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Abstract-In engineering program implementations, there is 
always a need for more computer resources, apart from which, 
many computer resources are still unused. The most common 
resource demanding applications are applications which 
require a lot of processor power or RAM space. Today, 
advancing technology offers processing power in grids, 
clusters, multi-core CPUs, cloud computers, or even graphics 
processing units. Thus, given all this computing power, smart 
and efficient utilization of these systems is needed. All these 
necessities and mentioned facts laid foundation for parallel 
programming. One of the major issues in parallel 
programming is reconfiguring of the existing applications to 
work on a parallel system; not just to work, but to work faster 
and more efficiently. In this paper some of the most common 
parallelizing methods will be presented using MPI on the 
Croatian National Grid Infrastructure (CRO-NGI), as well as 
their advantages in terms of cost-effectiveness and simplicity. 

Keywords: computational grid, load balancing, MPI,  parallel 
computing. 

I.  INTRODUCTION 

The complexity, data requirements and processing in 
scientific researches, such as visualization and modeling in 
various scientific branches continue to increase. Problems in 
medicine, weather prediction, global climate modeling, 
complex stress calculations in mechanics, etc. are good 
examples of computer intensive applications. Historically, 
the computational power of computer resources has not 
been able to keep pace with this increase and for this reason, 
parallel computer systems (PCS) were developed. Not every 
resource intensive problem can be solved in decent time 
manner on simple mainstream computers, as shown in [3] 
and [10]. Single-processor systems and single core 
processor computers by themselves are getting time 
consuming in running these applications, and are causing 
major drawbacks of developing such applications. As 
resource consumption by computers has become a concern 
in recent years, parallel computing has become the dominant 
paradigm in computer architecture, mainly in the form of 
multi-core processors [14]. Today, there are various types of 
parallel computing systems, like clusters, grids, distributed 
systems, multi-core and many-core processors and a recent 
concept – cloud computing systems, all based on spreading 

use of parallel algorithms. Nowadays parallel computers are 
very common in research facilities as well as companies all 
over the world and they are used extensively for complex 
computations. Some of the most powerful supercomputers 
are made with over 10,000 processors, and are capable of 
reaching over 1 petaFLOPS. Careful and effective parallel 
programming is the only way to bridle such enormous 
computing power. Massive migration to parallel systems 
causes that still many applications need to be adjusted for 
the use on these systems by means of two main options: 
recoding or writing the code in parallel from scratch. 
Sometimes, these procedures are not as intuitive as one may 
think, because not all tasks can be parallelized. 

In this paper different parallelizing methods and 
techniques will be mentioned. A couple of experiments will 
be used to support or to undermine these aforementioned 
facts and myths about parallel programming. Finally, 
efficiency of parallel computer systems will be questioned, 
and their advantages and disadvantages will be compared to 
serial systems. Section 2 describes basic aspects of 
parallelization. The concept of automatic parallelization is 
briefly explained in Section 3. Prior to experimental results 
given in Section 5, Section 4 presents formerly known 
benefits of parallel programming in order to experimentally 
confirm or reject them. Section 6 presents planned work, and 
Section 7 brings noted conclusions. 

II. PARALLELIZATION METHOD IN USE 

Many parallelization tools and compilers are already 
available and yet many more are in development. Two basic 
modes of parallelization are automatic parallelization and 
manual parallelization. Automatic parallelization techniques 
are mainly the tools for real-time systems and scientific 
computing industry [1], while manual parallelization allows 
maximum application optimization for parallel execution 
and performances gain. Interesting concepts are 
parallelization compilers, which turn codes parallel and 
make the application parallel at runtime by which they can 
be perceived as automatic parallelization techniques [12]. 
Manual parallelization techniques are issued by 
programmers. The latter techniques are based on speculative 
parallelization [8], parallelization of loops [16], dynamic 
data parallelization [2], load balancing, thread pipelining, 
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data access partitioning [7] and others. Parallel 
programming techniques, parallel platforms and parallel 
programming tools are in constant development. 

The main goal of this paper is to point out some 
problems that appear by optimization of sequentially written 
programs for execution on parallel platforms, and presenting 
various parallelization methods. Various data structures, 
loops and iterations can be parallelized efficiently without 
rewriting the whole program code. Another important issue 
is load balancing, the goal of which is to gain a higher 
throughput, and to reduce the user-perceived latency, 
especially in the case of high network traffic or a high 
request rate causing the network to be bottlenecked, or a 
high computational load, [11]. Load balancing is hardly 
achieved on, for example, cloud computing systems, 
because of the high system heterogeneity, especially 
network. These systems are overwhelmed with 
inconsistency and are prone to many changes in the matter 
of seconds, and that is why these systems have to use 
standalone load balancing appliances or content switches.   

