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Abstract—The specification of system functionality and
design space exploration (DSE) are becoming very chal-
lenging in embedded systems due to an increasing num-
ber of design parameters and system specifications dur-
ing the design cycle. An executable system-level specifi-
cation (SLS), proposed in this paper, reduces design com-
plexity. The SLS represents an executable DSE method-
ology and encapsulates system specifications. The aim is
to formalize and automate design flows in order to scale
to larger and more complex embedded systems. SLSs
should not be limited to certain embedded system types.
Hence, SLSs need to be standardized across tools, design-
ers, and domains. A meta-methodology, as well as a meta-
model are proposed to define a domain-independent SLS.
Moreover, an electronic design automation environment
is presented allowing to graphically create, automatically
execute and validate embedded domain-specific SLSs.
Finally, a design flow case study demonstrates multiple
SLSs for the heterogeneous multicluster architecture.

Keywords–embedded system design; system-level design;
executable specification; design space exploration

I. I NTRODUCTION

Over the past decades, embedded design kept up with an
increasing technology scaling through a continuous improve-
ment and integration of computer aided design (CAD) tools.
CAD tools evolved from the layout level to the logic level
and later to the behavioral synthesis. Consequently, the next
step was to develop system-level design tools, including the
specification and exploration of complete systems. These
advancements in CAD are closely coupled with the devel-
opment of electronic design automation (EDA) flows. Early
EDA flows were dominated by capturing and simulating
incomplete specifications. Later, logic and register-transfer
synthesis allowed to describe a design only from its behavior.
But, a system gap between software (SW) and hardware
(HW) designs exists since SW designers still provide HW
designers with incomplete specifications [1].

An executable specification, such as a SystemC model [2],
closes the system gap by describing the system functionality
and enabling design space exploration (DSE) of various
design alternatives. Design reuse and documentation are
improved through executable specifications [1]. Neverthe-
less, the design complexity of future embedded systems
with thousands of cores increases the number of avail-
able design parameters and system specifications during
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Fig. 1: Example of an executable system-level specification.

the design cycle [3]. In this work, system specifications
include input / output models consumed / produced in the
design steps, such as executable specifications, descriptions
of application, architecture, application mapping, validation
result, tool configuration, etc. So far, the challenging tasks
of systems specification and defining a DSE methodology
are decoupled. But the combined specification and the
reuse of DSE methodologies promise for a reduced design
complexity and design time, respectively. Hence, we believe
that a system-level specification (SLS) needs to consider both
the specification of systems and DSE, as exemplary seen
in Figure 1. The specified DSE methodology includes two
design steps. First, dimensioning creates a HW architecture
from an executable specification, the HW unit options and
application description. Then, DSE results are obtained from
scheduling the application on the HW architecture.

This paper introduces an executable SLS which represents
an executable DSE methodology and encapsulates system
specifications. In other words, our work relates to a higher ab-
straction level of executable specifications. An SLS realizes
a formalization and automation of design flows allowing to
scale to larger and more complex embeddedsystems. In order
to be not limited to certain embedded system types, SLSs
will be standardized across tools, designers, and domains.
Therefore, a meta-methodology, as well as a meta-model are
proposed to define a domain-independent SLS.

In the remainder of the paper, Section II gives an overview
about specification languages, related DSE environments,
and meta-modeling activities. Section III introduces a con-
ceptual framework generalizing SLS at a meta-level and a
domain-level. At meta-level, a domain-independent SLS is
proposed enabling interoperability across tools, designers,
and domains. This SLS is described using a methodology
about design methodologies and a model about design
models. At domain-level, domain-specific SLSs are created
following the proposed meta-methodology and meta-model.
This allows to model various design flows applicable for em-
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bedded systems with different characteristics, such as real-
time, safety-critical, secure, fault-tolerant, robust, etc. In the
section, a domain-specific SLS is illustrated via theλ-chart
model [4]. In Section IV, an EDA environment is introduced
realizing CAD support to build embedded domain-specific
SLSs based on theλ-chart. DSE is automatically executed
and validated as defined in the SLS. Then, Section V presents
a design flow case study for the heterogeneous multicluster
architecture built up from SLSs. Finally, the conclusions and
open topics are discussed in Section VI.

