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Abstract—The specification of system functionality and | Executable System-Level Specification (SLS)

design space exploration (DSE) are becoming very chal- || nput/Output Model |  DSE Methodology Input Model
lenging in embedded systems due to an increasing num- Executable Spec. i'--i_ Dimensioning\ Application
ber of design parameters and system specifications dur- HW Unit Options }-1 . ")

ing the design cycle. An executable system-level specifi- fmmmmm re== v

cation (SLS), proposed in this paper, reduces design com- W Architecture }-4 N\,
plexity. The SLS represents an executable DSE method- || [Executable spec. }-F ’( Scheduling X

ology and encapsulates system specifications. The aim is
to formalize and automate design flows in order to scale
to larger and more complex embedded systems. SLSs
should not be limited to certain embedded system types. the design cycle [3]. In this work, system specifications
Hence, SLSs need to be standardized across tools, design- include input / output models consumed / produced in the
ers, and domains. A meta-methodology, as well as a meta- design steps, such as executable specifications, desospti
model are proposed to define a domain-independent SLS. of application, architecture, application mapping, validn
Moreover, an electronic design automation environment  result, tool configuration, etc. So far, the challengindksas
is presented allowing to graphically create, automaticail of systems specification and defining a DSE methodology
execute and validate embedded domain-specific SLSs. are decoupled. But the combined specification and the
Finally, a design flow case study demonstrates multiple reuse of DSE methodologies promise for a reduced design
SLSs for the heterogeneous multicluster architecture. complexity and design time, respectively. Hence, we believ
. . thata system-level specification (SLS) needs to considér bo
Keywords—embedded system design; system-level designje specification of systems and DSE, as exemplary seen
executable specification; design space exploration in Figure 1. The specified DSE methodology includes two
l. INTRODUCTION design steps. First, dimensioning creates a HW architectur
from an executable specification, the HW unit options and
Over the past decades, embedded design kept up with aapplication description. Then, DSE results are obtaineuh fr
increasing technology scaling through a continuous imgrov  scheduling the application on the HW architecture.
ment and integration of computer aided design (CAD) tools.  This paper introduces an executable SLS which represents
CAD tools evolved from the layout level to the logic level an executable DSE methodology and encapsulates system
and later to the behavioral synthesis. Consequently, tkie ne specifications. In other words, our work relates to a higher a
step was to develop system-level design tools, includieg th straction level of executable specifications. An SLS realiz
specification and exploration of complete systems. These formalization and automation of design flows allowing to
advancements in CAD are closely coupled with the devel-scale to larger and more complex embedded systems. In order
opment of electronic design automation (EDA) flows. Early to be not limited to certain embedded system types, SLSs
EDA flows were dominated by capturing and simulating will be standardized across tools, designers, and domains.
incomplete specifications. Later, logic and registerg¢fan  Therefore, a meta-methodology, as well as a meta-model are
synthesis allowed to describe a design only fromits betavio proposed to define a domain-independent SLS.
But, a system gap between software (SW) and hardware |n the remainder of the paper, Section Il gives an overview
(HW) designs exists since SW designers still provide HW about specification languages, related DSE environments,
designers with incomplete specifications [1]. and meta-modeling activities. Section IlI introduces a-con
An executable specification, such as a SystemC model [2]ceptual framework generalizing SLS at a meta-level and a
closes the system gap by describing the system functignalitdomain-level. At meta-level, a domain-independent SLS is
and enabling design space exploration (DSE) of variousproposed enabling interoperability across tools, desgne
design alternatives. Design reuse and documentation arand domains. This SLS is described using a methodology
improved through executable specifications [1]. Neverthe-about design methodologies and a model about design
less, the design complexity of future embedded systemsnodels. At domain-level, domain-specific SLSs are created
with thousands of cores increases the number of availfollowing the proposed meta-methodology and meta-model.
able design parameters and system specifications duringhis allows to model various design flows applicable for em-

Fig. 1: Example of an executable system-level specification
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bedded systems with different characteristics, such ds rea

time, safety-critical, secure, fault-tolerant, robust, én the System Specification,
section, a domain-specific SLS is illustrated via thehart Parameter, Constraint

model [4]. In Section IV, an EDA environmentis introduced Step
realizing CAD support to build embedded domain-specific View
SLSs based on th&-chart. DSE is automatically executed Aspect
and validated as defined in the SLS. Then, Section V presents Model
a design flow case study for the heterogeneous multicluster Methodology

architecture built up from SLSs. Finally, the conclusiond a N
open topics are discussed in Section VI.

