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Abstract—Multiple international video standards in the market 
have been developed successfully for many commercial 
products. Application-specific instruction processor is a new 
design methodology to develop optimized processor. This 
paper proposes a new application-specific instruction set 
processor based on 6-stage pipelined dual issue VLIW+SIMD 
architecture and compiler for multi-standard video decoding. 
The processor takes 130K in gate count at 125MHz in 130nm 
technology. Compared to the existing ARM processor, the 
proposed processor results in about 20% speed improvement 
as well as smaller hardware complexity. 

Keywords-multimedia processor; application-specific 
instruction  processor;  video decoding. 

 

I. INTRODUCTION 

In the implementation of embedded systems, the 
designers confront with decision of architectures which is 
combination of ASICs [1], FPGAs [2] , ASIPs (Application 
Specific Instruction-Set Processors) [3], DSPs [4], and GPPs 
(general purpose processors) [5]. These decisions are mainly 
based on performance, power consumption, flexibility and 
silicon area of systems. ASIPs are powerful solutions when 
the contradicting requirements such as performance and 
flexibility have to be jointly satisfied with a single task 
block. The flexibility of ASIP is caused by the necessity to 
support multi-standard video codecs such as AVS [6], VC-1 
[7], and H.264 [8] in a single platform. On the other hand, 
next generation video codecs require extreme demands on 
throughput and processing of continuous data streams at high 
rates. 

 Video compression technologies have been dramatically 
evolved by many researchers and industries. Successful 
multiple international standards in the market have been 
released for last two decades. In particular, ISO/IEC 
WG11/MPEG and ITU-T SG16/VCEG have developed 
MPEG-1/2/4 and H.261/262/263 to compress raw digital 
videos since early 1990 [9][10][11]. Subsequently, the 
MPEG and VCEG jointly standardized the H.264/AVC [8] 
which is suitable for various network environments and 
gives the highest coding efficiency in 2003. In recent years, 
various video codecs such as VC-1 and so on have been 
commercialized, aside by the standard codes developed by 
the international standardization bodies. This leads a huge 
amount of multimedia contents to be compressed with the 

increasing number of video coding techniques and 
distributed over various networks and devices.  

ASIP is a new design methodology to develop optimized 
processors for specific applications by adding specific 
instructions into base instructions for eliminating functional 
hot spot of applications [3]. In terms of video decoding 
[12][13][14], the ASIP has higher performance than DSP 
because of its optimized application specific instructions, and 
has better flexibility and reusability than ASIC because any 
applications can be implemented with software. 

The remainder of this paper is organized as follows. In 
the next section, ASIP and compiler for multi-standard video 
decoding are briefly overviewed. In Section 3, we have 
evaluated the proposed ASIP. Finally, we summarize the 
paper and conclude it mentioning future works. 

 

II.  ASIP AND COMPILER 

As shown in Figure 1, the proposed ASIP providing a 
separate data and program memory (Harvard architecture) 
consists of dual issue VLIW (Very Long Instruction Word) + 
SIMD (Single Instruction Multiple Data) core, program/data 
cache interface, general purpose register file consisting of 16 
32-bit registers, special purpose register file for SIMD 
instructions and bus interface to access external memory. 

 

 
Figure 1.  Block diagram of ASIP 

The behavior, the structure, and the I/O interface have 
been described using LISA (language for instruction set 
architecture) [15]. It parses the description and generates the 
tools and models necessary for software design and 
architecture implementation such as assembler, dis-
assembler, linker, ISS (Instruction Set Simulator). C 
compiler has been generated using the C-compiler designer 
tool of CoWare [16]. It provides a rich set of optimization 
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and restructuring engines that include typical high level 
optimizations such as copy and constant propagation, code 
motion, loop unrolling, loop fusion, and etc. 

A. Pipeline and Bypass Logic 
The proposed architecture is based on a pipeline with 6 

stages as shown in Table I. The pipeline is fully bypassed, 
i.e., instructions reading from register R can directly follow 
the instruction writing to the same register. 

