
ASIP for Multi-Standard Video Decoding

Jae-Jin Lee, KyungJin Byun and NakWoong Eum
Multimedia Processor Research Team

Electronics and Telecommunications Research Institute
Daejeon, Korea

{ceicarus, kjbyun, nweum}@etri.re.kr

Abstract—Multiple international video standards in the market
have been developed successfully for many commercial
products. Application-specific instruction processor is a new
design methodology to develop optimized processor. This
paper proposes a new application-specific instruction set
processor based on 6-stage pipelined dual issue VLIW+SIMD
architecture and compiler for multi-standard video decoding.
The processor takes 130K in gate count at 125MHz in 130nm
technology. Compared to the existing ARM processor, the
proposed processor results in about 20% speed improvement
as well as smaller hardware complexity.

Keywords-multimedia processor; application-specific
instruction processor; video decoding.

I. INTRODUCTION

In the implementation of embedded systems, the
designers confront with decision of architectures which is
combination of ASICs [1], FPGAs [2] , ASIPs (Application
Specific Instruction-Set Processors) [3], DSPs [4], and GPPs
(general purpose processors) [5]. These decisions are mainly
based on performance, power consumption, flexibility and
silicon area of systems. ASIPs are powerful solutions when
the contradicting requirements such as performance and
flexibility have to be jointly satisfied with a single task
block. The flexibility of ASIP is caused by the necessity to
support multi-standard video codecs such as AVS [6], VC-1
[7], and H.264 [8] in a single platform. On the other hand,
next generation video codecs require extreme demands on
throughput and processing of continuous data streams at high
rates.

 Video compression technologies have been dramatically
evolved by many researchers and industries. Successful
multiple international standards in the market have been
released for last two decades. In particular, ISO/IEC
WG11/MPEG and ITU-T SG16/VCEG have developed
MPEG-1/2/4 and H.261/262/263 to compress raw digital
videos since early 1990 [9][10][11]. Subsequently, the
MPEG and VCEG jointly standardized the H.264/AVC [8]
which is suitable for various network environments and
gives the highest coding efficiency in 2003. In recent years,
various video codecs such as VC-1 and so on have been
commercialized, aside by the standard codes developed by
the international standardization bodies. This leads a huge
amount of multimedia contents to be compressed with the

increasing number of video coding techniques and
distributed over various networks and devices.

ASIP is a new design methodology to develop optimized
processors for specific applications by adding specific
instructions into base instructions for eliminating functional
hot spot of applications [3]. In terms of video decoding
[12][13][14], the ASIP has higher performance than DSP
because of its optimized application specific instructions, and
has better flexibility and reusability than ASIC because any
applications can be implemented with software.

The remainder of this paper is organized as follows. In
the next section, ASIP and compiler for multi-standard video
decoding are briefly overviewed. In Section 3, we have
evaluated the proposed ASIP. Finally, we summarize the
paper and conclude it mentioning future works.

II. ASIP AND COMPILER

As shown in Figure 1, the proposed ASIP providing a
separate data and program memory (Harvard architecture)
consists of dual issue VLIW (Very Long Instruction Word) +
SIMD (Single Instruction Multiple Data) core, program/data
cache interface, general purpose register file consisting of 16
32-bit registers, special purpose register file for SIMD
instructions and bus interface to access external memory.

Figure 1. Block diagram of ASIP

The behavior, the structure, and the I/O interface have
been described using LISA (language for instruction set
architecture) [15]. It parses the description and generates the
tools and models necessary for software design and
architecture implementation such as assembler, dis-
assembler, linker, ISS (Instruction Set Simulator). C
compiler has been generated using the C-compiler designer
tool of CoWare [16]. It provides a rich set of optimization

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

and restructuring engines that include typical high level
optimizations such as copy and constant propagation, code
motion, loop unrolling, loop fusion, and etc.

A. Pipeline and Bypass Logic
The proposed architecture is based on a pipeline with 6

stages as shown in Table I. The pipeline is fully bypassed,
i.e., instructions reading from register R can directly follow
the instruction writing to the same register.

