
User-Centric Adaptive Automation through

Formal Reconfiguration of User Interface Models

Benjamin Weyers

Dept. of Computer Science and Applied Cognitive Science

University of Duisburg-Essen

Duisburg, Germany

weyers@inf.uni-due.de

Abstract—This paper presents work in progress on a novel

approach for modeling and implementing user-centric

adaptive automation based on formal modeling and

reconfiguration of user interface models. The approach

addresses automation as relevant parameter in human-

machine interaction; it is responsible for increasing workload

during monitoring and control of complex technical systems

and thereby for human errors in interaction. By actively

involving the user into the adaptation process through user-

side applied reconfiguration and system-side, workload

depended adaptation, the user gets a deeper insight to the

automation of the system and automation gets adapted to his

or her needs. Thus, the main contribution of the work

presented in this paper is the close integration of the user into

the adaptation process of automation, resulting in a user-

centric adaptive automation approach.

Keywords-formal modeling; human-computer interaction;

adaptive automation

I. INTRODUCTION AND MOTIVATION

In the course of the last decade, the increasing
automation of complex controlling tasks has significantly
changed how control of complex technical systems is done.
Examples from the chemical and energy industry show that
the main task of operators is to monitor the (automated)
technical process rather than to control it [1]. Research in
cognitive psychology has revealed important consequences
of automation with respect to the human operator’s workload
in monitoring and control of technical processes, especially
in critical, non-standard situations [2]. High workload is
closely related to error rate, as well as to factors that
influence the error rate in human-machine interaction, such
as motivation, well-being, or situation awareness [3, 4].

Adaptive user interfaces are developed primarily in order
to reduce workload and to increase human performance by
adapting interaction to a specific user [5]. Thus, it seems
obvious to adapt user interfaces in order to suit particular
users’ needs and to introduce into the adaption process the
degree of automation as an important parameter influencing
human factors in human-machine interaction [6]. Here, the
degree of automation defines whether the user has more or
less control over the process, which system information in a
critical situation is provided, or how the granularity of input
operations is defined. Still, adaptive user interfaces require

information and data about the situation of user-system
interaction to trigger and initialize certain adaptations. Here,
mental workload has been identified as one primary reason
for errors in user-system interaction. Especially in context of
automated systems, the degree of automation is associated
with potential increase of mental workload and thereby is an
indicator whether the degree of automation is too high or too
low and whether it should be adapted or not. Weert [7]
describes how mental workload can be measured based on
different physiological factors, such as heartbeat rate, facial
expression, perspiration, or eye blink rate. Out of these
factors, pupillometry has been identified as promising
measurement for workload, especially in context of adaptive
automation to increase human performance [8].

Motivated by these findings in cognitive psychology and
work on adaptive automation, this paper presents an
approach to combine system- and user-side triggered
adaptation of the degree of automation as being integrated in
a model-based and executable approach for describing user
interfaces based on a formal and graph-based modeling
approach for the creation of user interface models. This close
integration of model-based creation and system-/user-side
adaptation tries to make a first step into the direction of a
“human-machine symbiosis”, without losing the focus of
creating computer-based systems [9]. This gap between
modeling and implementation highlights the problem of
transforming models into executable code, as has been
described in context of software development [10].

Therefore, the model-based approach described in
Section 2 is executable and offers mechanisms for model-
intrinsic adaptation through graph transformation systems.
Therefore, the presented approach is graph-based and is
transformed into reference nets, a special type of Petri net.
Still, computer-based adaptation of automation assumes the
accessibility of automation in a system’s architecture as a
formal model or description. Based on this observation,
Section 3 presents a modeling approach for integrating
automation with the user’s current workload into an adaption
concept, targeting formal user interface reconfiguration using
predefined adaption rules. These adaption rules getting
instantiated based on the measured data and being applied in
a next step to the formal user interface model. Finally,
Section 4 will conclude the paper and will discuss future
work aspects, such as a planned evaluation study

104Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

investigating the influence of system-/user-side adaptation of
automation to user's performance.

II. FORMAL RECONFIGURATION OF USER INTERFACES

The adaptation of a user interface responding to the
degree of automation, individualization for a certain user (or
user group), as well as the necessity of the modeling
approach to be executable, are the main arguments for the
use of formal methods. This is because only fully formal
models can be processed algorithmically in a computer-
based system. For this reason, we developed a preliminary
formal approach for modeling user interfaces in a two-
layered architecture (see Figure 1, Section 0). The first layer
represents the physical appearance of the user interface,
which is directly accessible through the human user. Thus, it
offers a set of input and output elements (button, slider, text
fields, etc.) allowing the user to interact with the system and
presents information (graphs, displays, instruments, etc.) to
notify the user of the state of the system and any changes in
it. The underlying second layer models the behavior of the
user interface as a set of data processing routines that process
events caused by the user and create certain data for
controlling the system and, vice versa, process data sent by
the system to be presented to the user. This two-layered
architecture was used in various evaluation studies to
reconfigure user interfaces (UIs) and to investigate the
influence of reconfiguration to the human-computer
interaction [11, 12].