~
Domain-Level Meta-Level

Il. RELATED WORK Fig. 2: System-level specification hierarchy.

The related work focuses on specification and DSE in em- ) _ o
bedded system design. First, selected specification lgiggua checking and inference-based facilities.
and representative DSE environments are presented. Then, I1l. CONCEPTUAL FRAMEWORK

related studies on meta-modeling are discussed.
As mentioned before, SLSs aim at reducing the design

Specification Languages and DSE Environments complexity. The SLS hierarchy, illustrated in Figure 2,agiv
There is a variety of graphical and textual specificationa hierarchical understanding of SLSs. The abstractiored us
languages and frameworks. They can be used to realize DSES starting point of a formal description. This is realized
methodologies. Nevertheless, this is done in a less formaby separating into a meta-level and a domain-level. The
and less generic manner compared to our SLS approactineta-methodology and meta-model allow for developing
Hence, the reuse and interoperability across tools, degign and testing a methodology and model for a specific design
and domains are limited. An example is the specificationpurpose. At the domain-level, specific design aspects,sjiew
and description language (SDL) [5] allowing for formal Steps, system specifications, parameters, and constaants
and graphical system specification and theirimplementatio chosen depending on the domain. That means, certain design
In [6], HW/SW co-design of embedded systems is pre-tasks are realized in a design aspect using a domain-specific
sented using SDL-based application descriptions and Hwdesign methodology and design model. Each design aspect
emulating virtual prototypes. Moreover, SystemC [2] and includes one or multiple design views modeling orthogonal
SpecC [7] are system-level design languages (SLDL) whichdesign functionalities, such as communication, compartati
model executable specifications of HW/SW systems at muland administration infrastructure. Moreover, each design
tiple levels of abstraction. These simulation models suppo Vview follows a design process with several steps. Various
SW development. For example, SystemCoDesigner [8] ensystem specifications, design parameters, and constraints
ables an automatic DSE and rapid prototyping of behavioragre considered in the steps in order to realize the DSE
SystemC models. In [9], a comprehensive design frameworknethodology. Focusing on embedded system design, both
for heterogeneous MPSoC is presented. Based on the Spedevels will be explained in more detail.
language and methodology, it supports an automatic modeA Meta-Level
generation, estimation, and verification enabling rapidEDS
Another example is the specification in a synchronousAt the meta-level, a domain-independent SLS is described
language, e.g., via Matlab/Simulink. Instead, Ptolemy] [10 to be able to develop and evaluate domain-specific SLSs.
supports various models of computation to realize exetaitab Hence, the transfer of design skills gets independent on a
specifications including synchronous concurrency models. design domain and can reach a larger audience. In addition,
In addition, the MultiCube project [11] and the NASA design concepts and formalisms will be reusable across
framework [12] address the need of a generic infrastruc-different tools, designers, and domains. Figure 3-4 ithist
ture for system-level DSE mainly enabled by modulariza-the proposed meta-methodology and meta-model.
tion. Nevertheless, the works present neither a domain- In Figure 3, the meta-methodology represents a guiding
independent SLS nor a domain-specific SLS. procedurein order to transform the domain-independent SLS
into a domain-specific SLS. It starts to create a separation
of the design space into design aspects and a separation
Our paper differs to existing work since it is the first using of the design aspects into steps. Design aspects divide
meta-modeling in order to describe a domain-independenthe design space at a higher abstraction level, as seen in
SLS. Inthe embedded domain, meta-modeling has been studrigure 2. In contrast, a step, system specification, param-
ied to transform from the unified markup language (UML) eter and constraint represent a lower abstraction level. As
to SystemC at the meta-model level [13]. This guaranteesnentioned before, the specification of design views allows
reuse of models and unifies a definition of the transformatiorto model orthogonal design functionalities. Referring to
rules. In [14], meta-modeling enables heterogeneous rmodelFigure 3, an executable DSE methodology is built through
of computations during modeling. In [15], meta-modeling an algorithmic ordering of the design aspects and steps.
is used to improve the model semantics and to enable typeFfhat means, dependencies, loops, branches, etc. realize

Meta-modeling
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Fig. 4: Meta-model for the proposed SLS.