The first step of parallelizing an application is to find the 
most resource/time intensive part of the program 
(algorithm). If this part cannot be made parallel, little can be 
done for speeding up the application. The next step, step 
two, is to determine whereas parallel parts of the code are 
data independent, and remove this dependency if possible. 
Then there comes step three, i.e., determining a method 
which will be used in parallelization of kernels. These steps 
alone comprise several sub-steps, which are chosen 
according to the problem at hand. Several concepts will be 
introduced in this paper for parallelization: data partitioning, 
loop parallelization and functional decomposition, which are 
given in detail in [2] and [9]. Other concepts are briefly 
presented in Table 1. 

Data parallelization (or data decomposition) is based on 
parallelizing data, e.g., dividing large databases, matrices, 
vectors and other data types into small chops often adjusted 
to be processed on the nodes of parallel systems. Data can 
be divided equally or in some other manner (load balancing 
or adaptive parallelization, [11]). A negative impact of 
dividing data in that manner is conspicuous on computer 
grid systems with nodes interconnected with the network, 
because the network is the slowest subsystem in inter-
application communication. Other important issue to be 
confronted with is reducing communication between 
processes. There are three different types of algorithms 
based on communication frequency: coarse-grained, fine-
grained and embarrassingly parallel. There are various 
methods of reducing user perceived latencies, which are 
derived from inter-process communication. Another 
shortcoming can be seen in heterogeneous systems in which 
data should be divided in accordance with available 
computer resources, see [10]. In heterogeneous systems the 
best performance gain would be noticed if there is a system 
monitoring current resource availability and sending 
information about available resources back to the 

application, which in turn sends appropriate portions of data 
to computer nodes, as shown in [10]. These systems exist in 
cloud computing systems, however, with only limited 
functionality. There is a number of possible data 
partitioning, first when portions of data are sent to nodes, 
and second when a copy of the whole data is sent to all 
computer nodes, as in Figure 1, the latter using more 
communication, so it has to be tested thoroughly which 
system benefits from this approach.  Figure 2 shows which 
data are computed by which node. 

 

 
Figure 1. Example of data parallelization 

 
Figure 2. Visual representation of data division amongst parallel nodes 

Dividing data in programming is tightly coupled with loop 
parallelization, because data containers are generally 
accessed by loops, so a condition deciding which data is 
going to which node should be put in the loop initialization 
and termination. Loops are often parallelized by dividing the 
number of iterations equally, if possible, amongst computer 
nodes, as in [3], [9], [13], and [16]. Data division is prone to 
data dependency, and by that care must be taken when 
preparing data for parallel distribution. Loops can be made 
parallel only if iterations are not data dependent. In other 
words, Bernstein’s conditions [4] have to be fulfilled. 

The third concept is based on functional decomposition, 
described in [4] and [9]. This is done by dividing the 
program into functional blocks independent of each other at 
the time of execution, e.g., one does not require data of the 
other. This is explained by the Church-Rosser property [4], 
which holds that the arguments to a pure function can be 
evaluated in any order or in parallel, without changing the 
result. A negative side of functional decomposition can be 
seen if parallel computations differ in the execution time a 
lot, because the slowest one determines the total execution 
time of this parallel part assuming that a computation result 
must be provided before processes move on to the next 

myRank = MPI::COMM_WORLD.Get_rank(); 
nProc = MPI::COMM_WORLD.Get_Size(); 
 
for(i=((CONST/nProc)*myRank);i<(CONST/nProc)+(
(CONST/nProc)*myRank);i++) { 
 for (j=0;j<DIMV;j++) { 
 if ((maxi[11] < optiMatrix[i][j]) && 
(matrix[i][j][16] !=0)) { 
 maxi [0] = I; 
 maxi[3] = j; 
 maxi [11] = optiMatrix [i][j]; 
 } 
 } 
} 

Node A Node B Node C 
 

A B C D E 
F G H I J 
K L M N O 
P Q R S T 
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program block, except in applications with active load 
balancing. If the latter is not the case (computation results 
are processed independently), the algorithm is called 
embarrassingly parallel. Embarrassingly parallel algorithms 
are often used in cloud computing systems. 

 
Main program 

Declarations and initializations 
Common procedures 

Node 1 Node 2 … Node n 
Search the 

DATA for value 
“A” 

Search the DATA 
for value “B” … 

Search the 
DATA for 
value “N” 

Figure 3. Example of a pseudo-code of data parallelization for searching 
for different values in the same data set 

A living example is searching for two or more values in a 
data matrix, then the first node searches for one number and 
the second node searches for the other (if all nodes are 
assumed to have access to all data), as in Figure 3. 