For modeling the second layer, which is also called
interaction logic, we developed a formal and visual modeling
language called Formal Interaction Logic Language (FILL),
accompanied by a visual modeling tool called UIEditor [13].
The UIEditor is able to model physical representation (such
as a visual user interface), run a created user interface, and,
finally, reconfigure the user interface based on a formal
graph-transformation system. To execute a given user
interface, interaction logic provided as a FILL graph is first
transformed to a reference net, a special type of Petri net
[14]. Reference nets provide formal semantics for FILL and
makes interaction logic executable using Renew, a Java-
based modeling and simulation tool for reference nets [15].
The simulation of a modeled user interface can be exemplary
shown along the initial interaction logic (see Figure 1,

Section 0). Here, the physical representation contains of two
buttons labeled “OpA” and “OpB”, as well as an interaction
element showing a single value on a certain scale, for
instance, the current rounds per minute (rpm) of a pump.
Thus, “OpA” and “OpB” could be operations to increase and
decrease the rpm of the pump in the controlled system,
which is represented as third layer (see Figure 1). The initial
reference net-based interaction logic does nothing else than
sending press events resulting from the user to the system
and sending the current rpm value from the system back to
the user interface’s physical representation. Therefore, press
events of a button trigger transitions to fire in the interaction
logic, as far as they are associated to that button (as it is
indicated as dashed arrow in Figure 1). The same is true for
the connection to the system and the callback mechanism for
the rpm value.

To apply reconfiguration to a reference net-based
interaction logic, transformation rules, which first have to be
generated algorithmically, can be applied to the reference net
and thus change the behavior of the user interface. The rules
used in UIEditor’s reconfiguration component are based on
the DPO (Double PushOut) graph rewriting approach [16].
An exemplary rule is shown in Figure 2. A DPO rule is
divided into three different graphs, or Petri nets: The left side
(L), the interface graph (I), and the right side (R) of the rule.
The parts of the original graph G to be rewritten are defined
by defining a matching function m. By applying the rule to

L

G

R

H

s1
l

l*

m m*

I

C

c

r

r*

t2

s2

t1

t3 t4

s1

t2

s2

t1

t3 t4

s1 s2

t3 t4

s1 s2

t3 t4

s1 s2

t3 t4

s3 t5 t6s4

t7

s1 s2

t3 t4

s3 t5 t6s4

t7

Figure 2. Double pushout (DPO) graph rewriting approach.

System

Start

OpA OpB State

System

Start

OpA OpB State

A B

System

Start

OpA OpB State

A B

Process

OpA

OpB

I II III

In
te

ra
ct

io
n
 L

o
g
ic

P
h
y
si

ca
l

R
ep

re
se

n
ta

ti
o
n

System

OpA

0

OpB

DPO Rule

(Fig. 2)

OpA OpB State

Rule Generator

Figure 1. Example of a simple user interface reconfiguration to adapt automation.

105Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

G, the difference between L and I is deleted from G
(resulting in C), and the difference between I and R is added
to C, yielding the final result, H. Figure 2 shows the rule that
is applied to the initial interaction logic (see Figure 1,
Section 0), where the result is shown in Figure 1, Section I,
accompanied by a change of the physical representation.
Here, a specific part of a control process (e.g., alternating
increasing and decreasing of the pump’s rpm) has been
integrated into the interaction logic to automate the indicated
process. Thus, automation becomes part of interaction logic
as will be described in greater detail below. In many cases,
this kind of reconfiguration of the user interface requires
modifying the physical representation in respect to newly
added interaction elements for input data or changes in how
information is represented, as shown in Figure 1.

Thus, adaptation of user interfaces is implemented based
on formal reconfiguration techniques that are used and
integrated in a transformation-rule generator using context
information, such as an automation model and user’s current
mental workload. The main contribution of using formal
methods is that the model is still executable after creating
and reconfiguring the user interface, where the whole
adaptation process is implemented in the same formalism.
This prevents solutions to be loose combination of different
modeling approaches, which run the risk to be incompatible
or losing information by changing between different
modeling concepts [10]. The section below presents a
coherent solution of adaptation of automation based on the
former described self-contained modeling approach.

III. ADAPTATION OF AUTOMATION

For adaptive automation based on formal user interface
modeling, it is assumed that the automation concept is fully
accessible through an external formal model that matches the
underlying concept of formal user interface modeling;
therefore, the automation model should employ a Petri net–
based representation. Based on this assumption, automation
can be further understood as formal abstraction of interaction
processes between the human user and any given system that
has been technically implemented. Thus, in our sense,
automation is part of the above-introduced interaction logic.

