
Privacy-Centric Modeling and Management of Context Information

Florian Dorfmeister, Sebastian Feld, Claudia Linnhoff-Popien
Mobile and Distributed Systems Group

Ludwig-Maximilians-Universität München
Munich, Germany

Email: {florian.dorfmeister, sebastian.feld, linnhoff}@ifi.lmu.de

Stephan A. W. Verclas

T-Systems International GmbH
Munich, Germany

Email: stephan.verclas@t-systems.com

Abstract—Context-aware computing has been an intensively
researched topic for years already. Consequently, there exists a
plethora of usage scenarios for context-aware applications as well
as several approaches for the modeling and management of a
user’s context information, many of which focus on the efficient
and scalable distribution of the latter. With the ongoing rise
of smartphones as everyday mobile devices and their steadily
increasing amount of sensing and communication capabilities,
we finally find ourselves at the edge towards a widespread usage
of these techniques. However, apart from technical issues such
as how to reliably determine a user’s current context, privacy
still remains a crucial factor for these systems’ acceptance rate.
Therefore, inspired by earlier works on privacy in context-aware
computing and the authors’ beliefs in the necessity to put users
in control, this paper presents a novel approach for modeling and
managing a mobile user’s context information in a user-centric
and privacy-preserving way. To this end, this work’s contribution
is twofold: First, based on widely recognized requirements for
privacy in context-aware applications, we propose a privacy-
centric context model which allows for an intuitive and context-
dependent definition of a user’s privacy preferences, directly
integrating privacy aspects into the context model itself. Second,
we present a generic and flexible architecture for the management
and distribution of context information in a privacy-preserving
way fit for a multitude of different usage scenarios.

Keywords—context-awareness; context modeling; privacy-by-
design; context-dependent privacy policies; context obfuscation.

I. INTRODUCTION

Both privacy-preserving computing of personal data as well
as the automatic extraction of context information – possibly
from a smartphone’s sensor readings – are very active areas of
research. One can think of many use cases for context-aware
applications, such as proactive route planning services taking
into consideration the current traffic volume and a user’s ap-
pointment schedule, smart mechanisms automatically adjusting
a phone’s audio profile based on the user’s current activity and
occupation, or buddy finder apps alerting the user when sharing
the current location with close friends of her. In addition, there
are applications such as the SmartBEEs context aware business
platform [1], which do not act based on a single user or a peer-
to-peer basis, but leverage the combined knowledge of multiple
users’ current contexts and their surroundings’ state, e.g., for
business process optimization.

Quite a number of slightly varying interpretations of what
context actually is can be found in literature. We base our
understanding of context on the famous definition given by
Abowd et al. [2], declaring context to be any information
that can be used to describe the situation an entity resides

in. Strictly following a user-centric approach, for this paper
we assume a user’s smartphone to be the primary source of
information about her current context. How different kinds of
context information can be acquired from sensor data is not
within the scope of this work though. In order to offer high
levels of service quality, algorithms for context recognition
typically aim at maximizing the resolution, freshness and
accuracy of their classification results. However, when talking
about preserving a user’s privacy, different – and sometimes
even contradicting – objectives are to be pursued. For example,
in many situations it might be perfectly sound to deliberately
reduce the resolution of a piece of context information before
sharing it with others in order not to reveal too much. The
privacy issue gets additionally tightened given the fact that
due to the popularity of smartphones, we are heading towards
a full supply of small electronic devices with broadband
internet access and extensive sensing capabilities. Enabling the
acquisition of a user’s context information with the help of
her smartphone’s sensors and eligible reasoning mechanisms
in return also enables spying on this person. Thereby “one
person’s sensor is another person’s spy”, as [3] puts it.

Many approaches for modeling and managing context focus
on the generation, processing and efficient distribution of
context information as well as the realization of context-aware
applications built thereon. Some works, however, argue that not
only the usability and utility of context-aware applications are
paramount for a wide acceptance, but also the establishment
of appropriate privacy mechanisms which make the users feel
comfortable within such ubiquitous computing environments.
Concordantly, in this paper we propose a new method for giv-
ing the full control over the release and resolution of personal,
private or characterizing context information to the data’s
owner. Our work’s contribution is twofold: First, we define
our Context Representations (CoRe) model, which presents a
novel approach for modeling a user’s context information in a
privacy-centric manner. Second, we introduce the design of our
Layered Architecture for Privacy Assertions in Context-Aware
Applications (ALPACA) together with its privacy levels and
describe the flexible interplay of the different components.

