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Abstract—This paper presents a novel VLSI architecture for 

unsupervised image segmentation. The circuit is a hardware 

implementation of fuzzy c-means algorithm for the 

unsupervised clustering. The number of segments is 

determined by Xie-Beni index. An efficient pipeline circuit is 

proposed for the computation of the index. The circuit is used 

as a hardware accelerator of a softcore processor in a system-

on-programmable chip for physical performance measurement. 

Experimental results reveal that the proposed architecture is 

an effective alternative for realtime segmentation with low 

error rate and area costs. 

Keywords-FPGA; Image Segmentation; Unsupervised 

Clustering; System-on-Chip. 

I.  INTRODUCTION 

The goal of image segmentation is to cluster image 

pixels into multiple segments. The segmentation results can 

be used to identify regions of interest and objects in the 

scene for the subsequent image analysis or annotation. The 

fuzzy c-means algorithm (FCM) [1] is one of the most used 

techniques for image segmentation [2][3]. The effectiveness 

of FCM is due to the employment of fuzziness for the 

clustering of each image pixel.  

Nevertheless, there are some drawbacks to employ the 

FCM algorithm. The first is its high computational 

complexity for membership coefficients computation and 

centroid updating. In addition, the size of membership 

matrix grows as the product of data set size and number of 

segments. As a result, the corresponding memory 

requirement may prevent the algorithm from being applied 

to large images. Finally, the number of segments should be 

pre-specified. Therefore, it is difficult to use FCM for the 

fully unsupervised realtime image segmentation. 

A number of algorithms [4][5] have been proposed for 

accelerating the computational speed and/or reducing 

memory requirement of FCM. Most of these algorithms are 

implemented by software, and only moderate acceleration 

can be achieved. In [6][7], hardware implementations of 

FCM are proposed. However, the design in [6] is based on 

analog circuits. The clustering results therefore are difficult 

to be directly used for digital applications. Although the 

architecture shown in [7] adopts digital circuits, the 

architecture aims for applications with only two classes. The 

architecture may then not be useful for applications 

demanding the clustering of larger number of classes. 

With the above observation, our earlier work [8] 

introduced a digital FCM architecture which can process 

more than two classes. Although the architecture is effective, 

its area cost is very high. The large hardware resource 

consumption arises from the employment of broadcasting 

scheme for membership coefficients and centroid 

computation at centroid level. As a result, the area cost 

grows with the number of segments. The FCM architecture 

may then only be used for clustering applications with small 

number of segments. Moreover, the architecture does not 

provide the function of determining the number of segments. 

The FCM architecture presented in [9] is able to reduce the 

area cost. However, the number of classes still needs to be 

pre-specified. There architectures are therefore not suited 

for the implementation of fully unsupervised realtime image 

segmentation.  

The goal of this paper is to present a novel FCM 

architecture for fully unsupervised realtime image 

segmentation. In order to eliminate the large storage size for 

membership matrix, our implementation combines the usual 

iterative updating processes of membership matrix and 

cluster centroid into a single updating process. In our 

approach, the updating process is divided into three steps: 

pre-computation, membership coefficients updating, and 

centroid updating. The pre-computing step is used to 

compute and store information common to the updating of 

different membership coefficients. This step is beneficial for 

reducing the computational complexity for the updating of 

membership coefficients. 

The membership updating step computes new 

membership coefficients based on a fixed set of centroids 

and the results of the pre-computation step. The weighted 

sum of data points and the sum of membership coefficients 

are also updated incrementally here for the subsequent 

centroid computation. This incremental updating scheme 

eliminates the requirement for storing the entire membership 

coefficients. 

Following the updating process of membership matrix 

and cluster centroid, a cluster validation process is 

performed to find the optimal number of segments. The Xie-

Beni index [10] is employed for this purpose because of its 

simplicity and effectiveness. Partial results of the updating 

process can be used for the computation of this index. In 

addition, an efficient pipeline architecture is proposed to 

further enhance the throughput of the computation.  
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For each class number, the updating process of 

membership matrix and cluster centroid, and the cluster 

validation process are performed sequentially. The resulting 

Xie-Beni index is stored, and compared with that associated 

with other class numbers. The class number with minimum 

index value is then selected as the class number for the 

image segmentation. 