Assume a discrete and recurrent process of two
operations “OpA” and “OpB”, which have to be executed in
iterative fashion, such as the process shown in Figure 1 and
described before. According to the first assumption, this
process can be introduced into reference net–based
interaction logic as indicated by the bold arrow in Figure 1,

which represents the application of the DPO rule shown in
Figure 2. The automation of this process can then be started
by the user pressing the newly added “Start” button. From
this point on, the user is only able to monitor the system’s
state by observing the tachometer-like output widget,
showing the current pump’s rpm being controlled. Thus,
using the initial interface, s/he is not able to follow the
operations that are automatically executed by the interaction
logic.

As Parasuraman [1, 2] described, workload increases
during critical situations because the user has to understand
the system’s current situation, as well as how the automated
control processes are reacting to the situation. The user has
to gain insight into the automated process, resulting in
increasing mental workload, sometimes dramatically. To
adapt automation to this situation, the initial user interface
can be reconfigured (see Figure 1, Section II), by adding
more interaction elements providing deeper insight into the
automated process. Two lamps are added to the physical
representation accompanied by an extension of the
interaction logic, now showing which operation is executed
at any given moment. This makes interaction more finely
grained and viewable to the user. A further reconfiguration
extends the first by changing the simple lamps into buttons
(see Figure 1, Section III), where the user is now able to
control the automated process. Another possibility would be
to remove the automation from the interaction logic and give
all control back to the user without restriction or even,
contrarily, to reduce the interaction and fully automate the
process. The first would result in the initial user interface
(see Figure 1, Section 0).

The second aspect for introducing adaptive automation
into formal user interface models is that a system exists that
is able to measure user’s workload (beside other possible
measurements) as s/he interacts with the technical system.
Therefore, adaptive automation will be implemented as a
component of the UIEditor framework, which combines the
perceived mental workload of the user and his/er individual
requirements. Here, three components have to be realized:
the workload identification component, which observes the
user through such means as an eye-tracker and calculates the
workload from the captured data. The second component is
the rule generator, which generates formal reconfiguration
rules to be applied by the existing reconfiguration component
in the UIEditor. The third component will be based on
UIEditor’s reconfiguration editor, which is able to apply
individual reconfiguration operations to the interaction logic
and thereby to the automation model by the user himself;
called user-side adaptation above. Here, the user triggers the
reconfiguration, selects the specific part of interaction logic
to be reconfigured, and chooses the rule to be applied.

Various works have identified pupillometry as a possible
indicator of user’s workload [7, 8, 17]. Thus, the rule
generator is triggered by the workload identification
component to generate and apply reconfiguration to the user
interface, what is called system-side adaptation (see Figure
3). Rules are then generated from rule patterns that have
already been derived and described in automation research,
resulting in a reconfiguration as shown in the above-

Rule Generator

Workload Rule Patterns

User Interface

Eye Tracker Automation

Reconfigurer

Figure 3. Conceptual architecture of the automation adaption

module for the UIEditor.

106Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

described example, depending on the amount of detected
workload (see Figure 1). Rule patterns consist primarily of
specific structures to be added or deleted from reference net-
based interaction logic and algorithmic implementation
necessary to detect relevant parts of the reference net to be
transformed. In conclusion, the combination of system- and
user-side adaptation results in an integrative user-centric
approach for adapting automation based on formal user
interface models.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a new approach to implement
adaptive automation as part of a user interface modeling
approach using formal methods to describe interaction logic.
This integrative approach is a first step towards closing the
gap between modeling, execution, and reconfiguration of
user interfaces and integrating adaptive concepts to adapt
user interface to user’s needs, as well as making the degree
of automation accessible for system- and user-side
adaptation. Based on visual modeling and graph-based
languages accompanied with algorithmic transformation of
reference nets, user interface models get executable and can
be reconfigured by graph rewriting systems. Considering
automation as part of interaction logic, reconfiguration can
also change automation beside further individualizations of
the user interface concerning user’s needs.

Finally, the described work in progress will be evaluated
and further elaborated in context of former applied studies
[12, 13]. Here, we investigated the influence of
individualization of user interfaces using reconfiguration on
monitoring and control of technical systems. The reduction
of errors was in focus of these studies showing that it is
possible to reduce errors through reconfiguration of user
interfaces for interaction with technical system. Therefore,
we will investigate the former introduced approach of
adaptive automation concerning usability and applicability in
a real monitoring and control scenario of a technical system
(e.g., a simple simulation of a nuclear power plant), as well
as analyze its influence on errors in interaction as measurable
variable. We will run the test with two groups; one group
will do predefined control tasks supported by system-side
adaptation of automation, as well as user-side individual
reconfiguration, whereas the control group will undertake the
same tasks without support by the reconfiguration system.