The remainder of this paper is structured as follows: In
Section II, we will make our problem statement and present a
comprehensive list of privacy requirements. We will then have
a look at related work on privacy in context-aware applications
in Section III. Section IV presents our privacy-centric CoRe
model, which marks the base component for our logical and
physical system architecture described in Section V. After
discussing our results in Section VI, we conclude.

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

II. PROBLEM STATEMENT AND REQUIREMENTS

Given these preliminaries, with this work we aim at design-
ing a generic solution for the modeling and management of a
user’s static and dynamic context information. Consequently,
we consider it essential to primarily focus on putting the user
in full control over the capturing, release and resolution of
her personal data. As already stated before, we assume a
user-centric, smartphone-based approach here. Hence, from a
privacy-oriented point of view the less data is going to leave
the user’s mobile device, the better. Yet in order to enable a
multitude of context-aware applications and services, there is
usually a need for communicating one’s current context infor-
mation to other parties. For privacy reasons, however, we argue
that there must not be any party but the user herself able to
access or control her complete context information at any point
in time, thereby ruling out any solutions based on a trusted
third party approach. On the other hand, proactively providing
a central component with some kind of “handpicked” context
information seems nonetheless desirable in some situations,
e.g., in order to allow for the efficient realization of multi-
subject context-aware applications. A truly generic solution
should hence be able to serve all kinds of context requesters
while never sacrificing too much of a user’s privacy.

Based on existing works on privacy in context-aware ap-
plications [4]–[7], we have identified and complemented a set
of different techniques and requirements for realizing different
aspects of privacy. Naturally, a comprehensive approach for
context modeling and management should incorporate all of
these mechanisms. In the following, we will name and briefly
explain the most important of these requirements:

• A minimum set of access control operators such
as grant and deny has to be available in order to
be able to define different requesters’ access rights.
Additionally, users should be allowed to define their
privacy preferences in a context-dependent way.

• Variable granularity can be used to reduce a piece
of context information’s resolution or accuracy. As an
example, consider a user reading her e-mails. Different
granularities of her currently modeled activity context
might contain read-e-mail, computer-work,
office-work and working.

• Intentional ambiguity and plausible deniability can
be used in order to lower the confidence and validity
of a piece of context information, respectively. Notice
that these kinds of “white lies” present everyday
actions in the offline world such as, e.g., not answering
telephone calls in order to pretend not to be present.

• Adjustable freshness and temporal resolution are
other means for intentionally reducing a piece of
information’s quality, e.g., regarding its age or cap-
turing time. It can hence be used in a similar way as
intentional ambiguity to obfuscate a user’s context.

• We define consistency of a user’s privacy preferences
as another important requirement, stating that a con-
text requester must not be able to retrieve ambiguous
or contradicting pieces of context information.

• Notifications can optionally be sent to a user upon
each request of her context information. This can

hence be used as a social means able to prevent the
intentional abuse of contextual information.

• Symmetry is especially important in peer-to-peer sce-
narios, stating that a certain party has to reveal just as
much of its own information as it requests.

• Considering that completely denying a request for a
piece of a user’s context information might itself re-
veal much, we define completeness to be the principle
of answering any request with a plausible response.

• Other useful concepts in context-aware applications
are anonymity, pseudonymity and k-anonymity.

Additional requirements are security, scalability, extensibility
and usability. In order to seamlessly protect a user’s privacy, it
also seems beneficial to closely band together the modeling and
management of a user’s context information. With this work’s
problem statement and privacy requirements being established,
we will review related work in the next section.

III. RELATED WORK

This section presents related work on privacy mechanisms
for context-aware applications. Several different categories of
approaches can be found in literature. Some of them rely
on trusted third party (TTP) solutions for efficient context
dissemination, whereas other systems adopt a peer-to-peer
(P2P) based approach in order to avoid such central points
of attack. On the other hand, there are rule languages for
defining access control based on contextual information as well
as different obfuscation techniques for adequately reducing the
richness of a user’s context information before their release.

