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Abstract—This paper presents work in progress on a novel 

approach for modeling and implementing user-centric 

adaptive automation based on formal modeling and 

reconfiguration of user interface models. The approach 

addresses automation as relevant parameter in human-

machine interaction; it is responsible for increasing workload 

during monitoring and control of complex technical systems 

and thereby for human errors in interaction. By actively 

involving the user into the adaptation process through user-

side applied reconfiguration and system-side, workload 

depended adaptation, the user gets a deeper insight to the 

automation of the system and automation gets adapted to his 

or her needs. Thus, the main contribution of the work 

presented in this paper is the close integration of the user into 

the adaptation process of automation, resulting in a user-

centric adaptive automation approach. 
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I.  INTRODUCTION AND MOTIVATION 

In the course of the last decade, the increasing 
automation of complex controlling tasks has significantly 
changed how control of complex technical systems is done. 
Examples from the chemical and energy industry show that 
the main task of operators is to monitor the (automated) 
technical process rather than to control it [1]. Research in 
cognitive psychology has revealed important consequences 
of automation with respect to the human operator’s workload 
in monitoring and control of technical processes, especially 
in critical, non-standard situations [2]. High workload is 
closely related to error rate, as well as to factors that 
influence the error rate in human-machine interaction, such 
as motivation, well-being, or situation awareness [3, 4].  

Adaptive user interfaces are developed primarily in order 
to reduce workload and to increase human performance by 
adapting interaction to a specific user [5]. Thus, it seems 
obvious to adapt user interfaces in order to suit particular 
users’ needs and to introduce into the adaption process the 
degree of automation as an important parameter influencing 
human factors in human-machine interaction [6]. Here, the 
degree of automation defines whether the user has more or 
less control over the process, which system information in a 
critical situation is provided, or how the granularity of input 
operations is defined. Still, adaptive user interfaces require 

information and data about the situation of user-system 
interaction to trigger and initialize certain adaptations. Here, 
mental workload has been identified as one primary reason 
for errors in user-system interaction. Especially in context of 
automated systems, the degree of automation is associated 
with potential increase of mental workload and thereby is an 
indicator whether the degree of automation is too high or too 
low and whether it should be adapted or not. Weert [7] 
describes how mental workload can be measured based on 
different physiological factors, such as heartbeat rate, facial 
expression, perspiration, or eye blink rate. Out of these 
factors, pupillometry has been identified as promising 
measurement for workload, especially in context of adaptive 
automation to increase human performance [8]. 

Motivated by these findings in cognitive psychology and 
work on adaptive automation, this paper presents an 
approach to combine system- and user-side triggered 
adaptation of the degree of automation as being integrated in 
a model-based and executable approach for describing user 
interfaces based on a formal and graph-based modeling 
approach for the creation of user interface models. This close 
integration of model-based creation and system-/user-side 
adaptation tries to make a first step into the direction of a 
“human-machine symbiosis”, without losing the focus of 
creating computer-based systems [9]. This gap between 
modeling and implementation highlights the problem of 
transforming models into executable code, as has been 
described in context of software development [10].  

Therefore, the model-based approach described in 
Section 2 is executable and offers mechanisms for model-
intrinsic adaptation through graph transformation systems. 
Therefore, the presented approach is graph-based and is 
transformed into reference nets, a special type of Petri net. 
Still, computer-based adaptation of automation assumes the 
accessibility of automation in a system’s architecture as a 
formal model or description. Based on this observation, 
Section 3 presents a modeling approach for integrating 
automation with the user’s current workload into an adaption 
concept, targeting formal user interface reconfiguration using 
predefined adaption rules. These adaption rules getting 
instantiated based on the measured data and being applied in 
a next step to the formal user interface model. Finally, 
Section 4 will conclude the paper and will discuss future 
work aspects, such as a planned evaluation study 
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investigating the influence of system-/user-side adaptation of 
automation to user's performance. 

II. FORMAL RECONFIGURATION OF USER INTERFACES 

The adaptation of a user interface responding to the 
degree of automation, individualization for a certain user (or 
user group), as well as the necessity of the modeling 
approach to be executable, are the main arguments for the 
use of formal methods. This is because only fully formal 
models can be processed algorithmically in a computer-
based system. For this reason, we developed a preliminary 
formal approach for modeling user interfaces in a two-
layered architecture (see Figure 1, Section 0). The first layer 
represents the physical appearance of the user interface, 
which is directly accessible through the human user. Thus, it 
offers a set of input and output elements (button, slider, text 
fields, etc.) allowing the user to interact with the system and 
presents information (graphs, displays, instruments, etc.) to 
notify the user of the state of the system and any changes in 
it. The underlying second layer models the behavior of the 
user interface as a set of data processing routines that process 
events caused by the user and create certain data for 
controlling the system and, vice versa, process data sent by 
the system to be presented to the user. This two-layered 
architecture was used in various evaluation studies to 
reconfigure user interfaces (UIs) and to investigate the 
influence of reconfiguration to the human-computer 
interaction [11, 12].  

