
User-Centric IT Security
How to Design Usable Security Mechanisms

Hans-Joachim Hof
Munich IT Security Research Group (MuSe)

Munich University of Applied Sciences,
Lothstraße 64, 80335 Munich, Germany

email: hof@hm.edu

Abstract—Nowadays, advanced security mechanisms exist to
protect data, systems, and networks. Most of these mechanisms
are effective, and security experts can handle them to achieve a
sufficient level of security for any given system. However, most
of these systems have not been designed with focus on good
usability for the average end user. Today, the average end user
often struggles with understanding and using security
mechanisms. Other security mechanisms are simply annoying
for end users. As the overall security of any system is only as
strong as the weakest link in this system, bad usability of IT
security mechanisms may result in operating errors, resulting
in insecure systems. Buying decisions of end users may be
affected by the usability of security mechanisms. Hence
software providers may decide to better have no security
mechanism then one with a bad usability. Usability of IT
security mechanisms is one of the most underestimated
properties of applications and systems. Even IT security itself
is often only an afterthought. Hence, usability of security
mechanisms is often the afterthought of an afterthought.
Software developers are missing guidelines on how to build
security mechanisms with good usability for end users. This
paper presents some guidelines that should help software
developers to improve end user usability of security-related
mechanisms, and analyzes common applications based on these
guidelines.

Keywords-usability; IT security; usable security.

I. INTRODUCTION
Any improvement of the overall security level of any

system requires to improve the security level of all
subsystems and available mechanisms as the overall security
level of a system is determined by the weakest link in this
system [12]. Howe et al. found that current software and
approaches for security are not adequate for end users,
because these mechanisms are missing ease of use [10]. Arce
identifies the end user as weakest link in a company [12].
Hence, improving the usability of security mechanisms helps
to improve the overall security level of a system.

Examples of bad usability of security mechanisms are all
around. Bad usability of security mechanisms may slow
down the adoption of a security system. This happened for
example with email encryption. Today, it is very unlikely
that an average user uses email encryption. Major problems
for average users are key exchange and trust management,
both having a very bad usability in common email

encryption solutions. Figure 1 shows a completely useless
error message during the generation of a key pair for email
encryption as one example of bad usability.

Figure 1. Error message during generation

of a key pair for email encryption

The use of email encryption in companies shows that an

improved usability may lead to the adoption of the formerly
despised technology. In companies, key exchange and trust
management are usually not done by the users themselves,
but they can rely on central infrastructures such as a central
company directory with keys that are trusted by default (all
employees). Such a directory ensures average users can use
email encryption.

The example of email encryption shows that designing
security mechanisms with good usability is worth an effort.
For the ordinary software developer, i.e., non security expert,
it makes sense not to implement core security mechanisms
like encryption algorithms or signature algorithms. Those
mechanisms are usually available in security libraries written
by security experts and could be easily used by software
developers. However, software developers often decide on
how security mechanisms are integrated into an application.
For example, when implementing an email encryption
security solution like GPGMail [11], the software developer
decides on the interfaces for setting up trust and importing
keys. Both mechanisms are application specific, hence must
be implemented by the application developers. Usually, these
functionalities are exposed to the users, hence should have a
good usability. This paper presents some guidelines that
should help software developers to improve end user
usability of security-related mechanisms. To underline the
importance of the presented guidelines, weaknesses of
security mechanisms in common applications regarding
usability for end users are shown in an analysis of common
applications and security mechanisms on basis of the
presented guidelines.

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-232-5

CENTRIC 2012 : The Fifth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Other important aspects of software security, e.g., secure
coding guidelines, testing of security, and threat analysis are
out of scope of this paper.

The rest of this paper is structured as follows: Section 2
gives an overview on related work. Section 3 presents
guidelines for usable IT security mechanisms. Section 4
analyzes the usability of some common security mechanisms
and applications. Section 5 concludes the paper and gives an
outlook on future work.

II. RELATED WORK
Several standards focusing on usability in general exist,

e.g., EN ISO 9241 [2]. In EN ISO 9241-11, which is part of
EN ISO 9241, requirements for the usability of system are
described. These requirements include effectiveness,
efficiency and satisfaction. EN ISO 9241-10, another part of
EN ISO 9241, lists requirements for usable user dialogs.
However, the rules of EN SIO 9241 are very general and not
targeted on security mechanisms. The design guidelines
presented in this paper interpret the general requirements and
rules of EN ISO 9241 and its parts for the special case of
security mechanisms.