TABLE I.  PIPELINE OF THE PROPOSED PROCESSOR 

Stages Descriptions 

PF(PreFetch) Branch address or zero-overhead loop detection 

FE(Fetch) Fetch from the instruction memory 

DC(DeCode) Decode the instruction and read the operands 

EX(EXecution) Execute the ALU or logical operations 

MEM(MEMory) Read or write the memory 

WB(WriteBack) Write the results back into registers 

 
The bypass logic [17][18] ensures a consistent read 

access between the instructions and makes sure that the latest 
result for a register is read by the instruction. A bypass is 
required when an instruction X in the execute stage (EX) is 
producing a result that is read by the following instruction Y. 
Instruction Y is at that time in the decode (DC) stage and 
requesting the result. A bypass allows instruction Y to access 
the result before it is actually written back into the main 
register file. 

The MAC (Multiply-Accumulate) is very beneficial to 
speed-up many different type of applications.  As shown in 
Figure 2, the proposed architecture has the pipelined dual 
cycle MAC supported by C compiler by sharing multiplier. 
This results in efficient micro-architecture from an area cost 
point of view. 

mul
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MAC_out
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Stage 2
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MAC

 
Figure 2.  Dual cycle MAC 

Figure 3 provides a block diagram of the bypass logic. It 
can be seen that the main register file is accessed in the DC 
stage. The operands are immediately pushed into the pipeline 
registers “op1”, “op2” and “op3”. If a custom instruction 
would need these operands already in the DC stage, the 
values can also be written into a signal instead of a register. 
Thus, those signals can be used to any combinatorial data-
path in the DC stage. In EX stage, the latest operand value is 
written into the signal “alu_in1”, “shifter_in1” and 
“shifter_in2”. Once the result is computed the 
“writeback_dst” operation need to be activated (not shown 
here) and the register address “BPR” as well as the writeback 
value “WBV” need to be written. 

B. Instruction Set 
The Instruction set of the proposed processor consists of 

basic load/store, arithmetic, logic, branch and trap 
instructions, and multimedia extensions for multi-standard 
video decoding as shown Table II.  
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Figure 3.  Block diagram of bypass logic 
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TABLE II.  MULTIMEDIA EXTENSIONS FOR MULTI-STANDARD VIDEO DECODING 

Instructions Description 

lmax Compute maximum value of the two operands 
ex) int32 lmax_ckf(int32 data1, data2) 

lmin Compute minimum value of the two operands 
ex) int32 lmin_ckf(int32 data1, int32 data2) 

smul_4 Computes the signed multiplication of 4x8-bit input operands 
ex) int32 smul_4_ckf(uint32 data1, uint32 data2) 

umul_4 Computes the unsigned multiplication of 4x8-bit input operands 
ex) uint32 smul_4_ckf(uint32 data1, uint32 data2) 

labs_4 Compute SIMD ABS 
ex) int32 labs_4_ckf(int32 data1, int32 data2) 

bilf Performs bi-linear filtering operation of 4x8-bit data1 and data2 
ex) uint32 bilf_ckf(uint32 data1, uint32 data2, uint32 round_flag) 

lclip Performs clipping operation of data1 
ex) uint32 lclip_ckf(int32 data1, int32 min, int32 max) 

bext 
Performs byte extension of data1  
Extension type is determined by flag value (MSB or LSB) 
ex) uint32 bext_ckf(uint32 data1, uint32 flag) 

add_clip4 Performs SIMD addition and clipping operations 2x16-bit data1 and data2 and 4x8-bit data3 
ex) uint32 add_clip4_ckf(uint32 data1, uint32 data2, uint32 data3) 

clz Counts the leading zeros of data1 
ex) int32 clz_ckf(uint32 data1) 

 
 

As show in Table II, the proposed processor has special 
SIMD instructions for multi-standard video decoding. To 
extract these multimedia extensions, we have performed in 
depth profiling of existing multi-standard video decoding 
software such as MPEG-2, MPEG-4, AVS, VC-1 and 
H.264/AVC.  

By applying the proposed multimedia extensions, we can 
effectively improve the performance of the video decoding 
algorithm. For example, the ‘add_clip4’ instruction is 
employed to add reconstructed residual values and prediction 
values and then clips the outcomes to 0~255 for four pixels 
at the same time in the ‘Reconstruction’ module. Since the 
prediction value is 8 bits/pixel and the residual value is 
maximum 16 bits/pixel in general video decoders, we have 
implemented an ‘add_clip4’ instruction to process four 
pixels at the same time, as shown in Figure 4.  