For modeling the second layer, which is also called 
interaction logic, we developed a formal and visual modeling 
language called Formal Interaction Logic Language (FILL), 
accompanied by a visual modeling tool called UIEditor [13]. 
The UIEditor is able to model physical representation (such 
as a visual user interface), run a created user interface, and, 
finally, reconfigure the user interface based on a formal 
graph-transformation system. To execute a given user 
interface, interaction logic provided as a FILL graph is first 
transformed to a reference net, a special type of Petri net 
[14]. Reference nets provide formal semantics for FILL and 
makes interaction logic executable using Renew, a Java-
based modeling and simulation tool for reference nets [15]. 
The simulation of a modeled user interface can be exemplary 
shown along the initial interaction logic (see Figure 1, 

Section 0). Here, the physical representation contains of two 
buttons labeled “OpA” and “OpB”, as well as an interaction 
element showing a single value on a certain scale, for 
instance, the current rounds per minute (rpm) of a pump. 
Thus, “OpA” and “OpB” could be operations to increase and 
decrease the rpm of the pump in the controlled system, 
which is represented as third layer (see Figure 1). The initial 
reference net-based interaction logic does nothing else than 
sending press events resulting from the user to the system 
and sending the current rpm value from the system back to 
the user interface’s physical representation. Therefore, press 
events of a button trigger transitions to fire in the interaction 
logic, as far as they are associated to that button (as it is 
indicated as dashed arrow in Figure 1). The same is true for 
the connection to the system and the callback mechanism for 
the rpm value. 

To apply reconfiguration to a reference net-based 
interaction logic, transformation rules, which first have to be 
generated algorithmically, can be applied to the reference net 
and thus change the behavior of the user interface. The rules 
used in UIEditor’s reconfiguration component are based on 
the DPO (Double PushOut) graph rewriting approach [16]. 
An exemplary rule is shown in Figure 2. A DPO rule is 
divided into three different graphs, or Petri nets: The left side 
(L), the interface graph (I), and the right side (R) of the rule. 
The parts of the original graph G to be rewritten are defined 
by defining a matching function m. By applying the rule to 
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Figure 2. Double pushout (DPO) graph rewriting approach. 
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Figure 1. Example of a simple user interface reconfiguration to adapt automation. 
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G, the difference between L and I is deleted from G 
(resulting in C), and the difference between I and R is added 
to C, yielding the final result, H. Figure 2 shows the rule that 
is applied to the initial interaction logic (see Figure 1, 
Section 0), where the result is shown in Figure 1, Section I, 
accompanied by a change of the physical representation. 
Here, a specific part of a control process (e.g., alternating 
increasing and decreasing of the pump’s rpm) has been 
integrated into the interaction logic to automate the indicated 
process. Thus, automation becomes part of interaction logic 
as will be described in greater detail below. In many cases, 
this kind of reconfiguration of the user interface requires 
modifying the physical representation in respect to newly 
added interaction elements for input data or changes in how 
information is represented, as shown in Figure 1. 

Thus, adaptation of user interfaces is implemented based 
on formal reconfiguration techniques that are used and 
integrated in a transformation-rule generator using context 
information, such as an automation model and user’s current 
mental workload. The main contribution of using formal 
methods is that the model is still executable after creating 
and reconfiguring the user interface, where the whole 
adaptation process is implemented in the same formalism. 
This prevents solutions to be loose combination of different 
modeling approaches, which run the risk to be incompatible 
or losing information by changing between different 
modeling concepts [10]. The section below presents a 
coherent solution of adaptation of automation based on the 
former described self-contained modeling approach. 

III. ADAPTATION OF AUTOMATION 

For adaptive automation based on formal user interface 
modeling, it is assumed that the automation concept is fully 
accessible through an external formal model that matches the 
underlying concept of formal user interface modeling; 
therefore, the automation model should employ a Petri net–
based representation. Based on this assumption, automation 
can be further understood as formal abstraction of interaction 
processes between the human user and any given system that 
has been technically implemented. Thus, in our sense, 
automation is part of the above-introduced interaction logic. 

Assume a discrete and recurrent process of two 
operations “OpA” and “OpB”, which have to be executed in 
iterative fashion, such as the process shown in Figure 1 and 
described before. According to the first assumption, this 
process can be introduced into reference net–based 
interaction logic as indicated by the bold arrow in Figure 1, 

which represents the application of the DPO rule shown in 
Figure 2. The automation of this process can then be started 
by the user pressing the newly added “Start” button. From 
this point on, the user is only able to monitor the system’s 
state by observing the tachometer-like output widget, 
showing the current pump’s rpm being controlled. Thus, 
using the initial interface, s/he is not able to follow the 
operations that are automatically executed by the interaction 
logic. 