Other publications like [3][4][5][6][7] focus on the
usability of security mechanisms in special applications (e.g.,
email encryption), or focus on the usability of special
security mechanisms (e.g., use of passwords). The guidelines
presented in this paper are more general such that they are
useful for the design of a wide variety of applications and
security mechanisms.

Markotten shows how to integrate user-centred security
engineering into different phases of the software
development process [1]. However, the emphasize of
Markotten’s work is more on integration of usability
engineering into the software development process than on a
design guide.

To summarize, previous works either are not focused on
usability of IT security at all or are focused on one special
aspect of usable IT security. A set of guidelines for software
developers to consider during design of an application is
missing. This paper presents some guidelines for software
developers to help them improve the usability of security-
related functionality.

III. GUIDELINES FOR GOOD USABILITY OF SECURITY
MECHANISMS

The guidelines presented in this section are the result of
several years in teaching IT security to beginners (and seeing
their difficulties) as well as industrial experience in the
design of products requiring IT security mechanisms that are
operated by end users. The guidelines reflect our viewpoint
on usability of security mechanisms. It is not assumed that
those guidelines are complete. It is important to notice that
the usability of any system depends on the specific user and
his experiences, knowledge and context of use, which
includes the task at hand, the equipment at hand, and the
physical and social environment of the user. Hence, it is hard
to objectively evaluate the usability of a system. However,

we hopes that the following set of nine design guidelines
coming from the field may be of help for software
developers:

G1 Understandability, open for all users: As this paper
focuses on usability for end users, the average end users
should be able to use the security mechanism. Otherwise, the
security mechanism is not useful for the intended audience.
The average user neither has a special interest in IT security
nor understands IT security. It is the responsibility of the
software developer to hide as many security mechanisms as
possible from the user. For those security mechanisms that
are exposed to the end user it is necessary to get security
awareness. The process of educating people is easier if
suitable metaphors are used. A good metaphor is taken from
everyday life of the average user, and is easy to grasp. A
good metaphor is simple but powerful in its meaning.
Example: an email encryption application should not use the
term “encrypted email”. It is better to talk about a “secret
message for xy” or “email readable only by xy” where xy is
the receiver of the message.

Usable security should be available for all users. It
should especially not discriminate people. For example,
usable security mechanisms should not exclude disabled
people that use special tools to access applications (e.g.,
Braille reader for vision impaired people). Example of
compliance with G1: if captchas are used in an application,
multiple versions of the captcha should exist. Each version of
the captcha should address another sense.

G2 Empowered users: Ideally, a usable security

mechanism should not be used to restrict the user in what he
is doing or what he wants to do. This allows end users to
efficiently fulfill their tasks. Efficiency is one of the general
usability requirements of EN ISO 9241 [2]. The absence of
user restrictions often results in a better acceptance of
security by users. The focus of a security mechanism should
be on protecting the user. Any security-motivated restriction
of the user should be carefully evaluated regarding necessity
for system security and adequateness. The user should at
least have the impression that he is in control of the system
and not the system is controlling him. Security mechanisms
should interfere with the usual flow of user activities in the
least possible way. Security mechanisms should allow the
user to execute activities in any way he wants. Other drivers
than protecting the user and the system should not be
motivation for restrictions. Especially, users should not be
restricted by a security mechanism for the only reason of
copyright protection or other business reasons. While such
security mechanisms are of great use for businesses, they
constantly restrict the user, hence force him to bypass
security mechanisms. As users are very imaginative in
bypassing unwanted restrictions, it is very likely that a non-
security-motivated restriction decreases the security level of
a system. The Apple iPhone is a good example: as the phone
enforces many restrictions, many user bypass the security
mechanisms by using a jailbreak software to revoke those
restrictions.

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-232-5

CENTRIC 2012 : The Fifth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Another important rule is that the user should decide on
trust relations. A security mechanism should not enforce
trust relations given by a software vendor. The user should
always have the possibility to revoke preinstalled trust
relations. Trust relations should only be established in
advance for the purpose of IT security. For example, having
a preinstalled certificate to verify software patches is OK.
Establishing trust relations out of business purposes should
be avoided. Example of compliance with G2: applications
should haven an interface that lists preinstalled certificates.
The user should have the possibility to revoke certificates
and install custom certificates.