 

 
Figure 4.  The operation of ‘add_clip4’ instruction 

The number of inputs for ‘add_clip4’ is three and each 
input is 32 bits. 8-bit prediction values for the successive 
four pixels are entered into the first 32-bit parameter (src1) 
and the 16-bit residual data for the successive four pixels is 
entered into the second and the third parameters (src2, src3). 
Four successive pixels with addition and clipping operation 
can be processed in a single cycle. ‘clz’ instruction is 
efficiently used for the optimization of  context adaptive 
variable length decoding.  

C. C compiler 
The compiler for the proposed architecture is developed 

with the C-compiler designer tool. Multimedia extensions 
are mapped by CKF, inline assembly and Matcher rules [19], 
respectively.  

CKF stand for compiler known function. It is used to 
implement certain special instruction combination which 
would not usually be output by the compiler. The advantage 
of CKFs over inline assembly is that it gives more control to 
the C-compiler designer than to the user. Designers need not 
be aware of the assembly instructions that are required to 
implement the functionality. 

C Compiler for ASIP provides a rich set of optimization 
and restructuring engines that include typical high level 
optimizations such as copy and constant propagation, code 
motion, loop unrolling, loop fusion and etc. 

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

Although multimedia extensions proposed in this paper 
can be used to replace complicated operations efficiently, 
they are not enough to achieve the desirable performance by 
adopting only multimedia extensions. Essentially, C-level 
code optimization of the video codecs is required for real-
time applications with minimum power consumption.  
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8-bit 4:2:0 format videos are widely used in the market. 
Most software video decoders mainly employ 8-bit memory 
access for the decoded picture buffers. However, most 
embedded processors support physical 32-bit memory access 
for memory load and store operations. Even though one pixel 
value is accessed by general software implementations, four 
bytes are loaded or stored into external physical memory. In 
video decoders, memory access is usually a bottleneck with 
higher resolution videos and this pixel-wire memory access 
could make the data access rate worse. Thus, we need to 
optimize the software with word aligned memory access for 
decoded picture buffers. For example, in the motion 
compensation module, a motion vector would be (5, 5) 
which are not multiples of four. The MPEG-2 decoder needs 
to load 17×17 pixels from the reference location (5, 5) 
because MPEG-2 employs half-pixel interpolation. However, 
the proposed decoder loads 20×20 pixels from the pixel (4, 
4) by simultaneously considering the word-alignment 
memory access and the half-pixel interpolation. For 
H.264/AVC, as it uses the quarter-pixel interpolation with 6-
tap FIR filter, two more left and upper pixels can be loaded 
and three more right and lower pixels are loaded. In other 
word, all the (21×21) pixels from (3, 3) to (23, 23) should be 
loaded regardless of the sub-pixel locations. As a result, 
(21×24) pixels from (3, 0) to (23, 23) are loaded by the 
proposed algorithm due to the word-alignment. The word-
aligned position is calculated and the amount of alignment is 
defined by  

2

)2)2)2((( 

mv_y-aligned_y

mv_x-aligned_x

=

<<>>= (1) 

The LISA processor design platform offers the possibility 
to generate structured RTL model by grouping operations 
into functional units. Each functional unit in the LISA model 
represents an entity or a module in the HDL model. The 
generated Verilog RTL code for application specific 
processor is synthesized using Synopsys Design Compiler 
and implemented by SMIC 130nm cell library. The Figure 7 
shows architecture of multi-core SoC (MOSAIC) including 
eight application-specific instruction processors and Table III 
shows features of the implemented multi-core SoC. As 
shown in Figure 7 the multi-core architecture consisting of 
four clusters including two ASIPs, DMA, TCM (Tightly 
Coupled Memory), inter-core buffer and communication 
manager. Two ASIPs are clustered for pipelined operations 
and each cluster is the basic unit for implementation of 
multi-core system. To reduce communication overhead, 
three types of hierarchical communication architecture such 
as private cache, shared cache and inter-core buffer have 
been proposed. PCIe interface is used for communication 
between host and target and video controller is for displaying 
decoded image. 

The multi-standard video decoding algorithms are 
mapped into multi-core architecture by novel parallelization 
method called MB (macroblock) row-level parallelism [20]. 