TABLE I. PIPELINE OF THE PROPOSED PROCESSOR

Stages Descriptions

PF(PreFetch) Branch address or zero-overhead loop detection

FE(Fetch) Fetch from the instruction memory

DC(DeCode) Decode the instruction and read the operands

EX(EXecution) Execute the ALU or logical operations

MEM(MEMory) Read or write the memory

WB(WriteBack) Write the results back into registers

The bypass logic [17][18] ensures a consistent read

access between the instructions and makes sure that the latest
result for a register is read by the instruction. A bypass is
required when an instruction X in the execute stage (EX) is
producing a result that is read by the following instruction Y.
Instruction Y is at that time in the decode (DC) stage and
requesting the result. A bypass allows instruction Y to access
the result before it is actually written back into the main
register file.

The MAC (Multiply-Accumulate) is very beneficial to
speed-up many different type of applications. As shown in
Figure 2, the proposed architecture has the pipelined dual
cycle MAC supported by C compiler by sharing multiplier.
This results in efficient micro-architecture from an area cost
point of view.

mul

acc

alu_in1 alu_in2 alu_in3

postoperation_acc

MAC_out

Stage 1

Stage 2

Pipeline Register

MUL
MAC

Figure 2. Dual cycle MAC

Figure 3 provides a block diagram of the bypass logic. It
can be seen that the main register file is accessed in the DC
stage. The operands are immediately pushed into the pipeline
registers “op1”, “op2” and “op3”. If a custom instruction
would need these operands already in the DC stage, the
values can also be written into a signal instead of a register.
Thus, those signals can be used to any combinatorial data-
path in the DC stage. In EX stage, the latest operand value is
written into the signal “alu_in1”, “shifter_in1” and
“shifter_in2”. Once the result is computed the
“writeback_dst” operation need to be activated (not shown
here) and the register address “BPR” as well as the writeback
value “WBV” need to be written.

B. Instruction Set
The Instruction set of the proposed processor consists of

basic load/store, arithmetic, logic, branch and trap
instructions, and multimedia extensions for multi-standard
video decoding as shown Table II.

Register File
16 32-bit

BPR

Pipe
Reg

Pipe
Reg

Pipe
Reg

op1

op2

op3

<dest>

<result>

<dest>

<result>
WBV

BPR

WBV

alu_in1

shifter_in1

shifter_in2

DC EX MEM WB

Bypass to DC

Bypass to EX

Figure 3. Block diagram of bypass logic

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

TABLE II. MULTIMEDIA EXTENSIONS FOR MULTI-STANDARD VIDEO DECODING

Instructions Description

lmax Compute maximum value of the two operands
ex) int32 lmax_ckf(int32 data1, data2)

lmin Compute minimum value of the two operands
ex) int32 lmin_ckf(int32 data1, int32 data2)

smul_4 Computes the signed multiplication of 4x8-bit input operands
ex) int32 smul_4_ckf(uint32 data1, uint32 data2)

umul_4 Computes the unsigned multiplication of 4x8-bit input operands
ex) uint32 smul_4_ckf(uint32 data1, uint32 data2)

labs_4 Compute SIMD ABS
ex) int32 labs_4_ckf(int32 data1, int32 data2)

bilf Performs bi-linear filtering operation of 4x8-bit data1 and data2
ex) uint32 bilf_ckf(uint32 data1, uint32 data2, uint32 round_flag)

lclip Performs clipping operation of data1
ex) uint32 lclip_ckf(int32 data1, int32 min, int32 max)

bext
Performs byte extension of data1
Extension type is determined by flag value (MSB or LSB)
ex) uint32 bext_ckf(uint32 data1, uint32 flag)

add_clip4 Performs SIMD addition and clipping operations 2x16-bit data1 and data2 and 4x8-bit data3
ex) uint32 add_clip4_ckf(uint32 data1, uint32 data2, uint32 data3)

clz Counts the leading zeros of data1
ex) int32 clz_ckf(uint32 data1)

As show in Table II, the proposed processor has special
SIMD instructions for multi-standard video decoding. To
extract these multimedia extensions, we have performed in
depth profiling of existing multi-standard video decoding
software such as MPEG-2, MPEG-4, AVS, VC-1 and
H.264/AVC.

By applying the proposed multimedia extensions, we can
effectively improve the performance of the video decoding
algorithm. For example, the ‘add_clip4’ instruction is
employed to add reconstructed residual values and prediction
values and then clips the outcomes to 0~255 for four pixels
at the same time in the ‘Reconstruction’ module. Since the
prediction value is 8 bits/pixel and the residual value is
maximum 16 bits/pixel in general video decoders, we have
implemented an ‘add_clip4’ instruction to process four
pixels at the same time, as shown in Figure 4.