G3 No jumping through hoops: Users should only be

forced to execute as little tasks as possible that exist only for
IT security reasons. Otherwise, users get annoyed and refuse
collaboration with IT security mechanisms. The ideal
security mechanism does not interfere with user tasks at any
time (also see G2). An example on how to not design
security mechanisms are captchas: the user is forced to read a
nearly unreadable and meaningless combination of letters
and numbers and enter it before he can execute the wanted
task. Example of compliance with G3: an application that
uses a challenge-response mechanism similar to hashcash [9]
instead of a captcha to avoid abuse of a service by automated
scripts.

G4 Efficient use of user attention and memorization

capability: Users have problems memorizing data that does
not belong to their social background. Hence, they tend to
use all kind of optimization to reduce the amount of data
they have to remember. This is why users only use
approximately 3-4 passwords for all logins where they need
passwords. Given the inflationary use of logins in web
applications, it is very likely that an average user uses his
passwords on multiple sites or for multiple purposes (e.g., for
login, for encryption, …). But not only does an average user
use the same password more than once, he also selects easy
to remember passwords as he is not good in memorizing
passwords with a mix of upper and lower case letters,
numbers and special characters. Hence, security mechanisms
should require the user only to remember little data or no
data at all. Example of compliance with G4: An application
uses an existing account from another site for login, e.g., by
using OpenID [8]. The user can use an existing account,
hence does not have to remember another password.

Security mechanisms should only require as little
interaction with the user as possible. The security mechanism
should only requests the attention of the user if it is
absolutely necessary. Interaction with the user should be
done in the most minimalistic way. See also G1 for user
interaction. Example of compliance with G4: an email
encryption application that does not ask a user for each mail
if he wants to encrypt the mail or not. Instead, the email
application offers a configuration option to always encrypt
mails. Additionally, the email composition window clearly
states the current protection status and offers a possibility to
override the preferences.

G5 Only informed decisions: A user only feels secure
and cooperates with a system if the system does not ask too
much of him. Hence, users should only have to make
decisions they can decide on. If there is an important security
decision to take, it must be ensured that the user has the
capability to make this decision. This means that the user has
enough information about the situation that requires him to
make a decision, and it must be ensured that the average user
is capable to make an informed decision on this issue. If it is
not clear if the user can decide on an issue, the decision
should be avoided. G5 is hard to achieve and requires a
careful examination during the design of an application.

 G6 Security as default: Good usability requires

efficiency. Hence, the user should not have to configure
security when he first starts an application. Software for end
users should always come preconfigured such that the
software is reasonable secure and usable. All security
mechanisms of a system should be delivered to the end user
with a configuration that offers adequate security for the end
users. The configuration effort must be minimized for users.
This requires an analysis of the security requirements of
average users during software development prior to the
deployment of the software to find the adequate security
level for most users. Example of compliance with G6: a
home wifi access point comes preconfigured with a random
WiFi password.

G7 Fearless System: The security system should support

a positive attitude of the user towards the security system. A
user with a positive attitude towards security mechanisms is
cooperative and more likely to not feel interrupted by
security mechanisms. Hence, security mechanisms should
protect the overall system in a way that the user neither has
fear when the system is in a secure state nor feels secure
when the system is not in a secure state. The security state of
the system should be visible at all times. A security
mechanism should be consistent in its communication with
its user. A security mechanism should not use fear to force
users to obey security policies or get a wanted reaction. G7 is
hard to achieve and requires a careful examination during the
design of an application.

G8 Security guidance, educating reaction on user
errors: Users tend to make mistakes, especially in respect to
IT security. It is important that the security system hinders
the user to make mistakes. However, as blocked operations
can be very frustrating for users, the response of the security
system must provide information why a given operation was
blocked and should also offer a solution on how the user
could proceed. The solution must be adapted on the situation
and should keep the overall security of the system in mind. A
security system should guide the user in the usage of security
mechanisms. Errors should be prevented and there should be
ways to “heal” errors. Example of compliance with G8:
when an email encryption application fails to encrypt an
email because of a missing public key of the recipient, the
error message should explain how to import certificates from
and how to verify certificates by comparing fingerprints of

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-232-5

CENTRIC 2012 : The Fifth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

keys. To “heal” the error, the email encryption application
offers to send the mail as password-protected PDF and
instruct the user to call the recipient and tell him the
password for the PDF.

G9 Consistency: Consistency allows users to efficiently
fulfill their tasks. Security mechanisms should fit into both
the application and the system context where they are used.
Security mechanisms should have the look and feel the user
is used to. G9 is hard to achieve and requires a careful
examination during the design of an application.