Four CIF(352×288) video sequences such as ‘Foreman’, 
‘Mobile’, ‘Paris’, and ‘Tempete’ are used for evaluating 

decoding performance of the propose processor. Table IV 
shows detail encoding parameters of the test sequences and 
Table V shows the results of speed-up achieved by adopting 
multimedia extensions into four video decoding algorithms 
in terms of the decoding cycle. Compared to other decoders, 
speed-up of MPEG-2 decoder is very high because a large 
portion of the MPEG-2 decoding algorithm has been 
optimized with the proposed multimedia extensions 

Figure 5 shows EVM board decoding VGA video stream 
encoded by MPEG-4 video standard. In addition to multi-
standard video decoding, we have mapped various detection 
algorithms such as motion, lane and face detection algorithm 
into multi-core SoC. 

The proposed processor results in about 20% speed-up in 
terms of processing cycles, compared to conventional 
ARM1020E processor [25]. Figure 6 shows the number of 
cycles required for ARM1020E and the proposed ASIP to 
process inverse transform and quantization of H.264 CIF test 
sequences. 

TABLE III.  SPEED-UP BY MULTIMEDIA EXTENSIONS 

Sequences MPEG-2 MPEG-4 AVS H.264 

Foreman 2.30 1.82 2.07 1.01 

Mobile 2.07 1.58 1.68 1.01 

Paris 2.29 1.76 1.84 1.01 

Tempete 2.15 1.64 1.73 1.01 

Average 2.20 1.7 1.83 10.1 

 

 
Figure 5.  EVM board of multi-core SoC (MOSAIC) 

 
Figure 6.  ARM 1020E vs. ETRI ASIP 
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Figure 7.  Architecture of multi-core SoC 

TABLE IV.  CHARACTERS OF MULTI-CORE SOC 

Features Features 
Desig Rule SMIC 130nm ,  1P8M CMOS, Core 1.2V/Pad 3.3 V 
Frequency Core/SDRAM : 125MHz, PCIe : 62.5 MHz, Video Interface : 27 MHz 

Internal PLL 8 ~ 175MHz/Programmable 

Gate Count 1.3 M 

Internal SRAM 789.7 KB 

Power Consumption 225mA, 1.2V@125MHz 

ChipSize/Package 8.12x8.12 mm2/308 FBGA 

TABLE V.  ENCODING CONDITIONS 

Features MPEG-2  MPEG-4  AVS H.264/AVC 

Profile@Level Main @High Advanced simple@L5 Jizhun@6.0 High@4.2 

Coding Structure IPPP IPPP IPPP IPPP 

Number of Frames 30 30 30 30 

Encoder TM 5 [21] XviD [22] RM5.2j [23] JM 16.2 [24] 

QP rate control rate control rate control 27(I), 28(P) 

Bitrate (foreman) 48 KB/s 44 KB/s 56 KB/s 48 KB/s 

Bitrate (mobile) 238 KB/s 224 KB/s 252 KB/s 240 KB/s 

Bitrate (paris) 80 KB/s 80 KB/s 88 KB/s 84 KB/s 

Bitrate (tempete) 173 KB/s 172 KB/s 172 KB/s 176 KB/s 

41Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-213-4

CENICS 2012 : The Fifth International Conference on Advances in Circuits, Electronics and Micro-electronics



Figure 8 shows the decoding time speed-up according to 
the number of processing cores.  

 

 
Figure 8.  Speed-up according to the number of processing cores 

In the case of MPEG-2 decoder, speed-up is 1.49x on 2 
cores, 1.94x on 4 cores and 2.30x on 8 cores. In the case of 
MPEG-4, a speed-up is 1.40x on 2 cores, 1.79x on 4 cores 
and 2.10x on 8 cores. The AVS and H.264/AVC decoders 
also yielded a similar speed-up in accordance with the 
number of cores. Even with a multi-core implementation for 
video decoders, it is not easy to achieve more than 3x speed-
up due to the sequential entropy decoding part and MB-to-
MB dependency. 

IV. CONCLUSION AND FUTURE WORK 

This paper proposes a new application specific processor 
based on 6-stage pipelined dual issue VLIW+SIMD 
architecture and compiler for multi-standard video decoding. 
The proposed processor whose approximate gate count is 
about 130K runs at 125MHz in SMIC 130nm technology. 
The proposed processor results in about 20% speed-up in 
terms of processing cycles, compared to conventional 
ARM1020E processor without quality degeneration for the 
decoding of the H.264 CIF test sequences. For Full HD 
multi-standard video decoding, multi-core platform 
consisting of 64 ASIPs is under development. 
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