The proposed architecture has been implemented on 

field programmable gate array (FPGA) devices [11] so that 

it can operate in conjunction with a softcore CPU. Using the 

reconfigurable hardware, we are capable of constructing a 

system on programmable chip (SOPC) system for the 

physical performance measurement. Experimental results 

show that the proposed architecture has the advantages of 

high speed computation, low area cost and low error rate for 

image segmentation. In addition, because of its effectiveness, 

the proposed architecture can also be directly used for other 

clustering applications where the number of clusters is 

desired to be determined in an unsupervised manner such as 

spike sorting [12]. 

The remaining parts of this paper are organized as 

follows: Section 2 gives a brief review of the FCM 

algorithm. Section 3 describes the proposed FCM 

architecture. Experimental results are included in Section 4. 

Finally, the concluding remarks are given in Section 5. 

II. PRELIMINARIES 

This section gives a brief review of the FCM algorithm. 
Let X = {x1, …, xt} be a data set to be clustered by the FCM 
algorithm into c classes, where t is the number of data points 
in the design set. Each class i, 1 ≤ i ≤ c, is identified by its 
centroid vi. For the image segmentation applications, X is an 
image to be segmented, xk is a block in X, t is the number of 
blocks in X, and c is the class number. The goal of FCM is to 
minimize the following cost function: 
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where m

kiu ,
 is the membership of xk in class i, and m > 1 

indicates the degree of fuzziness. The cost function J is 

minimized by a two-step iteration in the FCM. In the first 

step, the centroids v1, ..., vc, are fixed, and the optimal 

membership matrix is computed by 
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After the first step, the membership matrix is then fixed, 

and the new centroid of each class i is obtained by 
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 Figure 1. The proposed FCM architecture. 

 

The FCM algorithm requires large number of floating 

point operations. Moreover, from (1) and (3), it follows that 

the membership matrix needs to be stored for the 

computation of cost function and centroids. As the size of 

the membership matrix grows with the product of t and c, 

the storage size required for the FCM may be impractically 

large when the data set size and/or the number of classes 

become high. 

In the FCM, the number of classes c needs to be pre-

specified. For the fully unsupervised image segmentation, 

the class number also needs to be determined. One way to 

find the optimal class number is to evaluate the clustering 

results for each c based on a cluster validation index. The 

class number producing the optimal index value is selected 

as the actual class number for image segmentation. A 

commonly used cluster validation index is the Xie-Beni 

index [10], which is defined as 
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where J is the cost function of FCM defined in (1). 

III. THE PROPOSED ARCHITECTURE 

As shown in Figure 1, the proposed FCM architecture can 

be decomposed into six units: the pre-computation unit, the 

membership coefficients updating unit, the centroid 

updating unit, the cost function computation unit, the on-

chip centroid RAM, and the control unit. 

A. Precomputation Unit 

The pre-computation unit is used for reducing the 
computational complexity of the membership coefficients 
calculation. Observe that (2) can be rewritten as 

  1)1/(2
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Given xk and centroids v1, ..., vc, membership coefficients 

ku ,1 , ..., 
kcu ,

 have the same .kP  Therefore, the complexity 

for computing membership coefficients can be reduced by 

calculating kP  in the pre-computation unit. For the sake of 

simplicity, we set m = 2 for our design.  
Figure 2 shows the architecture of the pre-computation 

unit, where the xk is obtained from the on-chip memory of 
the SOPC system, and vi is obtained from the on-chip 
centroid RAM of the FCM architecture. As depicted in 
Figure 2, the circuit in its simplest form can be divided into 
two stages, which involve the squared distance computation, 
and inverse computation, respectively. The circuit can easily 
be separated into multistage pipeline for enhancing the 
throughput. 

B. Membership Coefficient Updating Unit 

Figure 3 depicts the architecture of the membership 

coefficients updating unit based on (5). It can be observed 

from Figure 3 that, given a training data xk, the membership 

coefficients updating unit computes 2

,kiu  for i= 1,..., c, one at 

a time.  Similar to the pre-computation unit, the xk remains as 

the input until all the centroids vi, i= 1,...,c, have been fetched 

from the on-chip centroid RAM for the computation of 2

,kiu . 