depicted in Figure 5 (left). Tha-chart models system-level

Revise design goals and aspects

4 L design and exploration in the embedded system domain. As

Bring steps mentioned before, the proposed meta-methodology is used

in algorithmic order to select appropriate design aspects, views, steps, etc. In
I T addition, an algorithmic order of the aspects and steps must

- be defined. Tha-chart model is an instance of the proposed
Execute design aspects j> meta-model. Referring to Figure 5 (left), a design aspect is
and steps represented by A-chart instance allowing to define steps in
Fig. 3: Meta-methodology for the proposed SLS. three design views. The administration view considersstask
for planning, monitoring, and control. Computation retti®
an execution order of aspects and steps in an algorithmicode execution. Communication includes the design of data
manner. Moreover, design tools are determined in all stepstorage and data exchange between components. Further-
solving the relevant design problems. A design parametemore, concentric bands underline the five steps of a unified
represents a possible description of the structure, behavi design process. We refer to [4] for a detailed explanation of
and physical realization of a system. Aiming atimprovedtoo the A-chart.
results, suitable design tool parameters are also comsider  Referring to Figure 5 (left), the exemplary SLS starts
In each step, the design tools are parameterized and egecutevith modeling and partitioning the design limited to the
using the system specifications. From the DSE results, Wlesigcommunication view. After scheduling and allocation, the
goals and aspects can be revised. Finally, the design spadgSE results are validated. The allocation and validatiepst
is explored by varying the design parameters based on thare iteratively traversed aiming at improved DSE. Similar
algorithmic order and DSE strategy, such as exhaustive oto [16], the derived network-on-chip (NoC) aspect focuses o
heuristic search. finding suitable NoC topology parameters, such as number of
In Figure 4, the proposed meta-model, described via theows, columns, and modules per router. Furthermore, meta-
UML class diagram, represents a model to build domain-model instantiation examples of the domain-specific SLS
specific SLSs. The meta-model forms a fundament or kerneére illustrated in Figure 5 (right). The allocation step and
of an EDA environment presented in Section V. Hence, it loop node correspond to a node element in the meta-model.
includes the definition of the modeling language describedn allocation, exemplary properties are a “Rows” parameter
via meta classes. Referring to Figure 4, an Element containand the communication view. Moreover, a transition from
Properties and Transitions from/to Elements. A Transitionloop to allocation implies an algorithmic order realizing a
between two Elements is used to model a unidirectionalpart of the DSE methodology. The instantiation of an aspect
dependency and a Property represents a system specifjcatids also shown.
design parameter, design constraint, or additional inferm C. Intearation in Specification Lanauaces
tion added to an Element. Moreover, an Aspect and Node™ 9 P guag
inherit from Element. An Aspect includes one or several Specification languages, such as SDL and SystemC, do
Nodes. Aspects can be nested to be resolved recursivelyot currently support the proposed SLS. By doing so, an
This allows to reduce model complexity and to improve the advantage would be to keep the system designers more aware
reuse of already modeled aspects. Finally, a Node repsesendf the design space in early design stages. The organization
an executable Element, such as a step, loop and branch nodeto design aspects helps the designer to cope with a complex
which are necessary to build an algorithmic order of aspectsystem-level DSE. In addition, system designers need to
and steps. structure and arrange their designs into design views. This
brings greater attention to orthogonal system functiopali
such as computation, communication, and administration.
In the following, an instantiation of a domain-specific SLS Given the design goals and constraints, it will be more
is illustrated with the help of the\-chart [4] model, as evident that a systematic variation of design parameters is

B. Domain-Level
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Fig. 5: Example of a domain-specific SLS modeled via Xhehart [4] (left). Meta-model instantiation examples o tthomain-specific SLS (right).

necessary to reach optimal parameter combinations. Hence,

the problem of selecting effective search strategies tsnget

into the focus. Furthermore, an SLS realizes a comprehensiv

view on available design parameters. Hence, it becomes

easier to improve design time and quality by detecting

insignificant and interfering parameters. This helps syiste

designers to focus on relevant design and tool parameters. T
The integration aims at a coexistence or merger of the &W