IV. ANALYSIS OF THE USABILITY OF COMMON SECURITY
MECHANISMS AND APPLICATIONS

In this section common applications and security
mechanisms are analyzed on basis of the guidelines given in
Section III. The analysis identifies room for improvement in
these applications and security mechanisms. It also shows
some good examples for certain aspects of security
usability.

A. E-Mail Encryption using GPGMail
The encryption process itself is fairly easy, usually

requiring one click to enable email encryption. However,
key and trust management requires significant effort. For a
secure exchange of public keys, the user has to get the
public key itself (e.g., from a key server or the homepage of
the receiver of a message) and verify the authenticity of the
key. Certificates may be in use. The authentication requires
the use of another channel to communicate with the key
owner (e.g., telephone or in person) and to read a number to
the owner that is meaningless for the user. There is no
guidance for this process. Then, the user has to change the
trust of the exchanged public key. It gets more complicated
when using a web of trust for trust management: for the web
of trust to work, the user must decide on how trustworthy a
person is to verify public keys/certificates in addition to
managing direct trust into keys. The distinction between
those different types of trust is very hard to understand for
average users.

This application is compliant with the following
guidelines:

• G2 (user decides on trust relations)
• G4 (minimal interaction)
• G7 (does not frighten user)
• G9 (usually good integration, depends on system,

mail client)

This application is not compliant with the following
guidelines:

• G1 (hard to understand trust management and
process of key verification)

• G3 (complicated trust management)

• G5 (hard to understand trust management and
process of key verification)

• G6 (not set to “encrypt all” by default)
• G8 (not much guidance with trust management)

B. Forced Updates
Keeping a system up-to-date requires a timely use of

provided security patches. However, many users are quite
lax in applying security patches. Hence, nowadays more and
more software providers let not the users decide on when to
patch a system but automatically apply security patches as
soon as available. While this relieves the user from applying
patches, it does not take into consideration the situation of
the user at the moment of a forced update. The update
process may require downloading a large amount of date.
This is a problem when the user is temporary on a low-
bandwidth connection. The update process may change
security or trust relevant configuration of the application,
e.g., by revoking certificates or adding new certificates that
are considered trustworthy by the software provider. Often,
forced updates cannot be stopped by the user, hence hinder
the user.

This security mechanism is compliant with the
following guidelines:

• G1 (easy to understand)
• G5 (no user decisions involved)
• G6 (keeps system up-to-date)
• G7 (does not frighten user)
• G8 (no user action necessary (or possible))
• G9 (well integrated)

This security mechanism is not compliant with the

following guidelines:
• G2 (user can not decide to not apply a patch, user

can not decide on time to apply patch (e.g., do not
patch presentation application before presentation
on CENTRIC 2012))

• G3 (in some cases user has to wait until patch was
applied)

• G4 (full attention of the user when waiting for
process to finish)

C. Captchas
A captcha is a security mechanism avoiding that services

are used by automated scripts. In theory, a captcha should
be designed in a way that only humans can solve the given
problem. Common captcha design requires users to read a
distorted and meaningless combination of letters and
numbers and enter it before he can use the service. Figure 2
shows a captcha that is even worse from a usability point of
view. Another side effect of the use of captchas is that
captchas usually discriminate against disabled people (e.g.,
vision impaired people).

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-232-5

CENTRIC 2012 : The Fifth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

Figure 2. Complicated captcha

This security mechanism is compliant with the

following guidelines:
• G5 (no user decision needed)
• G6 (always used)
• G7 (does not frighten user)
• G8 (gives instructions on how to use it)

This security mechanism is not compliant with the

following guidelines:
• G1 (discriminates against disabled people)
• G2 (does not allow users to use automation tools)
• G3 (additional task without value for the user)
• G4 (unnecessary user interaction)
• G9 (many different kinds of captchas are in use)

D. HTTPS Certificate Validation in Common Browsers
HTTPS allows for confidential and integrity protected

communication on the web. For example, HTTPS is used
for online banking or shopping. Nowadays HTTPS is
widely used on the web. However, for a secure
communication it is necessary to avoid man-in-the-middle
attacks. To do so, certificates are used to authenticate the
web site that one communicates with. As it is not practicable
to install a certificate for each and every web site one visits,
most common browsers come with preinstalled certificates
of so-called Certificate Authorities (CAs). A browser
accepts all certificates that have been signed by such a CA.
For example, Mozilla Firefox version 14.0.1 comes with
over 70 preinstalled CA certificates. The browser software
developer decides on the trustworthiness of a CA (and hence
on the trustworthiness of web sites), not the end user.