Based on (5) with m = 2, it follows that the circuit contains 3 

multipliers and 1 divider.  Similar to the precomputation unit 

architecture, the circuit can be separated into multistage 

pipeline for efficient computation. 

C. Centroid Computation Unit 

The centroid updating unit incrementally computes the 

centroid of each cluster. The major advantage for the 

incremental computation is that it is not necessary to store 

the entire membership coefficients matrix for the centroid 

computation. The centroid updating unit computes the 

incremental centroid when xk and 
2

,kiu  are received, and 

clusters will only be updated when the final centroid is 

generated after completing the computation of last training 

vector. Thus, no membership coefficients matrix is needed. 

Define the incremental centroid for the i-th cluster up to 

data point xk as 
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When k = t, vi(k) is then identical to the actual centroid vi 

given in (3). 
Figure 4 shows the architecture of the centroid update 

unit, which contains a multiplier, an intermediate on-chip 

RAM and a divider. The unit has three inputs: centroid 

index i, training vector xk and membership coefficient 
2

,kiu . 

As shown in Figure 4, both kki xu2

,  and 
2

,kiu  are used as the 

inputs to the intermediate on-chip RAM  for computing vi(k).  

D. Cost Function Computation Unit 

Similar to the centroid updating unit, the cost function unit 
incrementally computes the cost function J. Define the 
incremental cost function J(k) up to data point xk as 

J(i, k) = 
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Figure 2. The architecture of precomputation unit. 
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Figure 3. The architecture of membership coefficient updating unit 
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Figure 4. The architecture of centroid computation unit 
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Figure 5. The architecture of cost function computation unit 
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Figure 6. The architecture of on-chip centroid RAM 
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As shown in Figure 5, the cost function computation 

circuit receives 
2

,kiu  and 
2

ik vx  from the membership 

coefficients updating unit. The product 
22

, ikki vxu  is then 

accumulated for computing J(i, k) in eq. (7). 
When i = c and k = t, J(i, k) then is identical to the actual 

cost function J given (1). Therefore, the output of the circuit 
becomes J as the cost function computations for all the 
training vectors are completed. 

E. On-Chip Centroid RAM 

This unit is used for storing the centroids for FCM 
clustering. An shown in Figure 6, there are two memory 
banks (Memory Bank 1 and Memory Bank 2) in the on-chip 
centroid RAM. The Memory Bank 1 stores the current 
centroids v1, ..., vc. The Memory Bank 2 contains the new 
v1, ..., vc obtained from the centroid updating unit. Only the 
centroids stored in the Memory Bank 1 are delivered to the 
pre-computation unit and membership updating unit for the 
membership coefficients computation. The updated centroids 
obtained from the centroid updating unit are stored in the 
Memory Bank 2.  Note that, the centroids in the Memory 
Bank 2 will not replace the centroids in the Memory Bank 1 
until all the input training data points xk, k = 1, ..., t, are 
processed. 

It can also be observed from Figure 6 that there are Q 
cells in each memory bank, where Q is the upper limit of the 
number of centroids c. Therefore, the proposed FCM circuit 
is able to conduct image segmentation with number of 
classes c less than or equal to Q. 

F. Xie-Beni Index Computation unit 

The goal of Xie-Beni Index computation unit is to 

compute XB(c) given in (4). The numerator of XB(c) is 

actually the cost function. Hence, we can directly use the 

output of the cost function unit as the numerator of XB(c).  