proposed SLS and existing specification languages. For <

example, SDL and SystemC contain module concepts that > Middle-End

help to embed system specifications into an executable node HPC

of the proposed meta-model. In SDL, systems include a EHE :(> a

hierarchy of agents called processes and blocks. In SystemC
the Main is the starting point of a SystemC specification.
A Main contains several modules and signals to model
communications between modules. In the proposed SLS,
a node encapsulates an execution of design tools solving
design problems, such as scheduling or allocation tasksgonsidered by including node elements, such as loop, branch
These tools produce new or modified system specificationgbort, etc. Referring to Figure 6, a parser is responsibsle fo
further used as tool input. Depending on the design tool,a syntactic analysis of an XML file representing the SLS.
different system specifications, such as of applicationsn the middle-end, the SLS is interpreted and an execution
architectures, application mappings, validation restitsl  order is determined via as soon as possible scheduling. A
configurations, etc. are produced and consumed. Hence, @rrect execution of each node can be checked through the
node element can enclose multiple system specifications. debugger. In the currentimplementation, each node execute
IV. ELECTRONIC DESIGN AUTOMATION ENVIRONMENT & command line tool solving specific design problems.
Hence, parameters, constraints, and system specifications
In the following, an EDA environment is briefly introduced are assigned via command line arguments. In the back-
allowing to model and execute domain-specific SLSs base@nd, the nodes are executed in a distributed computing
on theA-chart and presented in Section Ill. In Figure 6, the environment (High Performance Cluster, HPC). Depending
tripartite structure consisting of front-, middle- and kac on the purpose, different output formats are created during
end is depicted. In the EDA environment, an SLS is graph-node execution. DSE results are automatically analyzed and
ically defined and automatically processed by running thevalidated as defined in the SLS. Further details of the EDA
executable node elements. The nodes communicate via p@nvironment are out of the scope of the paper.
rameters and XML-based input/output formats representing
system specifications. The specifications address very earl
system-level design by using coarse-grained represengati  The following case study demonstrates the usage of ex-
such as fixed execution time and high-level task graphs. Irecutable SLSs in order to realize a design flow for the
the graphical front-end, designers are able to create SL®%ieterogeneous multicluster architecture [17]. The SL8s ar
via CAD. Dynamic search and exploration strategies areexecutable on the EDA environment presented in Section IV.

Back-End

Fig. 6: EDA environment.

V. DESIGN FLow CASE STUuDY
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Fig. 7: The heterogeneous multicluster architecture model clusters and solving the optimization problem via a

GA [18];
) The design aspect “IP Core Mapping” places IP cores

in an 1-ary n-mesh NoC constrained by the number
A. Application and Architecture Model of modules at each router. The optimization problem
is solved via a GA [16];
Both design aspects aim at finding suitable behavioral
schemes from a selection via simulation. “NoC arbi-
tration” compares a locally fair with a globally fair
arbitration scheme. In addition, flit-based and packet-
based switching are considered [19]. “Multicluster
load balancing” compares different estimators of clus-
ter load, such as response time and queue size, used
in the load balancing scheme of the AU.

In the paper, the detailed explanations will be limited te on
design aspect and the variation of a single design parameter

The models consider functionalities of the communication, 4)
computation and administration view defined in the

chart [4]. The application model includes multiple, con-
currently running applications and threads, respectivily
thread is represented by a high-level task graph and it
sequentially executes tasks. Threads are only synchibnize
before or after execution. Then, a task is an atomic kernel
exclusively executing on an intellectual property (IP)esor

e.g., processor core, memory interface, controller intef

etc. Tasks produce and consume chunks of data access&€d Exemplary SLS and Test Results
via shared memory. Side effects are excluded by preventin

. . %thefollowing, multicluster dimensioning has been stddc
access to external data during computation.

A X . as exemplary SLS. Detailed explanation of the approach
As shown in Figure 7, the architecture model is a hetero-, 4 henchmark results can be found in [18]. Referring

geneous set of multiprocessor system-on-chips (MPSoC Figure 9, the example focuses on the design aspect of

and clusters, respgctiv_ely. The administra_tive unit (AU) creating a suitable computation infrastructure for thereet
represents an application processor and includes a loageneoys multicluster architecture. Hence, DSE is limited t
balancer aiming at equally distributing thread loads ansbng o computation view of tha-chart. The same benchmark