A common architectural model for the realization of
context-aware applications is the use of a TTP acting as some
kind of middleware for the aggregation of its users’ context
information. It is necessary for all of the system’s partici-
pants to fully trust this component. The CoPS architecture
introduced in [7] implements such a central privacy service.
While allowing for different granularities of context items,
it does not permit the definition of context-dependent access
rules. Another TTP-based approach called CPE [5] enables the
definition of context-dependent privacy preferences, but lacks
mechanisms for releasing information in different granulari-
ties. With a focus on context-dependent security policies, the
CoBrA platform [8] deploys the Rei policy language [9] in
order to enable the definition of access control rules depending
on a user’s current context. Beyond that there is much litera-
ture on different techniques for the obfuscation of contextual
information. As an example, [6] presents another centralized
approach focussing on context ownership and offering obfus-
cation mechanisms for several kinds of context information
based on SensorML process chains, obfuscation ontologies and
detailed taxonomies describing dynamic granularity levels. In
contrast to these systems, purely P2P-based approaches such
as [10] get along without any central component. As a major
drawback, such architectures can hardly be efficiently deployed
in applications depending on up-to-date context information of
a whole group of users at the same time.

Hence, to the best of our knowledge we are not aware of
any approach able to fully satisfy the requirements given in
Section II and tackling the issue of preserving a user’s privacy

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

in context-aware applications comparable to our framework’s
user-centric design. Therefore and based on these require-
ments, we will now introduce our privacy-centric CoRe model
and the ALPACA system architecture for context modeling and
management in Sections IV and V, respectively.

IV. PRIVACY-CENTRIC CONTEXT MODELING

Based on the given requirements, we will now present a
novel approach for modeling a user’s context information in
a privacy-preserving way. As the name implies, our Context
Representions model is designed to store several heteroge-
neous representations of one and the same kind of context
information, each of them being intended for variably trustwor-
thy groups of requesters. Subsequently, we introduce a user-
friendly and flexible trigger mechanism that allows for context-
dependent definitions of privacy preferences on behalf of the
user. To this end, the trigger functionality has been devised to
(optionally) depend on both the subject’s, the requester’s as
well as the environments’ current context. In Section IV-C we
will join the latter with our model in order to describe how our
approach is able to dynamically cope with inconsistent policy
definitions at runtime.

A. Modeling context information using representations

In accordance with many existing approaches for context
modeling (cf. [11] for a comprehensive survey), we adopt
a tree-based view on a user’s overall context information
as depicted in Figure 1. In this hierarchic scheme, the root
node aggregates all different categories of a user’s context
information. At the second level distinctions between the basic
context categories are made, such as a user’s current location
or activity. However, this catalog is not fixed and can readily
be extended to hold any additional kind of context information
in case new types of sensors or inference mechanisms become
available. Each of the tree’s second-level nodes may be a parent
to an arbitrary number of corresponding Representations, each
reflecting the given category in a different way, e.g., concerning
the respective item’s resolution or – in case of a white lie –
maybe even its validity. One should thus notice that in contrast
to existing context models such as MUSIC [12], which use the
term “representation” in order to label the data formats used for
communication (such as XML, JSON, etc.), we define distinct
Representations of a context information to differ from each
other on a semantic level, independent from any encoding.
As an example, consider the three different Representations
of the user’s current location in Figure 1: The representation
on the left holds the exact GPS position fix of the user. In
contrast, the one in the middle only states the user’s location
on a city level, while the third uses a non-geographic, symbolic
location identifier that cannot be mapped to a geographic one
– at least not without any further knowledge about the user.
The idea behind providing multiple representations of the same
category is that from a privacy-centric point of view, a user
should be able to communicate different versions of her current
context information to different parties. Which representation
is to be released to whom might, e.g., be based on the trust
level assigned to a requester and the current context itself.

Following an ontology-based modeling approach, our con-
text model consists of the three base classes shown in Figure
2, namely Context, Representation and Audience. The

48.14985,11.59476

Accuracy: 10m

Obfuscation: geo. none

Context

ActivityContextLocationContext

Munich

Freshness: 200min

Obfuscation: geo. city-level

Workplace

Confidence: 0.8

Obfuscation: semantic ...

...

…

Obfuscation: ...

Fig. 1. An example context tree with its second-level Context nodes linking to
an arbitrary number of Representations, each indicating its level of obfuscation
based on the semantics of the underlying information.

first two of them can have subclasses such as ActivityContext
and ActivityRepresentation, respectively. As already explained,
a certain subclass of context may be described by multiple
instances of Representation at the same time. Our model’s
basic structure was inspired by the ASC model by Strang
et al. for enabling service interoperability based on a shared
understanding of and transformation rules for different, yet log-
ically equivalent scales [13]. Quite the contrary, however, our
CoRe approach can be used to model different representations
of the same kind of context information, which – according
to the requirements stated in Section II – do not necessarily
have to share the same (or at least similar) meanings at all.
Especially, in our case there must of course not exist any
transformation rules which allow for a simple conversion from
a low-resolution representation to a high-resolution one.