The denominator contains mini,k ||vi-vk||. The 
corresponding circuit should be implemented in the cluster 
validity index computation unit. Although the direct 
implementation of mini,k ||vi-vk|| is possible, the time and area 
complexity would be O(c

2
). Therefore, the complexities 

would be very high when c becomes large. The proposed 
circuit is able to reduce the overhead. Figure 7 shows the 
architecture of Xie-Beni index computation unit, which 
contains the minimum computation unit, a multiplier, and a 
divider. The minimum computation unit contains an efficient 
pipeline for the computation of mini,k||vi-vk||, as depicted in 
Figure 8. The circuit can be viewed as a c–stage pipeline, 
where each stage contains one processing module (PM). The 
centroids are delivered to the pipeline from on-chip centroid 
memory one at a time. Each centroid will traverse through 
the pipeline. As shown in the figure, the latest input entering 
the pipeline will be broadcasted to all the PMs. Let 

Dmin(vp)=
2

, ||||min kppkk vv  .         (9) 

Suppose now the centroid vp arrives at PM i, and the 

centroid vq is the newest centroid entering the pipeline. In 

the PM i, the distance between vp and vq will be computed, 

and will be compared with the current Dmin(vp). If ||vp-vq||
2
 < 

current Dmin(vp), then ||vp-vq||
2 

will be the new current 

Dmin(vp). As vp reaches stage c of the pipeline, the current 

Dmin(vp) becomes the actual Dmin(vp). When all the centroids 

have reached the stage c, the actual mini,k ||vi-vk|| can be 

computed by 
2||||min ji

ji
vv 


 = minp Dmin(vp).        (10) 

The time and area complexities of the proposed pipeline 

are only O(c). The proposed architecture is therefore 

effective for Xie-Beni index computation. Finally, we note 

that, because it is necessary to compute the XB(c) for various 

c values, the pipeline actually will be implemented in Q 

stages, where Q is the upper bound of the c value. 
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Figure 7. The architecture of Xie-Beni index computation unit. 
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(a) “Strawberry” 

 

   
(b) “Pear & Cup” 

 
Figure 9. The original images and their segmentation results produced by 
the proposed FCM architecture: (a) “Strawberry,” (b) “Peer & Cup.” 

 

IV. EXPERIMENTAL RESULTS 

This section presents some physical performance 

measurements of the proposed FPGA implementation. The 

design platform of our system is Altera Quartus II 8.0 with 

SOPC Builder and NIOS II IDE.  
Figures 9 and 10 shows the segmentation results of the 

proposed FCM architecture with Q=10. Therefore, the circuit 
is able to conduct fully unsupervised segmentation for 
images with number of classes c less or equal to 10. 

   
(a) “Gulf Balls” 

 

 
(b) “Fruits” 

 
Figure 10. The original images and their segmentation results produced 

by the proposed FCM architecture: (a) “Gulf Balls,” (b) “Fruits.” 
 

Table I. The estimated and actual number of classes, and the segmentation 
success rate of the proposed FCM architecture for the images shown in 

Figures 9 and 10 

Images Strawberry Peer & Cup Gulf Balls Fruits 

Est. Class 

Number ĉ 
2 3 4 4 

Actual Class 
Number c 

2 3 4 4 

Segmentation 
Success Rate 

98.97% 97.13% 94.77% 98.87% 
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Table II. The CPU time of various FCM implementations 
 

Q Proposed 
Architecture 

Basic Software 
FCM 

Fast Software 
FCM [5] 

2 15.47 ms 256.20 ms 62.40 ms 

3 30.97 ms 709.45 ms 151.65 ms 

4 50.05 ms 1404.70 ms 272.65 ms 

5 69.11 ms 2404.70 ms 428.85 ms 

6 88.20 ms 3720.30 ms 613.05 ms 

7 107.28 ms 5410.90 ms 825.45 ms 

8 126.36 ms 7535.90 ms 1067.78 ms 

9 145.46 ms 10149.15 ms 1345.03 ms 

10 164.55 ms 13389.75 ms 1648.23 ms 

 

All the images have the same dimension 320 × 320. The 

images are separated into 2 × 2 blocks for FCM training and 

segmentation. Table 1 shows the estimated and actual 

number of classes, and the segmentation success rate of 

these images. The segmentation success rate of an image is 

defined as the number of pixels which are misclassified 

divided by the total number of pixels of the image. From 

Figures 9 and 10, and Table 1, it can be observed that the 

proposed architecture is able to correctly identify the 

number of classes with high classification success rate. 