Figure 4. The operation of ‘add_clip4’ instruction

The number of inputs for ‘add_clip4’ is three and each
input is 32 bits. 8-bit prediction values for the successive
four pixels are entered into the first 32-bit parameter (src1)
and the 16-bit residual data for the successive four pixels is
entered into the second and the third parameters (src2, src3).
Four successive pixels with addition and clipping operation
can be processed in a single cycle. ‘clz’ instruction is
efficiently used for the optimization of context adaptive
variable length decoding.

C. C compiler
The compiler for the proposed architecture is developed

with the C-compiler designer tool. Multimedia extensions
are mapped by CKF, inline assembly and Matcher rules [19],
respectively.

CKF stand for compiler known function. It is used to
implement certain special instruction combination which
would not usually be output by the compiler. The advantage
of CKFs over inline assembly is that it gives more control to
the C-compiler designer than to the user. Designers need not
be aware of the assembly instructions that are required to
implement the functionality.

C Compiler for ASIP provides a rich set of optimization
and restructuring engines that include typical high level
optimizations such as copy and constant propagation, code
motion, loop unrolling, loop fusion and etc.

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Although multimedia extensions proposed in this paper
can be used to replace complicated operations efficiently,
they are not enough to achieve the desirable performance by
adopting only multimedia extensions. Essentially, C-level
code optimization of the video codecs is required for real-
time applications with minimum power consumption.

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

8-bit 4:2:0 format videos are widely used in the market.
Most software video decoders mainly employ 8-bit memory
access for the decoded picture buffers. However, most
embedded processors support physical 32-bit memory access
for memory load and store operations. Even though one pixel
value is accessed by general software implementations, four
bytes are loaded or stored into external physical memory. In
video decoders, memory access is usually a bottleneck with
higher resolution videos and this pixel-wire memory access
could make the data access rate worse. Thus, we need to
optimize the software with word aligned memory access for
decoded picture buffers. For example, in the motion
compensation module, a motion vector would be (5, 5)
which are not multiples of four. The MPEG-2 decoder needs
to load 17×17 pixels from the reference location (5, 5)
because MPEG-2 employs half-pixel interpolation. However,
the proposed decoder loads 20×20 pixels from the pixel (4,
4) by simultaneously considering the word-alignment
memory access and the half-pixel interpolation. For
H.264/AVC, as it uses the quarter-pixel interpolation with 6-
tap FIR filter, two more left and upper pixels can be loaded
and three more right and lower pixels are loaded. In other
word, all the (21×21) pixels from (3, 3) to (23, 23) should be
loaded regardless of the sub-pixel locations. As a result,
(21×24) pixels from (3, 0) to (23, 23) are loaded by the
proposed algorithm due to the word-alignment. The word-
aligned position is calculated and the amount of alignment is
defined by

2

)2)2)2(((

mv_y-aligned_y

mv_x-aligned_x

=

<<>>= (1)

The LISA processor design platform offers the possibility
to generate structured RTL model by grouping operations
into functional units. Each functional unit in the LISA model
represents an entity or a module in the HDL model. The
generated Verilog RTL code for application specific
processor is synthesized using Synopsys Design Compiler
and implemented by SMIC 130nm cell library. The Figure 7
shows architecture of multi-core SoC (MOSAIC) including
eight application-specific instruction processors and Table III
shows features of the implemented multi-core SoC. As
shown in Figure 7 the multi-core architecture consisting of
four clusters including two ASIPs, DMA, TCM (Tightly
Coupled Memory), inter-core buffer and communication
manager. Two ASIPs are clustered for pipelined operations
and each cluster is the basic unit for implementation of
multi-core system. To reduce communication overhead,
three types of hierarchical communication architecture such
as private cache, shared cache and inter-core buffer have
been proposed. PCIe interface is used for communication
between host and target and video controller is for displaying
decoded image.

The multi-standard video decoding algorithms are
mapped into multi-core architecture by novel parallelization
method called MB (macroblock) row-level parallelism [20].