Context Representation Audience

Base Classes representedBy visibleTo

represents canAccess

ActivityContext ActivityRepresentation

Subclasses
representedBy

represents

hasActiv
ity

Repre
sentatio

n

subclassOf ObjectProperty functional Obj.Prop.subpropertyOf

Fig. 2. The classes, subclasses and properties of the CoRe model. Each
subclass of Context might have an arbitrary number of Representations.

As an enabler for the definition of privacy preferences
based on our model, a representation instance can be assigned
to a certain Audience using subproperties of the canAccess
property. An audience can be any entity requesting the user’s
context information and might be defined both statically (e.g.,
based on group membership) and context-dependent, such as
“entities near me”. As we will see in Section IV-C, however,
an entity must not be assigned to more than one representation
of the same class of context information at the same time. We
accomplish this by marking every subproperty of canAccess
as being functional. In order to be able to automatically assess
the resolution of a representation of a given class, each Repre-
sentation stores additional information about its obfuscation
level. A generic labeling approach for these levels seems
unfeasible, considering the great differences in semantics that
different classes of context information might possess. Hence,
each subclass of Representation is expected to define its own
obfuscation scales. Returning to the abstracted tree-based view
of our model, the base class Context can be interpreted as
the root node in the hierarchy. Subclasses thereof, such as

94Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

ActivityContext and LocationContext form the second-level
nodes, which might link to an arbitrary number of appropriate
subclass instances of Representation.

B. Defining context-dependent privacy preferences

In addition to the model’s base concepts just described,
we have designed a trigger mechanism which allows for
a simple, yet flexible and effective definition of context-
dependent privacy preferences on behalf of the user. With our
system following a conservative, whitelist-based approach (cf.
Section V-A) in order to protect a user’s context information
from accidental leakage, explicitly defining a release trigger
is the only possibility for a user to share any piece of infor-
mation with others. The corresponding classes and properties
can be seen in Figure 3. Broadly speaking, a Trigger can
be used for setting up preferences defining how the system
should respond to any requests for context information. A
trigger fires each time the set of Conditions associated with
that instance matches the currently known overall situation,
possibly taking into account the current states of both the
user’s, the requester’s and the surroundings’ contexts. As an
Effect, one or more Representation instances of the requested
user become accessible for the given Audience. From [7]
we have adapted the idea that accessing a piece of context
information by a certain requester might have side effects such
as notifying the user, as we agree on that being a proper means
suitable for possibly containing data abuse. If desired, a user
can hence also specify which SideEffect should be activated
when a certain kind of Representation is requested by a certain
audience. Additionally, a user is able to define the obfuscation
level, accuracy, confidence and freshness properties the now-
accessible representation has to fulfill for this audience under
the circumstances described in the corresponding conditions.

Effect

Trigger

Condition

hasEffect

Entity

Representation Audience

precedesOver

SideEffect

hasSideEffect

ha
sC
on
dit
ion

hasEntity hasContext

Context Representation

representedBy

effects visibleTo

Fig. 3. The structure of the Trigger mechanism enabling users to define
context-dependent privacy preferences. Each Effect might also have SideEffects
describing reactions to requests for context information.

C. Dealing with inconsistent privacy preferences

We will now describe how our context modeling approach
can be used in conjunction with the trigger mechanism in
order to detect any inconsistencies arising from ambiguous
or conflicting privacy preferences. For this work, we define
a set of privacy preferences to be inconsistent if it enables
any requesting entity to access more than one representation
of the same class of context information at the same time,
as this situation is clearly prone to harm a user’s integrity.
The issue becomes evident when considering two contradicting
representations, e.g., a user’s true and fake location informa-
tion. If one requester is granted access to both representations,

the result is not only ambiguous, but also likely to negatively
influence the user’s respectability due to being caught lying.
Logically, such situations might occur when a requester is
belonging to more than one (possibly dynamically defined)
Audience. Hence, there has to be a way for detecting and
solving such preference conflicts. In order to prohibit such
situations from occuring, we use the underlying ontology’s
built-in reasoning capabilites to dynamically check the model’s
state for consistency. By defining all subproperties of canAc-
cess to be functional, we assure that each entity is allowed to
see at most one representation of the same class. This check is
performed each time a trigger fires. In order to solve conflicting
situations, the precedesOver property can be set. In a practical
implementation, the first time an inconsistent state is detected,
a user might be notified about the conflict and be able to choose
which of the triggers involved should precede over the other.