Computer nodes intercommunication is generally done by 
sending some signal in a preconfigured way by using some 
routines. This type of parallel programming is called 
Message Passing. Message passing applications 
communicate over a high speed network in distributed 
computing systems, or over high speed buses in shared 
memory computers, so the program can hold sufficient 
cohesiveness.  

III. AUTOMATIC PARALLELIZATION 

Given the example of [1], [3], [5] and [14], in order to 
remove the burden from a programmer to manually rewrite 
sequential codes for parallel execution, many new methods 
are introduced as an attempt to solve this problem 
automatically. They often comprise compilers which 
“know” how to parallelize a certain program code. A vast 
majority of automatic parallelization compilers are 
developed for FORTRAN, such as the Vienna Fortran 
compiler, the Paradigm compiler, the Polaris compiler, the 
SUIF compiler, and some of the concepts independent of the 
programming language, such as commutativity analysis 
[14]. Automatic parallelization is the ultimate goal for 
parallel programming, as it removes the programmer from 
the parallelizing part in coding the application, thus making 
parallel applications production faster and more efficient. 
Every automatic parallelization concept has been done only 
with limited success. Despite poor progress, automatic 
parallelization has been intensively researched for the past 
few decades, and a lot of work is still dedicated to it.  

An interesting concept for automatic parallelization is 
presented in [14], which is called commutativity analysis. It 
aggregates both data and computation into larger grain units. 
It then analyzes computation at this granularity to discover 
when pieces of computation commute (i.e., generate the 
same result regardless of the order in which they are 
executed). If all of the operations required to perform a given 
computation commute, the compiler can automatically 
generate a parallel code. Some sources also describe various 

hybrid approaches, such as in [9]. Parallelization 
methodologies are expanded in Table 1, which gives 
additional information about other main parallelization 
techniques, advantages and disadvantages. Even with many 
methods for automatic parallelization, fully automatic 
parallelization of sequential programs by compilers remains 
a grand challenge due to its need for a complex program 
analysis and the unknown factors (such as the input data 
range) during compilation. Automatic parallelization 
combined with cloud computing systems in near future will 
probably serve as self-sufficient parallel systems, which will 
bring high performance computing to every computer user 
connected to web.  

IV. BENEFITS OF PARALLEL PROGRAMMING 

It would be expected of parallel programs to have the 
execution time cut in proportion with the number of nodes, 
as opposed to sequential programs. However, if this fact is 
analyzed more thoroughly, there is always some portion of 
code which cannot be parallelized, and that portion must be 
taken into account. This issue was addressed by Amdahl's 
and Gustafson’s law [3]. Some researchers noticed that even 
with Gustafson’s law, which suggests that it is beneficial to 
build a large-scale parallel system as the speedup can grow 
linearly with the system size, there are some physical 
constraints which do not allow many applications to scale 
up and meet the time bound constraint. In practice, that 
constraint is often of physical nature in the form of memory 
limitation. 

To sum it all up, in [15] authors propose a memory 
bounded speedup model. Amdahl’s law is a special case of a 
memory bounded speedup model. This model is greatly 
applicable to multi-core systems and GPU cores, which 
represent home shared memory systems. Embarrassingly 
parallel applications are not affected by Amdahl’s law, at 
least not to such a great extent, and that is why these 
applications can easily be run on clouds. These applications 
often comprise independent tasks, which are then executed 
on different computer nodes, without a need for any type of 
communication, or data dependencies, except at the 
beginning of a code. With all added up, parallel applications 
have many benefits from today’s parallel systems. Most of 
parallelizing methods can be run on almost all existing 
parallel systems. There are limitations, but with constant 
research in this field, the number of limitations decreases. 
For example, cloud computing systems can serve as parallel 
platform only for applications that are easily parallelized. In 
all other cases this is nearly impossible, because cloud 
system is too hard to handle resource-wise, which is caused 
by the high system heterogeneity. With parallel system 
properties in mind, it is easy to classify given parallelizing 
methods from Table 1 in correspondence with these 
platforms. Every existing application can be more or less 
parallelized; it is the question of cost and time-effectiveness, 
a parallel system on which the application is run, time bound 
constraints on application and application environment 
which method will be used.  
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V. EXPERIMENTAL SETUP 

In order to visualize given facts into real appliances 
benefits and speedup, two experiments will be shown. In the 
first experiment, there are two multi-criteria optimization 
algorithms, whose performance will be compared. In the 
second algorithm, a parallel image processing algorithm is 
tested in different environments and with a different setup.  

