at the same time, requiring additional memory, which
will exceed the available memory on a coprocessor. While
using sparse matrices relaxes the issue, an investigation on how
to create an efficient versioned matrix data structure, which
only requires to store a base matrix and the changes to it, is
needed.

As enterprise systems tend to be used by hundreds to
thousands of users in parallel, access to limited resources
like coprocessors needs to be optimized. Multiple users might
be able to share the same basic data structure to modify
their application needs, such as the structural data used for
the presented simulation scenario. This assumption has to be
reconsidered once we allow users to alter these shared struc-
tures, such as the matrix encapsulating the equation system.
To reduce the potential transfer overhead to the coprocessor,
an intelligent data placement strategy reducing the effects of
data transfers while considering the data of multiple users is
required. Summarizing the results, we believe that coproces-
sors will play an essential role in the development of future
enterprise applications.

ACKNOWLEDGEMENT

The authors like to thank Alexander Franke and Cornelia
Rehbein for helping with the implementation of the product
feature simulation prototype and the corresponding calculation
engine.

REFERENCES

[1] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“SAP HANA Database - Data Management for Modern Business
Applications,” ACM Sigmod Record, vol. 40, no. 4, Dec. 2011, pp.
45–51.

[2] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd,
“Efficient transaction processing in SAP HANA database: the end of
a column store myth.” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of data. New York, New
York, USA: ACM Press, May 2012, pp. 731–742.

[3] SAP SE, SAP HANA Predictive Analysis Library (PAL) - SPSS 11,
1st ed., Nov. 2015.

[4] Intel Corporation, “Xeon Phi Coprocessor x100 Product Family,” Apr.
2015.

[5] NVIDIA Corporation. GeForce GTX TITAN X Specifications. [Online].
Available: http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-
titan-x/specifications [retrieved: Feb., 2016]

[6] Intel Corporation. Intel R� Xeon R� Processor E7-8890 v3
(45M Cache, 2.50 GHz) Data Sheet. [Online]. Avail-
able: http://ark.intel.com/de/products/84685/Intel-Xeon-Processor-E7-
8890-v3-45M-Cache-2 50-GHz [retrieved: Feb., 2016]

[7] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of Sparse Matrix-Vector Multiplication on Emerging
Multicore Platforms,” in Proceedings of the 2007 ACM/IEEE confer-
ence on Supercomputing, Aug. 2007, pp. 1–12.

[8] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication
on CUDA,” NVIDIA Corporation., Tech. Rep. VR-2008-004,, Dec.
2008.

[9] R. Nath, S. Tomov, T. T. Dong, and J. Dongarra, “Optimizing Symmetric
Dense Matrix-Vector Multiplication on GPUs,” in 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), Nov. 2011, pp. 1–10.

[10] P. Ezzatti, E. S. Quintana-Orti, and A. Remon, “Using graphics proces-
sors to accelerate the computation of the matrix inverse,” The Journal
of Supercomputing, vol. 58, no. 3, Apr. 2011, pp. 429–437.

[11] E. Anderson, Z. Bai, C. H. Bischof, L. S. Blackford, J. W. Demmel, J. J.
Dongarra, J. J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney,
and D. C. Sorensen, LAPACK Users’ Guide, ser. Third Edition, Society
for Industrial and Applied Mathematics Philadelphia, PA, USA, Aug.
1999.

[12] D. DasGupta, “In-Place Matrix Inversion by Modified Gauss-Jordan
Algorithm,” Applied Mathematics, vol. 04, no. 10, 2013, pp. 1392–
1396.

[13] P. R. Amestoy, I. S. Duff, Y. Robert, F.-H. Rouet, and B. Ucar,
“On computing inverse entries of a sparse matrix in an out-of-core
environment,” SIAM Journal on Scientific Computing, vol. 34, no. 4,
Jul. 2012, pp. 1975–1999.

[14] J. Krüger and R. Westermann, “Linear Algebra Operators for GPU Im-
plementation of Numerical Algorithms,” ACM Transactions on Graph-
ics - Proceedings of ACM SIGGRAPH 2003, Jul. 2003, pp. 908–916.

[15] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense Linear Algebra
Solvers for Multicore with GPU Accelerators,” IEEE International
Symposium on Parallel Distributed Processing, Workshops and Phd
Forum, Apr. 2010, pp. 1–8.

[16] Intel Corporation, Intel Math Kernel Library Reference Manual - C,
11th ed., Intel Corporation, Aug. 2015.

[17] NVIDIA Corporation. CULA Tools: GPU-Accelerated Li-
braries. [Online]. Available: http://www.geforce.com/hardware/desktop-

gpus/geforce-gtx-titan-x/specifications [retrieved: Feb., 2016]

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-467-1

BUSTECH 2016 : The Sixth International Conference on Business Intelligence and Technology