This section presented a novel approach for privacy-centric
context modeling as well as a trigger mechanism for a context-
dependent definition of a user’s privacy preferences. In the next
section we will describe the privacy layers and components of
the ALPACA architecture built upon our model.

V. PRIVACY LAYERS AND SYSTEM ARCHITECTURE

We will now introduce our Layered Architecture for Pri-
vacy Assertions in Context-Aware Applications and its four
different privacy layers. These layers resemble what we be-
lieve to be a good compromise about a privacy-aware user’s
sensation of different levels of information accessibility and
reduction of complexity. Afterwards, we will introduce our
architecture’s central component, the Privacy Manager and
describe an example setup and communication flow.

A. Different layers for different audiences

Public Layer (IV)

Protected Layer (III)

Private Layer (II)

Reality (I)

Layer Audience

Everyone

Trusted Peers

Local Apps

Example information

Age group (25-31),
gender, etc.

Exact GPS location for
co-workers in case
the user is at work

Exact GPS location,
appointments in
schedule, etc.

Facts, discrete and continuous
values, e.g. temperature,
altitude, acceleration, etc.

Sensors

Blacklist

Whitelist

Trust Distinction

Fig. 4. The four different privacy layers defined in ALPACA and their most
likely audiences, as well as some example context items for each layer.

As shown in Figure 4, ALPACA defines four logically
different layers which can be mapped to a user’s privacy
levels, as well as some kind of privacy gateways between these
layers. At the bottom layer we put reality, possibly containing
more information than any kinds of sensors and reasoning
mechanisms will ever be able to capture. Although one does
not have to implement anything on this layer, we still have
to define it as this layer is what is aimed to be reflected
in any context model. However, even today a user might

95Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

feel uncomfortable knowing that each of her smartphone’s
sensors is recording data all the time. Hence, a user can set
up a context-dependent blacklist for defining which sources
of context information should be turned off under certain
conditions.

The next layer is the private layer, holding all the in-
formation a user wants to have available for herself, i.e.,
context-aware services and applications running exclusively
on her mobile device. Consider for example locally run apps
which adapt their appearance and behaviour according to
the user’s current context. In order for such services to be
responsive and proactive, this layer enables access to the most
fresh and sophisticated context representations. Naturally, these
high-resolution representations are probably not intended for
everyone else as well. Thus, the trigger mechanism described
in Section IV-B is used as a context-dependent whitelist for
the release of certain representations to the upper layers.

Context information which pass this whitelist enter the
protected layer and might hence be available for some other
entities, too, such as trusted services and peers. For example, a
user might be reluctant to share her current whereabouts with
everyone, but maybe with some of her friends in her spare
time or with her employee during working hours. Naturally, the
number and composition of context representations available
on this layer will hence change dynamically based on the user’s
privacy preferences and current context.

Additionally, a user might be willing to share some kind
of information about herself with anyone, meaning that these
information are available on the public layer. This might, e.g.,
be true for information that are somehow obvious anyway,
such as personal profile data containing the user’s gender or
age group. However, a user might still define notifications to be
displayed when these kinds of information are being requested.
That said, notice that our system’s user is of course not forced
to abide by these layers in the way we just described, but rather
can individually choose which level of visibility fits her own
situation by the use of appropriate release triggers.

B. Components of our hybrid system architecture

We will now briefly describe the flexible architecture of the
ALPACA system, as well as the Privacy Manager as its core
component responsible for managing access to all of the user’s
context information. Figure 5 gives a component-oriented view
of our system. It is up to the privacy manager instance
running on the user’s mobile device to enforce compliance
with the privacy preferences set up by the user at any time.
Therefore, it is the only component which has full access to all
representations available in the context model in order to be
able to fulfill the user’s blacklist and whitelist preferences. The
privacy manager decides on the release of context information
on a per-request basis, thereby realizing some kind of lazy
rule evaluation. This is necessary given the context-dependent
nature of the user’s preferences: As explained in Section IV-B,
the release of a certain context representation might well
depend on the requester’s current context. Hence, in such
cases, the requester has to communicate his own context to
the requested user’s privacy manager, which will then decide
on whether or not to release the requested information.