Four CIF(352×288) video sequences such as ‘Foreman’,
‘Mobile’, ‘Paris’, and ‘Tempete’ are used for evaluating

decoding performance of the propose processor. Table IV
shows detail encoding parameters of the test sequences and
Table V shows the results of speed-up achieved by adopting
multimedia extensions into four video decoding algorithms
in terms of the decoding cycle. Compared to other decoders,
speed-up of MPEG-2 decoder is very high because a large
portion of the MPEG-2 decoding algorithm has been
optimized with the proposed multimedia extensions

Figure 5 shows EVM board decoding VGA video stream
encoded by MPEG-4 video standard. In addition to multi-
standard video decoding, we have mapped various detection
algorithms such as motion, lane and face detection algorithm
into multi-core SoC.

The proposed processor results in about 20% speed-up in
terms of processing cycles, compared to conventional
ARM1020E processor [25]. Figure 6 shows the number of
cycles required for ARM1020E and the proposed ASIP to
process inverse transform and quantization of H.264 CIF test
sequences.

TABLE III. SPEED-UP BY MULTIMEDIA EXTENSIONS

Sequences MPEG-2 MPEG-4 AVS H.264

Foreman 2.30 1.82 2.07 1.01

Mobile 2.07 1.58 1.68 1.01

Paris 2.29 1.76 1.84 1.01

Tempete 2.15 1.64 1.73 1.01

Average 2.20 1.7 1.83 10.1

Figure 5. EVM board of multi-core SoC (MOSAIC)

Figure 6. ARM 1020E vs. ETRI ASIP

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 7. Architecture of multi-core SoC

TABLE IV. CHARACTERS OF MULTI-CORE SOC

Features Features
Desig Rule SMIC 130nm , 1P8M CMOS, Core 1.2V/Pad 3.3 V
Frequency Core/SDRAM : 125MHz, PCIe : 62.5 MHz, Video Interface : 27 MHz

Internal PLL 8 ~ 175MHz/Programmable

Gate Count 1.3 M

Internal SRAM 789.7 KB

Power Consumption 225mA, 1.2V@125MHz

ChipSize/Package 8.12x8.12 mm2/308 FBGA

TABLE V. ENCODING CONDITIONS

Features MPEG-2 MPEG-4 AVS H.264/AVC

Profile@Level Main @High Advanced simple@L5 Jizhun@6.0 High@4.2

Coding Structure IPPP IPPP IPPP IPPP

Number of Frames 30 30 30 30

Encoder TM 5 [21] XviD [22] RM5.2j [23] JM 16.2 [24]

QP rate control rate control rate control 27(I), 28(P)

Bitrate (foreman) 48 KB/s 44 KB/s 56 KB/s 48 KB/s

Bitrate (mobile) 238 KB/s 224 KB/s 252 KB/s 240 KB/s

Bitrate (paris) 80 KB/s 80 KB/s 88 KB/s 84 KB/s

Bitrate (tempete) 173 KB/s 172 KB/s 172 KB/s 176 KB/s

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

Figure 8 shows the decoding time speed-up according to
the number of processing cores.

Figure 8. Speed-up according to the number of processing cores

In the case of MPEG-2 decoder, speed-up is 1.49x on 2
cores, 1.94x on 4 cores and 2.30x on 8 cores. In the case of
MPEG-4, a speed-up is 1.40x on 2 cores, 1.79x on 4 cores
and 2.10x on 8 cores. The AVS and H.264/AVC decoders
also yielded a similar speed-up in accordance with the
number of cores. Even with a multi-core implementation for
video decoders, it is not easy to achieve more than 3x speed-
up due to the sequential entropy decoding part and MB-to-
MB dependency.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a new application specific processor
based on 6-stage pipelined dual issue VLIW+SIMD
architecture and compiler for multi-standard video decoding.
The proposed processor whose approximate gate count is
about 130K runs at 125MHz in SMIC 130nm technology.
The proposed processor results in about 20% speed-up in
terms of processing cycles, compared to conventional
ARM1020E processor without quality degeneration for the
decoding of the H.264 CIF test sequences. For Full HD
multi-standard video decoding, multi-core platform
consisting of 64 ASIPs is under development.

V. ACKNOWLEDGEMENT

This material is supported by Ministry of Knowledge and
Economy (MKE) and Korea Evaluation Institute of
Industrial Technology (KEIT), Republic of Korea under
Contract No. 10035152, Energy Scalable Vector Processor -
Basic Technology.

REFERENCES
[1] Keith Barr, “ASIC Design in the Silicon Sandbox: A

Complete Guide to Building Mixed-Signal Integrated
Circuits,” McGraw Hill, Dec. 2006.