The speed of various FCM implementations is revealed in 

Table 2. The target FPGA device is Altera Stratix III 

EP3SL150F1152C2N [13]. The speed of the proposed 

architecture is the CPU time of the softcore NIOS processor 

[14] using the proposed architecture as the hardware 

accelerator. The clock rate of the NIOS processor is 75 MHz. 

The software implementations are running on 2.8 GHz Intel 

Pentium D processor. Two software implementations are 

considered: the basic FCM implementation, and the fast 

FCM implementation [5]. 
Figure 10 shows the speedup of the proposed architecture 

over the fast FCM [5]. It can be observed from Table 2 and 
Figure 11 that the proposed architecture has significantly 
lower computation time as compared with its software 
counterparts. Although the NIOS processor is running at a 
lower clock rate as compared with Intel CPU (i.e., 75 MHz 
versus 2.8 GHz), it still has higher computational speed 
because of the efficiency of the proposed architecture for the 
membership matrix and centroid computation. 

The hardware utilization of the proposed architecture for 
various Q values is shown in Table 3 for Altera Stratix III 
EP3SL150F1152C2N. It can be observed from the table that 
the consumption of ALMs and DSP block grow linearly with 
Q. Nevertheless, only a small fraction of hardware resources 
are consumed. In particular, when Q=10, only 20 %, 27 % 
and 19% of the ALM, block memory bits, and DSP blocks 
are consumed by the proposed architecture.  

Finally, Table 4 compares the hardware utilization of the 
proposed architecture with that of the architecture in [8] with 
block size 2×2. The target device is Altera Cyclone III 
EP3C120. The logic elements (LEs) are the hardware 
resources considered in the table. 

 

 
Figure 11. The speedup of the proposed architecture over the fast FCM in 
[5]. 

 
From Table 4, we can see that the proposed architecture 

has significantly lower utilization of LEs as compared with 
the architecture in [8]. In fact, the proposed architecture is 
able to operate up to Q=64 with the consumption of only 
40% of LEs of the target FPGA. By contrast, the architecture 
in [8] consumes almost all the LEs when Q reaches 32. All 
these facts demonstrate the effectiveness of the proposed 
architecture. 
 

Table III. The hardware utilization of the proposed architecture. 
 

Q ALMs Block Memory 
Bits 

DSP Block 
Elements 

2 10738/56800 

(18%) 

1535264/5630976 

(27%) 

40/384 

(10%) 

3 10814/56800 

(19%) 

1535840/5630976 

(27%) 

44/384 

(11%) 

4 10893/56800 
(19%) 

1535904/5630976 

(27%) 

48/384 
(13%) 

5 11056/56800 

(19%) 

1536992/5630976 

 (27%) 

52/384 

(14%) 

6 11199/56800 

(19%) 

1537056/5630976 

(27%) 

56/384 

(15%) 

7 11308/56800 

(19%) 

1537120/5630976 

(27%) 

60/384 

(16%) 

8 11405/56800 

(20%) 

1537184/5630976 

(27%) 

64/384 

(17%) 

9 11612/56800 

(20%) 

1539296/5630976 

(27%) 

68/384 

(18%) 

10 11793/56800 
(20%) 

1539360/5630976 

(27%) 

72/384 
(19%) 

 
Table IV. The LE utilization of various architectures. 

 

Q Proposed Architecture 
 

Architecture in [8] 

4 16553/119088 (14%) 21084/119088 (18%) 

8 18504/119088 (16%) 35423/119088 (30%) 

16 22568/119088 (19%) 59868/119088 (50%) 

32 30827/119088 (26%) 114117/119088 (97%) 

64 47412/119088 (40%) N/A 
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V. CONCLUDING REMARKS 

Experimental results revealed that the proposed 
architecture is able to correctly estimate the number of 
classes of an image with segmentation success rate above 
94%. For the cases where the upper bound of the number of 
classes is 10, the proposed architecture consumes less than 
30% of the ALMs, block memory bits, and DSP blocks of 
the Stratix III FPGA device. It also attains speedup of 10 
over its software counterpart running on the Intel general 
purpose CPU. The proposed architecture, therefore, is 
effective for unsupervised image segmentation with low area 
costs and high computation speed. 
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