Privacy Manager

Release
Triggers

Context
Recognition
Algorithms

Raw
Sensor

Readings

Obfuscation
Techniques

...

Sensors

Reality

CoRe Model

Fig. 5. The client-side components of the ALPACA framework: The Privacy
Manager acts as an exclusive interface to access a user’s context information
for both local, peer-to-peer and third-party applications.

In accordance to the definitions of the different privacy
layers, those representations belonging to the private layer
must inalienably be managed on the mobile device itself.
However, in order to enable the efficient and scalable imple-
mentation of applications based on, e.g., the current contexts
of several users, there might also exist less trustworthy, yet
possibly distributed instances of the privacy manager and
the user’s context model on the protected layer. If so, the
privacy manager residing on the user’s device will commit any
updates in the set of currently released context representations
to the external instances of the model. Naturally, not all
representations currently released by the user’s whitelist will
be sent to the latters, but only those assigned to the respective
application identified by the corresponding release triggers’
Audience definitions. The ALPACA architecture can hence be
considered flexible in the sense that it can be used both in a
purely P2P-based fashion as well as in classic client/server-
based applications without the need for a true TTP.

C. Communication flow in ALPACA

Having introduced the privacy layers and software com-
ponents of ALPACA in the previous sections, we will now
describe the basic communication flow in an example setup
of our system. For the sake of clarity, however, we will only
refer to the P2P-based case with one internal instance of the
privacy manager here.

As illustrated in Figure 5, we assume a number of different
sensors, algorithms for context recognition as well as obfus-
cation techniques to be available on the user’s smartphone.
These are responsible for capturing a user’s real context and
transforming it into instances of the Representation class
for our context model, also providing the necessary meta
information such as, e.g., freshness and obfuscation level.
Every time one of the available sources of context information
produces fresh data, the model will be updated. Additionally,
the context-dependent blacklist defining which sensors and
inference mechanisms to turn off under certain conditions will
be re-checked. Now different audiences might request some
of the user’s context information from the privacy manager.
Hence, it will first check which audiences the requester belongs
to. In case the requesting entity is a local service that the
user wants to have full access to her high-resolution context
information, the privacy manager will return all matching

96Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

representations from the private layer. Otherwise, the privacy
manager will take the requester’s context information con-
tained in the request in order to re-interpret the user’s whitelist
based on these information, thereby possibly firing some of
the release triggers. Eventually, given that no inconsisteny
is detected, the privacy manager will return the appropriate
representation to the requester. In order for our system to be
able to answer every incoming request even in case there is no
such representation, some kind of highly obfuscated standard
representation will be returned (cf. Section II).

VI. DISCUSSION

We will now dicuss the pros and cons of our privacy-
centric approach for modeling and managing a user’s context.
Strictly following a user-centric point of view, all decisions
in the design process have been taken in order to offer a
maximum level of control and privacy concerning the release
of a user’s context information. As a result, our approach
is able to fulfill the different privacy requirements presented
in Section II, which were collected from existing works on
privacy in context-aware applications: In order to be as generic
as possible, we decoupled our model from the generation of
context information, thereby making it independent from exist-
ing sensors, as well as reasoning mechanisms and obfuscation
techniques. The latters are able to realize the concepts of
variable granularity, plausible deniability and the like. In prac-
tical implementations, new sensors and inference algorithms
can simply register themselves at the privacy manager, which
will inform the user about the additional context sources and
obfuscation levels being available for the definition of her
privacy preferences. Also, our framework will always give
an unambiguous answer – according to the user’s context-
dependent preferences – to any incoming request, thanks to
the automatic detection and remedy of inconsistent privacy
preferences based on the underlying ontology’s internal rea-
soning capabilities and modeled precedence rules, respectively.
However, for a secure implementation our system must be run
on some kind of trusted computing platform able to prevent
the privacy manager from being circumvented by malware.

The ALPACA architecture exhibits considerable flexibility
with regard to the fact that it can be used both exclusively
on a user’s mobile device as well as in P2P and client/server
applications. Making usage of distributed instances of the
context model and the privacy manager running on a server in
the Internet can also help against network layer attacks trying
to locate or identify a user by her current network location.
However, there is a natural trade-off between a user’s privacy
and the amount of context information stored on distributed
servers likely to be under someone else’s administration.
Finally, although having designed our trigger mechanism to be
intuitive and user-friendly, it is not clear whether a majority of
users will be likely to adopt such a restrictive whitelist-based
system, facing peer pressure and their own reluctance towards
manually configuring release triggers.