[2] Arifur Rahman and Jason H. Anderson, “FPGA Based
Design and Applications (Integrated Circuits and Systems),”
Springer, Nov. 2012.

[3] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch,
O. Wahlen, A. Wieferink, and H. Meyr, “A Novel
Methodology for the Design of Application-Specific
Instruction-Set Processors (ASIPs) Using a Machine
Description Language,” IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, pp. 1338-1354,
Nov. 2001.

[4] Richard G. Lyons, “Understanding Digital Signal Processing
(3rd Edition),” Prentice Hall, Nov. 2010.

[5] John L. Hennessy and David A. Patterson “Computer
Architecture, Fifth Edition: A Quantitative Approach,”
Morgan Kaufmann, Sep. 2011.

[6] AVS-Group, “Information Technology - Advanced Coding of
Audio and Video - Part 2: Video,” advanced Audio and Video
Standard (AVS1-P2), 2005.

[7] “VC-1 Compressed Video Bitstream Format and Decoding
Process (SMPTE 421M-2006)”, SMPTE Standard, 2006.

[8] ISO/IEC 14496-10 International Standard (ITU-T Rec.
H.264)

[9] ISO/IEC 11172: “Information technology-coding of moving
pictures and associated audio for digital storage media at up to
about 1.5 Mbit/s,” Geneva, 1993.

[10] ISO/IEC 13818-2: “Generic coding of moving pictures and
associated audio information-Part 2: Video,” 1994, also ITU-
T Recommendation H.262.

[11] ISO/IEC 14496-2: “Information technology-coding of
audiovisual objects-part 2: visual,” Geneva, 2000.

[12] F. Pescador, C. Sanz, M.J. Garrido, E. Juarez and D. Sampler,
“A DSP Based H.264 Decoder for a Multi-Format IP Set-Top
Box,” IEEE Trans. Consumer Electronics, vol. 54, pp. 145-
153, Feb. 2008.

[13] Y. Chen, E. Li, X. Zhou and S. Ge, “Implementation of H.264
encoder and decoder on personal computers.” Journal of
Visual Communication and Image Representation, vol. 17,
pp. 509-532, April 2006.

[14] Y.-L. Lee and T.Q. Nguyen, “Analysis and Efficient
Architecture Design for VC-1 Overlap Smoothing and In-
Loop Deblocking Filter”, IEEE Trans. Circuits Syst. Video
Technol. vol.18 , pp. 1786-1796, Dec. 2008.

[15] S. Pees, A. Hoffmann, V. Zivojnovic and H. Meyr, “LISA-
Machine description language for cycle-accurate models of
programmable DSP architectures,” Design Automation Conf.,
pp. 933–938, June 1999.

[16] C-compiler Design Guide, CoWare, 2011
[17] Processor Designer Training Manual, CoWare, 2011.
[18] LISA Language Reference Manual, CoWare, 2011.
[19] Compiler Designer Reference Mannual, CoWare, 2011.
[20] J.Y. Lee, J.J. Lee and S.M. Park, “Multi-core platform for an

efficient H.264 and VC-1 video decoding based on
macroblock row-level parallelism,” IET Circuits, Devices &
Systems, vol. 4, pp. 147-158, Mar. 2010.

[21] http://www.mpeg.org/MPEG/video/mssg-free-mpeg-
software.html

[22] MPEG-4 XviD, http://www.xvid.org/Xvid-Codec.2.0.html
[23] AVS RM5.2j, http://www.avs.org.cn/fruits/en/softList.asp
[24] Joint Video Team (JVT) reference software JM16.2,

http://iphome.hhi.de/suehring/tml/
[25] ARM, http://www.arm.com

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=Arifur%20Rahman&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Jason%20H.%20Anderson&ie=UTF8&search-alias=books&sort=relevancerank
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
http://www.amazon.com/Richard-G.-Lyons/e/B001IQX764/ref=ntt_athr_dp_pel_1
http://www.amazon.com/John-L.-Hennessy/e/B000APA2GC/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=David%20A.%20Patterson&ie=UTF8&search-alias=books&sort=relevancerank
http://iphome.hhi.de/suehring/tml/
http://www.arm.com/

	I. Introduction
	II. ASIP and Compiler
	A. Pipeline and Bypass Logic
	B. Instruction Set
	C. C compiler

	III. Implementation and Experimental Results
	IV. Conclusion and Future Work
	V. Acknowledgement
	References