II. RELATED WORK

The related work focuses on specification and DSE in em-
bedded system design. First, selected specification languages
and representative DSE environments are presented. Then,
related studies on meta-modeling are discussed.

Specification Languages and DSE Environments

There is a variety of graphical and textual specification
languages and frameworks. They can be used to realize DSE
methodologies. Nevertheless, this is done in a less formal
and less generic manner compared to our SLS approach.
Hence, the reuse and interoperability across tools, designers,
and domains are limited. An example is the specification
and description language (SDL) [5] allowing for formal
and graphical system specification and their implementation.
In [6], HW/SW co-design of embedded systems is pre-
sented using SDL-based application descriptions and HW-
emulating virtual prototypes. Moreover, SystemC [2] and
SpecC [7] are system-level design languages (SLDL) which
model executable specifications of HW/SW systems at mul-
tiple levels of abstraction. These simulation models support
SW development. For example, SystemCoDesigner [8] en-
ables an automatic DSE and rapid prototyping of behavioral
SystemC models. In [9], a comprehensive design framework
for heterogeneous MPSoC is presented. Based on the SpecC
language and methodology, it supports an automatic model
generation, estimation, and verification enabling rapid DSE.
Another example is the specification in a synchronous
language, e.g., via Matlab/Simulink. Instead, Ptolemy [10]
supports various models of computation to realize executable
specifications including synchronous concurrency models.

In addition, the MultiCube project [11] and the NASA
framework [12] address the need of a generic infrastruc-
ture for system-level DSE mainly enabled by modulariza-
tion. Nevertheless, the works present neither a domain-
independent SLS nor a domain-specific SLS.

Meta-modeling

Our paper differs to existing work since it is the first using
meta-modeling in order to describe a domain-independent
SLS. In the embedded domain, meta-modelinghas been stud-
ied to transform from the unified markup language (UML)
to SystemC at the meta-model level [13]. This guarantees
reuse of models and unifies a definition of the transformation
rules. In [14], meta-modeling enables heterogeneous models
of computations during modeling. In [15], meta-modeling
is used to improve the model semantics and to enable type-
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Fig. 2: System-level specification hierarchy.

checking and inference-based facilities.

III. C ONCEPTUAL FRAMEWORK

As mentioned before, SLSs aim at reducing the design
complexity. The SLS hierarchy, illustrated in Figure 2, gives
a hierarchical understanding of SLSs. The abstraction is used
as starting point of a formal description. This is realized
by separating into a meta-level and a domain-level. The
meta-methodology and meta-model allow for developing
and testing a methodology and model for a specific design
purpose. At the domain-level, specific design aspects, views,
steps, system specifications, parameters, and constraintsare
chosen depending on the domain. That means, certain design
tasks are realized in a design aspect using a domain-specific
design methodology and design model. Each design aspect
includes one or multiple design views modeling orthogonal
design functionalities, such as communication, computation
and administration infrastructure. Moreover, each design
view follows a design process with several steps. Various
system specifications, design parameters, and constraints
are considered in the steps in order to realize the DSE
methodology. Focusing on embedded system design, both
levels will be explained in more detail.

A. Meta-Level

At the meta-level, a domain-independent SLS is described
to be able to develop and evaluate domain-specific SLSs.
Hence, the transfer of design skills gets independent on a
design domain and can reach a larger audience. In addition,
design concepts and formalisms will be reusable across
different tools, designers, and domains. Figure 3-4 illustrate
the proposed meta-methodology and meta-model.

In Figure 3, the meta-methodology represents a guiding
procedure in order to transform the domain-independentSLS
into a domain-specific SLS. It starts to create a separation
of the design space into design aspects and a separation
of the design aspects into steps. Design aspects divide
the design space at a higher abstraction level, as seen in
Figure 2. In contrast, a step, system specification, param-
eter and constraint represent a lower abstraction level. As
mentioned before, the specification of design views allows
to model orthogonal design functionalities. Referring to
Figure 3, an executable DSE methodology is built through
an algorithmic ordering of the design aspects and steps.
That means, dependencies, loops, branches, etc. realize
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Fig. 3: Meta-methodology for the proposed SLS.

an execution order of aspects and steps in an algorithmic
manner. Moreover, design tools are determined in all steps
solving the relevant design problems. A design parameter
represents a possible description of the structure, behavior,
and physical realization of a system. Aiming at improved tool
results, suitable design tool parameters are also considered.
In each step, the design tools are parameterized and executed
using the system specifications. From the DSE results, design
goals and aspects can be revised. Finally, the design space
is explored by varying the design parameters based on the
algorithmic order and DSE strategy, such as exhaustive or
heuristic search.