The above introduced example (cf., Figure 1) is only one
aspect of how automation fosters increasing workload and
how it is possible to work against this effect through formal
user interface reconfiguration. Therefore, future work will
seek to identify further features of automation and to
generate rule patterns in order to offer a comprehensive
library that can deal with various situations and types of
automation. Furthermore, an extension of the UIEditor tool
for modeling, running, and reconfiguration via
modularization and a more finely grained leveled
architecture will be developed and implemented due to
necessary refinement in the interaction logic model. Finally,
the integration and reconfiguration of automation without

necessarily including the user but other models and
requirements will be part of future work.

REFERENCES

[1] R. Parasuraman, T. Sheridan, and C.D. Wickens, “A model
for types and levels of human interaction with automation,”
IEEE Transactions on Systems, Man, and Cybernetics:
Systems and Humans, vol. 30(3), 2000, pp. 286–297.

[2] R. Parasuraman and V. Riley, “Humans and automation: Use,
misuse, disuse, abuse,” Human Factors, vol. 39(2), 1997, pp.
230–253.

[3] C.D. Wickens and J.G. Hollands, Engineering psychology and
human performance, Addison Wesley, 1999.

[4] M.R. Endsley, “Toward a theory of situation awareness in
dynamic systems,” Human Factors , vol. 37(1), 1995, pp. 32–
64.

[5] A. Jameson, “Adaptive interfaces and agents,” in Human-
Computer Interaction Handbook, Erlbaum, 2003, pp. 305–
330.

[6] R. Parasuraman, K.A. Cosenzo, and E. De Visser, “Adaptive
automation for human supervision of multiple uninhabited
vehicles: Effects on change detection, situation awareness,
and mental workload,” Military Psychology, vol. 21(2), 2009,
pp. 270–297.

[7] J.C.M. Weert, “Ship operator workload assessment tool,”
Department of mathematics and computer science. Technical
University Eindhoven, Eindhoven, 2006.

[8] T. de Greef, H. Lafeber, H. van Oostendorp, and J.
Lindenberg, “Eye Movement as Indicators of Mental
Workload to Trigger Adaptive Automation,” in Proc. of
Augmented Cognition, HCII 2009, LNAI 5638, Springer,
2009, pp. 219–228.

[9] P.A. Hancock et al., “Human-Automation Interaction
Research: Past, Present, and Future,” Ergonomics in Design:
The Quarterly of Human Factors Applications, vol. 21(2),
2013, pp. 9–14.

[10] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende,
“Closing the Gap between Modelling and Java,” Software
Language Engineering, LNCS 5969, Springer, 2010, pp 374–
383

[11] B. Weyers, D. Burkolter, A. Kluge, and W. Luther, “Formal
modeling and reconfiguration of user interfaces for reduction
of human error in failure handling of complex systems,”
Human Computer Interaction, vol. 28(10), 2012, pp. 646–665.

[12] B. Weyers, W. Luther, and N. Baloian, “Interface creation
and redesign techniques in collaborative learning scenarios,”
Future Generation Computer Systems, vol. 27(1), 2011, pp.
127–138.

[13] B. Weyers, Reconfiguration of user interface models for
monitoring and control of human-computer systems, Dr.-Hut,
2012. http://www.uieditor.org/publication.html

[14] O. Kummer, Referenznetze, Logos, 2002.

[15] O. Kummer et al., “An extensible editor and simulation
engine for Petri nets: Renew,” Applications and Theory of
Petri nets, LNCS 3099, Springer, 2004, pp. 484–493.

[16] H. Ehrig, K. Hoffmann, and J. Padberg, “Transformation of
Petri nets,” Electronic Notes in Theoretical Computer
Science, vol. 148(1), 2006, pp. 151–172.

[17] T. Halverson, J. Estepp, J. Christensen, and J. Monnin,
“Classifying workload with eye movements in a complex
task,” in Proc. HFES Annual Meeting, Human Factors and
Ergonomics Society, 2012, pp. 168–172.

107Copyright (c) IARIA, 2013. ISBN: 978-1-61208-306-3

CENTRIC 2013 : The Sixth International Conference on Advances in Human-oriented and Personalized Mechanisms, Technologies, and Services

http://link.springer.com/search?facet-author=%22Florian+Heidenreich%22
http://link.springer.com/search?facet-author=%22Jendrik+Johannes%22
http://link.springer.com/search?facet-author=%22Mirko+Seifert%22
http://link.springer.com/search?facet-author=%22Christian+Wende%22
http://link.springer.com/book/10.1007/978-3-642-12107-4
http://link.springer.com/book/10.1007/978-3-642-12107-4