Figure 3 shows a typical error message of Firefox when
encountering a certificate signed by an unknown CA. The
text of this error message is too complicated for average
users. Above this, average users are not capable of deciding
on the validity of unknown certificate anyway. As this error
often occurs, the users get used to it and usually just add a
security exception to the system to access the web site,
bypassing the security mechanism. Adding a security
exception involves multiple steps (see Figure 4 for a
screenshot of the second page of the error message when
clicking on “Add Exception”.

Figure 3. Typical error message of Firefox when encountering an unknown

certificate

Figure 4. Second dialogue page if user clicked

"Add Exception"

This security mechanism is compliant with the
following guidelines:

• G6 (large number of preinstalled CAs for secure
communication)

• G8 (guidance is given, however the texts used are
not suited for average users)

This security mechanism is not compliant with the

following guidelines:
• G1 (hard to understand error message given when

browser encounters an unknown certificate / a
certificate from an unknown CA)

• G2 (many preinstalled CA certificates, the user
does not initially decide on trust relations.
However, expert users can change the trust
settings)

• G3 (annoying additional tasks when unknown
certificate / a certificate from an unknown CA is
encountered)

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-232-5

CENTRIC 2012 : The Fifth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

• G4 (error unknown certificate happens often, hence
most users simply ignore the message and add a
security exception)

• G5 (no informed decision possible)
• G7 (error message unknown certificate implies an

ongoing attack)
• G9 (look and feel is not consistent with the rest of

the browser)

V. CONCLUSION AND FUTURE WORK
This paper presented guidelines for software developers

to improve the usability of security-related mechanisms.
The analysis of security mechanisms in common
applications showed weaknesses in the usability of security-
related mechanisms as well as good examples of security
usability.

Future work will include the design of usable security
mechanisms for common problems, e.g., certificate handling
and trust management as well as a user satisfaction study on
the effectiveness of the guidelines. The applicability of the
guidelines will be checked with software developers that are
no security experts. The guidelines presented in this paper
are focused on usability for the end user. Future design
guides will also focus on better usability for other groups,
e.g., system administrators, testers, and developers.

REFERENCES

[1] D.G.T. Markotten, “User-Centered Security Engineering”, in:
NordU2002 – The 4:rd Eur/Open/USENIX Conference,
Helsinki, Finland, 2002

[2] ISO, “Ergonomie der Mensch-System-Interaktion”, EN ISO
9241

[3] J. Sunshine, S. Egelmann, H. Almuhimedi, N. Atri, and L.
Cranor, “Crying Wolf: An Empirical Study of SSL Warning
Effectiveness”, in: USENIX Security Symposium, pages 399-
416, 2009

[4] S. Adams and M. Sasse, “Users are not the Enemy”, in:
Communications of the ACM 42, December issue, pages 40-
46, 1999

[5] A. Whitten and J. Tygar, “Why Johnny can’t Encrypt: a
Usability Evaluation of PGP 5.0”, in: Proceedings of the 8th
conference on USENIX Security Symposium, Volume 8,
Berkeley, CA, USA, 1999

[6] M. Zurko and R. Simon, “User-centered Security”, in:
Proceedings of the 1996 Workshop on New Security
Paradigms”, New York, USA, pages 27-33, 1996

[7] C. Birge, “Enhancing Research Into Usable Privacy and
Security”, in: Proceedings of the 27th ACM International
Conference on Design of Communications, New York, NY,
USA, 2009

[8] OpenID Foundation, “OpenID Authentication 2.0 – Final”,
http://openid.net/specs/openid-authentication-2_0.html,
accessed 08.09.2012

[9] Adam Back, “Hashcash – A Denial of Service Couter-
Measure”, Technical Report, 2002,
http://www.hashcash.org/papers/hashcash.pdf, accessed
08.09.2012

[10] A. Howe, I. Ray, M. Roberts, M. Urbanska, and Z. Byrne,
“The Psychology of Security for the Home Computer User”,
2012 IEEE Symposium on Security and Privacy, 2012

[11] https://www.gpgtools.org/gpgmail/index.html, accessed
08.09.2012

[12] Ivan Arce, “The Weakest Link Revisited”, IEEE Security &
Privacy, March/April 2003, 2003

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-232-5

CENTRIC 2012 : The Fifth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