In Figure 4, the proposed meta-model, described via the
UML class diagram, represents a model to build domain-
specific SLSs. The meta-model forms a fundament or kernel
of an EDA environment presented in Section IV. Hence, it
includes the definition of the modeling language described
via meta classes. Referring to Figure 4, an Element contains
Properties and Transitions from/to Elements. A Transition
between two Elements is used to model a unidirectional
dependency and a Property represents a system specification,
design parameter, design constraint, or additional informa-
tion added to an Element. Moreover, an Aspect and Node
inherit from Element. An Aspect includes one or several
Nodes. Aspects can be nested to be resolved recursively.
This allows to reduce model complexity and to improve the
reuse of already modeled aspects. Finally, a Node represents
an executable Element, such as a step, loop and branch node,
which are necessary to build an algorithmic order of aspects
and steps.

B. Domain-Level

In the following, an instantiation of a domain-specific SLS
is illustrated with the help of theλ-chart [4] model, as
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Fig. 4: Meta-model for the proposed SLS.

depicted in Figure 5 (left). Theλ-chart models system-level
design and exploration in the embedded system domain. As
mentioned before, the proposed meta-methodology is used
to select appropriate design aspects, views, steps, etc. In
addition, an algorithmic order of the aspects and steps must
be defined. Theλ-chart model is an instance of the proposed
meta-model. Referring to Figure 5 (left), a design aspect is
represented by aλ-chart instance allowing to define steps in
three design views. The administration view considers tasks
for planning, monitoring, and control. Computation relates to
code execution. Communication includes the design of data
storage and data exchange between components. Further-
more, concentric bands underline the five steps of a unified
design process. We refer to [4] for a detailed explanation of
theλ-chart.

Referring to Figure 5 (left), the exemplary SLS starts
with modeling and partitioning the design limited to the
communication view. After scheduling and allocation, the
DSE results are validated. The allocation and validation steps
are iteratively traversed aiming at improved DSE. Similar
to [16], the derived network-on-chip (NoC) aspect focuses on
finding suitable NoC topology parameters, such as number of
rows, columns, and modules per router. Furthermore, meta-
model instantiation examples of the domain-specific SLS
are illustrated in Figure 5 (right). The allocation step and
loop node correspond to a node element in the meta-model.
In allocation, exemplary properties are a “Rows” parameter
and the communication view. Moreover, a transition from
loop to allocation implies an algorithmic order realizing a
part of the DSE methodology. The instantiation of an aspect
is also shown.

C. Integration in Specification Languages

Specification languages, such as SDL and SystemC, do
not currently support the proposed SLS. By doing so, an
advantage would be to keep the system designers more aware
of the design space in early design stages. The organization
into design aspects helps the designer to cope with a complex
system-level DSE. In addition, system designers need to
structure and arrange their designs into design views. This
brings greater attention to orthogonal system functionality,
such as computation, communication, and administration.
Given the design goals and constraints, it will be more
evident that a systematic variation of design parameters is
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Fig. 5: Example of a domain-specific SLS modeled via theλ-chart [4] (left). Meta-model instantiation examples of the domain-specific SLS (right).

necessary to reach optimal parameter combinations. Hence,
the problem of selecting effective search strategies is getting
into the focus. Furthermore, an SLS realizes a comprehensive
view on available design parameters. Hence, it becomes
easier to improve design time and quality by detecting
insignificant and interfering parameters. This helps system
designers to focus on relevant design and tool parameters.