As Parasuraman [1, 2] described, workload increases 
during critical situations because the user has to understand 
the system’s current situation, as well as how the automated 
control processes are reacting to the situation. The user has 
to gain insight into the automated process, resulting in 
increasing mental workload, sometimes dramatically. To 
adapt automation to this situation, the initial user interface 
can be reconfigured (see Figure 1, Section II), by adding 
more interaction elements providing deeper insight into the 
automated process. Two lamps are added to the physical 
representation accompanied by an extension of the 
interaction logic, now showing which operation is executed 
at any given moment. This makes interaction more finely 
grained and viewable to the user. A further reconfiguration 
extends the first by changing the simple lamps into buttons 
(see Figure 1, Section III), where the user is now able to 
control the automated process. Another possibility would be 
to remove the automation from the interaction logic and give 
all control back to the user without restriction or even, 
contrarily, to reduce the interaction and fully automate the 
process. The first would result in the initial user interface 
(see Figure 1, Section 0). 

The second aspect for introducing adaptive automation 
into formal user interface models is that a system exists that 
is able to measure user’s workload (beside other possible 
measurements) as s/he interacts with the technical system. 
Therefore, adaptive automation will be implemented as a 
component of the UIEditor framework, which combines the 
perceived mental workload of the user and his/er individual 
requirements. Here, three components have to be realized: 
the workload identification component, which observes the 
user through such means as an eye-tracker and calculates the 
workload from the captured data. The second component is 
the rule generator, which generates formal reconfiguration 
rules to be applied by the existing reconfiguration component 
in the UIEditor. The third component will be based on 
UIEditor’s reconfiguration editor, which is able to apply 
individual reconfiguration operations to the interaction logic 
and thereby to the automation model by the user himself; 
called user-side adaptation above. Here, the user triggers the 
reconfiguration, selects the specific part of interaction logic 
to be reconfigured, and chooses the rule to be applied. 

Various works have identified pupillometry as a possible 
indicator of user’s workload [7, 8, 17]. Thus, the rule 
generator is triggered by the workload identification 
component to generate and apply reconfiguration to the user 
interface, what is called system-side adaptation (see Figure 
3). Rules are then generated from rule patterns that have 
already been derived and described in automation research, 
resulting in a reconfiguration as shown in the above-

Rule Generator

Workload Rule Patterns

User Interface

Eye Tracker Automation

Reconfigurer

 

Figure 3. Conceptual architecture of the automation adaption  

module for the UIEditor. 
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described example, depending on the amount of detected 
workload (see Figure 1). Rule patterns consist primarily of 
specific structures to be added or deleted from reference net-
based interaction logic and algorithmic implementation 
necessary to detect relevant parts of the reference net to be 
transformed. In conclusion, the combination of system- and 
user-side adaptation results in an integrative user-centric 
approach for adapting automation based on formal user 
interface models. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we presented a new approach to implement 
adaptive automation as part of a user interface modeling 
approach using formal methods to describe interaction logic. 
This integrative approach is a first step towards closing the 
gap between modeling, execution, and reconfiguration of 
user interfaces and integrating adaptive concepts to adapt 
user interface to user’s needs, as well as making the degree 
of automation accessible for system- and user-side 
adaptation. Based on visual modeling and graph-based 
languages accompanied with algorithmic transformation of 
reference nets, user interface models get executable and can 
be reconfigured by graph rewriting systems. Considering 
automation as part of interaction logic, reconfiguration can 
also change automation beside further individualizations of 
the user interface concerning user’s needs. 

Finally, the described work in progress will be evaluated 
and further elaborated in context of former applied studies 
[12, 13]. Here, we investigated the influence of 
individualization of user interfaces using reconfiguration on 
monitoring and control of technical systems. The reduction 
of errors was in focus of these studies showing that it is 
possible to reduce errors through reconfiguration of user 
interfaces for interaction with technical system. Therefore, 
we will investigate the former introduced approach of 
adaptive automation concerning usability and applicability in 
a real monitoring and control scenario of a technical system 
(e.g., a simple simulation of a nuclear power plant), as well 
as analyze its influence on errors in interaction as measurable 
variable. We will run the test with two groups; one group 
will do predefined control tasks supported by system-side 
adaptation of automation, as well as user-side individual 
reconfiguration, whereas the control group will undertake the 
same tasks without support by the reconfiguration system.  

The above introduced example (cf., Figure 1) is only one 
aspect of how automation fosters increasing workload and 
how it is possible to work against this effect through formal 
user interface reconfiguration. Therefore, future work will 
seek to identify further features of automation and to 
generate rule patterns in order to offer a comprehensive 
library that can deal with various situations and types of 
automation. Furthermore, an extension of the UIEditor tool 
for modeling, running, and reconfiguration via 
modularization and a more finely grained leveled 
architecture will be developed and implemented due to 
necessary refinement in the interaction logic model. Finally, 
the integration and reconfiguration of automation without 

necessarily including the user but other models and 
requirements will be part of future work. 
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