the clusters. Moreover, an MPSoC contains heterogeneous,q simulation setup given in [18] has been chosen. The
types and numbers of IP cores. In the model, each MPS0G,qejing and partitioning” step serves as a starting point
contains @ NoC connecting the IP cores. Moreover, eachy;iiqyt any further purpose. In the “provisioning” stepeth
cIuster_ includes a contr_o! processor (CP) _responS|bIe tQs’pecifications of the target application and the optional IP
dynamlcallyschedule arriving tasks to the available IRsor .o are used as input for the parallelism analysis [20].
The CPs are directly connected to the AU. The estimated parallelism values represent the numbers and
B. The Design Flow types of IP cores necessary to execute the applicationse Sin
. o ) . multiple applications are concurrently running on the ¢rg
The design flow, shown in Figure 8, lists several designgchitecture, the parallelism values are used to dimension
aspects and e_xecutable SITSs, respectlvely, to createrahete i, processing elements (PEs) in the clusters and MPSoCs,
geneous multicluster architecture. According to Sectlan | respectively. All clusters are constrained to a maximumnum
the five domain-specific SLSs are modeled via thehart. o1 of PEs per cluster (maxPEs) used as a design parameter
They are arranged by the explored parameter types, morg, the SLS. Further parameters are out of the scope of the
specifically with the help of parameters of the design tool, naner. As mentioned before, the optimization problem is
structural, behaw_oral and phy5|9al design. Each SLSzesli  ¢qjved via a GA. The subsequent “scheduling” step performs
a part of the design flow organized as follows: application mapping via simulation. The scheduling result
1) The genetic algorithm (GA) sensitivity aims at finding are analyzed in the “validation” step. Referring to Figure 9
the best tool parameters for two GAs each solvinga loop node is inserted to increment the design parameter
the multicluster dimensioning and IP core mapping from two to six. The selected parameter interval depends on
problems; the available numbers and types of PEs defined in the chosen
2) The design aspect “Multicluster Dimensioning” cre- benchmark setup. Figure 10 shows the validation results in
ates a heterogeneous multicluster architecture byterms of number of clusters / PEs and the thread response
distributing estimated application mappings amongtime. The response time is defined as time from the request

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4 21



CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

Administration

Iterate over max.
#PEs per cluster
v

specification languages, such as SDL and SystemC, into
the executable SLS. Furthermore, an integrated developmen
environment (IDE) should be provided implementing the

proposed meta-modeling and integrating the tool chain. The
purpose is to create and execute domain-specific SLSs with
IDE support. Additional research is necessary to introduce
executable SLSs in other domains, such as in communica-

O
l/ \
N ﬁ Validation

o s
o, u~ Aljocation &
2 A , .9 [1]
'OG Schedulin® §
(é,‘ Provisionin® §
) Yoge): Y § 2]
> deling and Partitio™ [9) [3]
Fia. 9: Multicluster dimensionina SLS and desian aspeabeetively. [4]
thread response #PEs #iclusters
§ 3 [5]
=)
|25 6]
£,
_g 15 v
N o1
3 4 [7]
E 0.5
2 o0 . , , .
2 3 4 5 6 [8]
Maximum number of PEs per cluster
Fig. 10: Test results via parameter exploration for the ‘fidlster
Dimensioning” SLS. 9]
of a thread until its end. All values have been normalized.
In the setup, the best tradeoff is reachedfarx PEs = 4
resulting in four clusters and 13 PEs. The slightly varying
cluster configurations fomaxzPEs = {4,5,6}, not shown
in Figure 10, are due to the heuristic nature of a GA. [11]

VI. CONCLUSIONS AND OPEN TOPICS

In the paper, an executable SLS is proposed in order to cop@zl
with an increasing number of design parameters and system
specifications during the design cycle. An SLS representg$13]
an executable DSE methodology and encapsulates syste A
specifications. The aim is to formalize and automate desig
flows in order to scale to larger and more complex embedded
systems. SLSs should not be limited to certain embed-ll
ded system types. Hence, SLSs need to be standardizéd'5
across tools, designers, and domains. Therefore, a meta-
methodology, as well as a meta-model are developed definin
a domain-independent SLS. Hence, an EDA environment i
presented allowing to graphically create and automaticall
execute embedded domain-specific SLSs. Finally, a casq ,,
study shows the feasibility of the proposed SLS. Therein,
several SLSs demonstrate a realization of a design flow for
the heterogeneous multicluster architecture. [18
In the rest of the paper, a discussion of open topics outlines
the future work. So far, an executable SLS can be graphically
defined in the introduced EDA environment. Nevertheless
many designers prefer textual programming languages, but
according tool support, such as a parser, interpreter, ané0]
debugger, is a challenging task. This is left out for future
work. Another open topic is to embed industry-relevant

6]
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tions and sensor networks.
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