The integration aims at a coexistence or merger of the
proposed SLS and existing specification languages. For
example, SDL and SystemC contain module concepts that
help to embed system specifications into an executable node
of the proposed meta-model. In SDL, systems include a
hierarchy of agents called processes and blocks. In SystemC,
the Main is the starting point of a SystemC specification.
A Main contains several modules and signals to model
communications between modules. In the proposed SLS,
a node encapsulates an execution of design tools solving
design problems, such as scheduling or allocation tasks.
These tools produce new or modified system specifications
further used as tool input. Depending on the design tool,
different system specifications, such as of applications,
architectures, application mappings, validation results, tool
configurations, etc. are produced and consumed. Hence, a
node element can enclose multiple system specifications.

IV. ELECTRONIC DESIGN AUTOMATION ENVIRONMENT

In the following, an EDA environment is briefly introduced
allowing to model and execute domain-specific SLSs based
on theλ-chart and presented in Section III. In Figure 6, the
tripartite structure consisting of front-, middle- and back-
end is depicted. In the EDA environment, an SLS is graph-
ically defined and automatically processed by running the
executable node elements. The nodes communicate via pa-
rameters and XML-based input/output formats representing
system specifications. The specifications address very early
system-level design by using coarse-grained representations,
such as fixed execution time and high-level task graphs. In
the graphical front-end, designers are able to create SLS
via CAD. Dynamic search and exploration strategies are

Front-End

Back-End

Parser

Interpreter Scheduler

XML

Middle-End

HPC

SLS

Debugger

Analyser

Fig. 6: EDA environment.

considered by including node elements, such as loop, branch,
abort, etc. Referring to Figure 6, a parser is responsible for
a syntactic analysis of an XML file representing the SLS.
In the middle-end, the SLS is interpreted and an execution
order is determined via as soon as possible scheduling. A
correct execution of each node can be checked through the
debugger. In the current implementation, each node executes
a command line tool solving specific design problems.
Hence, parameters, constraints, and system specifications
are assigned via command line arguments. In the back-
end, the nodes are executed in a distributed computing
environment (High Performance Cluster, HPC). Depending
on the purpose, different output formats are created during
node execution. DSE results are automatically analyzed and
validated as defined in the SLS. Further details of the EDA
environment are out of the scope of the paper.

V. DESIGN FLOW CASE STUDY

The following case study demonstrates the usage of ex-
ecutable SLSs in order to realize a design flow for the
heterogeneous multicluster architecture [17]. The SLSs are
executable on the EDA environment presented in Section IV.
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In the paper, the detailed explanations will be limited to one
design aspect and the variation of a single design parameter.

A. Application and Architecture Model

The models consider functionalities of the communication,
computation and administration view defined in theλ-
chart [4]. The application model includes multiple, con-
currently running applications and threads, respectively. A
thread is represented by a high-level task graph and it
sequentially executes tasks. Threads are only synchronized
before or after execution. Then, a task is an atomic kernel
exclusively executing on an intellectual property (IP) core,
e.g., processor core, memory interface, controller interface,
etc. Tasks produce and consume chunks of data accessed
via shared memory. Side effects are excluded by preventing
access to external data during computation.

As shown in Figure 7, the architecture model is a hetero-
geneous set of multiprocessor system-on-chips (MPSoCs)
and clusters, respectively. The administrative unit (AU)
represents an application processor and includes a load
balancer aiming at equally distributing thread loads amongst
the clusters. Moreover, an MPSoC contains heterogeneous
types and numbers of IP cores. In the model, each MPSoC
contains a NoC connecting the IP cores. Moreover, each
cluster includes a control processor (CP) responsible to
dynamically schedule arriving tasks to the available IP cores.
The CPs are directly connected to the AU.

B. The Design Flow

The design flow, shown in Figure 8, lists several design
aspects and executable SLSs, respectively, to create a hetero-
geneous multicluster architecture. According to Section III,
the five domain-specific SLSs are modeled via theλ-chart.
They are arranged by the explored parameter types, more
specifically with the help of parameters of the design tool,
structural, behavioral and physical design. Each SLS realizes
a part of the design flow organized as follows:

1) The genetic algorithm (GA) sensitivity aims at finding
the best tool parameters for two GAs each solving
the multicluster dimensioning and IP core mapping
problems;

2) The design aspect “Multicluster Dimensioning” cre-
ates a heterogeneous multicluster architecture by
distributing estimated application mappings among