VII. CONCLUSION

This paper presented a novel approach for modeling a
user’s context-information in a privacy-centric way. We intro-
duced our ontology-based CoRe model, which can be used
for managing multiple, semantically different representations

of the same class of context information fit for differently
trustworthy groups of context requesters. In order to enable
context-dependent definitions of a user’s privacy preferences,
a flexible whitelist-based trigger mechanism has been created.
Eventually, we presented the design of our ALPACA system
architecture and discussed our approach.

At the time of writing, we are currently working on a
prototype implementation of our system allowing us to conduct
a user study for evaluating the feasibility of our trigger mech-
anism. As for our future work, we aim at finding additional
mechanisms capable of ensuring context consistency over
several consecutive requests by a single entity. Furthermore,
we want to analyze how to also protect the requesting entities’
contexts, as well as how to handle possible deadlock situations
resulting from mutually exclusive privacy preferences. Finally,
we will try to find new obfuscation techniques for different
types of context information and integrate them into ALPACA.

REFERENCES

[1] F. Dorfmeister, M. Maier, M. Schönfeld, and S. A. W. Verclas, “Smart-
bees: Enabling smart business environments based on location informa-
tion and sensor networks,” in 9. GI/KuVS-Fachgespräch ”Ortsbezogene
Anwendungen und Dienste”, 2012, pp. 23–37.

[2] G. D. Abowd et al., “Towards a better understanding of context and
context-awareness,” in Handheld and ubiquitous computing. Springer,
1999, pp. 304–307.

[3] M. Ackerman, T. Darrell, and D. J. Weitzner, “Privacy in context,”
Human–Computer Interaction, vol. 16, no. 2-4, pp. 167–176, 2001.

[4] W. Bokhove, B. Hulsebosch, B. Van Schoonhoven, M. Sappelli, and
K. Wouters, “User privacy in applications for well-being and well-
working,” in AMBIENT 2012, The Second International Conference
on Ambient Computing, Applications, Services and Technologies, 2012,
pp. 53–59.

[5] M. Blount et al., “Privacy engine for context-aware enterprise applica-
tion services,” in Embedded and Ubiquitous Computing, 2008. EUC’08.
IEEE/IFIP International Conference on, vol. 2. IEEE, 2008, pp. 94–
100.

[6] R. Wishart, K. Henricksen, and J. Indulska, “Context privacy and
obfuscation supported by dynamic context source discovery and pro-
cessing in a context management system,” in Ubiquitous Intelligence
and Computing. Springer, 2007, pp. 929–940.

[7] V. Sacramento, M. Endler, and F. N. Nascimento, “A privacy service for
context-aware mobile computing,” in Security and Privacy for Emerging
Areas in Communications Networks, 2005. SecureComm 2005. First
International Conference on. IEEE, 2005, pp. 182–193.

[8] H. Chen, T. Finin, and A. Joshi, “An intelligent broker for context-
aware systems,” in Adjunct proceedings of Ubicomp, vol. 3, 2003, pp.
183–184.

[9] L. Kagal, T. Finin, and A. Joshi, “A policy language for a perva-
sive computing environment,” in Policies for Distributed Systems and
Networks, 2003. Proceedings. POLICY 2003. IEEE 4th International
Workshop on. IEEE, 2003, pp. 63–74.

[10] W. Apolinarski, M. Handte, D. Le Phuoc, and P. J. Marrón, “A
peer-based approach to privacy-preserving context management,” in
Proceedings of the 7th international and interdisciplinary conference
on Modeling and using context, ser. CONTEXT’11, 2011, pp. 18–25.

[11] C. Bettini et al., “A survey of context modelling and reasoning tech-
niques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161–180,
2010.

[12] R. Reichle et al., “A comprehensive context modeling framework for
pervasive computing systems,” in Proceedings of the 8th IFIP WG 6.1
international conference on Distributed applications and interoperable
systems, ser. DAIS’08, 2008, pp. 281–295.

[13] T. Strang, C. Linnhoff-Popien, and K. Frank, “Cool: A context ontology
language to enable contextual interoperability,” in Distributed applica-
tions and interoperable systems. Springer, 2003, pp. 236–247.

97Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