Design Flow

Design Tool Genetic Algorithm Sensitivity

Structural Design Multicluster Dimensioning

Physical Design Network-on-Chip IP Core Mapping

Behavioral Design Network-on-Chip Arbitration

Multicluster Load Balancing

Parameter SLS / Design Aspect

Fig. 8: Design flow case study for the heterogeneous multicluster architec-
ture.

clusters and solving the optimization problem via a
GA [18];

3) The design aspect “IP Core Mapping” places IP cores
in an 1-ary n-mesh NoC constrained by the number
of modules at each router. The optimization problem
is solved via a GA [16];

4) Both design aspects aim at finding suitable behavioral
schemes from a selection via simulation. “NoC arbi-
tration” compares a locally fair with a globally fair
arbitration scheme. In addition, flit-based and packet-
based switching are considered [19]. “Multicluster
load balancing” compares different estimators of clus-
ter load, such as response time and queue size, used
in the load balancing scheme of the AU.

C. Exemplary SLS and Test Results

In the following,multicluster dimensioninghas been selected
as exemplary SLS. Detailed explanation of the approach
and benchmark results can be found in [18]. Referring
to Figure 9, the example focuses on the design aspect of
creating a suitable computation infrastructure for the hetero-
geneous multicluster architecture. Hence, DSE is limited to
the computation view of theλ-chart. The same benchmark
and simulation setup given in [18] has been chosen. The
“modeling and partitioning” step serves as a starting point
without any further purpose. In the “provisioning” step, the
specifications of the target application and the optional IP
cores are used as input for the parallelism analysis [20].
The estimated parallelism values represent the numbers and
types of IP cores necessary to execute the applications. Since,
multiple applications are concurrently running on the target
architecture, the parallelism values are used to dimension
the processing elements (PEs) in the clusters and MPSoCs,
respectively. All clusters are constrained to a maximum num-
ber of PEs per cluster (maxPEs) used as a design parameter
in the SLS. Further parameters are out of the scope of the
paper. As mentioned before, the optimization problem is
solved via a GA. The subsequent “scheduling” step performs
application mapping via simulation. The scheduling results
are analyzed in the “validation” step. Referring to Figure 9,
a loop node is inserted to increment the design parameter
from two to six. The selected parameter interval depends on
the available numbers and types of PEs defined in the chosen
benchmark setup. Figure 10 shows the validation results in
terms of number of clusters / PEs and the thread response
time. The response time is defined as time from the request
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Fig. 10: Test results via parameter exploration for the “Multicluster
Dimensioning” SLS.

of a thread until its end. All values have been normalized.
In the setup, the best tradeoff is reached formaxPEs = 4

resulting in four clusters and 13 PEs. The slightly varying
cluster configurations formaxPEs = {4, 5, 6}, not shown
in Figure 10, are due to the heuristic nature of a GA.

VI. CONCLUSIONS AND OPEN TOPICS

In the paper, an executable SLS is proposed in order to cope
with an increasing number of design parameters and system
specifications during the design cycle. An SLS represents
an executable DSE methodology and encapsulates system
specifications. The aim is to formalize and automate design
flows in order to scale to larger and more complex embedded
systems. SLSs should not be limited to certain embed-
ded system types. Hence, SLSs need to be standardized
across tools, designers, and domains. Therefore, a meta-
methodology,as well as a meta-model are developeddefining
a domain-independent SLS. Hence, an EDA environment is
presented allowing to graphically create and automatically
execute embedded domain-specific SLSs. Finally, a case
study shows the feasibility of the proposed SLS. Therein,
several SLSs demonstrate a realization of a design flow for
the heterogeneous multicluster architecture.

In the rest of the paper, a discussion of open topics outlines
the future work. So far, an executable SLS can be graphically
defined in the introduced EDA environment. Nevertheless,
many designers prefer textual programming languages, but
according tool support, such as a parser, interpreter, and
debugger, is a challenging task. This is left out for future
work. Another open topic is to embed industry-relevant

specification languages, such as SDL and SystemC, into
the executable SLS. Furthermore, an integrated development
environment (IDE) should be provided implementing the
proposed meta-modeling and integrating the tool chain. The
purpose is to create and execute domain-specific SLSs with
IDE support. Additional research is necessary to introduce
executable SLSs in other domains, such as in communica-
tions and sensor networks.
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