A. Experiment 1: Multi-criteria optimization algorithms 
(PMCO1 and PMCO2) 

The first algorithm, Parallel Multi-Criteria Optimization 
1 (PMCO1) is an example of computing large data in 
parallel with a small amount of communication between 
processes. It uses the approach described in [10]. The 
system makes a decision based on different preferences 
amongst options in a large data set. There are databases 
containing various system parameters, and prior to program 
execution it is necessary to extract data from these 
databases, which are formed by plain text files. PMCO1 
reads different databases in different computer nodes.  

TABLE I.  PARALLELIZATION MODELS 
COMPARED

 

B. Experiment 1: Multi-criteria optimization algorithms 
(PMCO1 and PMCO2) 

The first algorithm, Parallel Multi-Criteria Optimization 
1 (PMCO1) is an example of computing large data in 
parallel with a small amount of communication between 
processes. It uses the approach described in [10]. The 
system makes a decision based on different preferences 
amongst options in a large data set. There are databases 
containing various system parameters, and prior to program 
execution it is necessary to extract data from these 
databases, which are formed by plain text files. PMCO1 
reads different databases in different computer nodes. This 
parallelism is based on function level parallelism (FLP). The 
second algorithm, Parallel Multi-Criteria Optimization 2 
(PMCO2) is a parallel algorithm which reads all databases 
in every node, and serves the analysis of the computational 
part of the program. PMCO2 is mainly a data parallel 
model, but it uses a hybrid approach, explained in [2], 
comprising FLP and data parallelism, and for the purpose of 
illustration, its execution time is divided into reading data 
and computation. In PMCO2, every node has access to all 
data and there is a significant process communication time, 
but communication takes place rarely. PMCO2 approach 
enables all nodes to read only a portion of data, regardless 
of the fact that they contain the whole database. On the 
other hand, PMCO1 has more frequent communications 
between processes, because nodes contain only a portion of 
data. These small communications can make a great deal if 
the database is very large as in Table 3. In a small data set, 
PMCO1 tends to have better performance (Table 2). 
PMCO2, though, has one more drawback, which is 
memory-wise, considering the fact that every node holds all 
data. So if the data is too large, it would not be possible to 
run the program based on PMCO2, whereas on PMCO1 it 
would be possible but slow. 

C. Experiment 2: Parallel Image Processing Algorithm 
(PIPA) 

The second experiment deals with an image processing 
algorithm, which does some basic pixel manipulation on the 
grayscale satellite images in different sizes. The application 
was run in parallel on the Croatian National GRID 
infrastructure on 4 and 8 nodes, as well as on two different 
CRO-NGI installations (ETFOS, located at the Faculty of 
Electrical Engineering, University of Osijek and SRCE 
(University Computing Center in Zagreb). What can be 
easily seen is the difference in performance, as well as the 
impact of different architectures and operating systems on 
the application execution time. The application was also run 
on a PC with a dual-core processor. In that way it can be 
analyzed whether parallel programming and execution on 
parallel systems can be justified by taking performance into 
main consideration. Figure 4 shows dependency of the 
application execution time on image size by different 
operating systems, numbers of nodes, numbers of processor 
cores and image sizes.  

Parallel 
Program 
Design 

Paralleli- 
zation 
technique 

Positive features Negative features 

Manual 
Paralleli- 
zation 

Shared 
Memory 

No need for 
communication 
between tasks 

Difficult data 
locality management

Threads Fine program 
granularity and 
efficient platform 
utilization 

Not reusable, errors 
affect whole process

Data 
Parallel 
Techni- 
ques 

Large performance 
increase, error on one 
data "chunk" rarely 
affect other data 

No performance 
increase if the data is 
not independent, 
need for task 
communication 

Message 
Passing 

Universality, Data 
locality management, 
Easy debugging 

Programmer 
manages memory 
placement and 
communication 
occurrence 

Hybrid Combination of the 
techniques above 

Combination of two 
or more 
parallelization 
techniques can 
greatly reduce their 
disadvantages 

Automatic 
Paralleli- 
zation i.e. 
paralleli- 
zing 
compilers 
(pre-
processors) 

Fully 
Automatic 

Parallelization 
without programmer, 
fast parallel code 
generation, computer 
aided parallelization 
cost-effectiveness 
analysis 

Can produce wrong 
results, application 
performance can be 
actually degraded, 
much less flexible 
than manual 
techniques, if the 
code is too complex 
parallelization 
cannot occur 

Progra- 
mmer 
Directed 

Usage of compiler 
directives, better 
parallelization 
management 
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TABLE II.  ALGORITHMS PMCO 1 AND 2 PERFORMANCE TEST (A 
SMALL DATA SET) 

 

4 – node 
computer 
grid time 

(s) 

6 – node 
computer 
grid time 

(s) 

PMCO 1 

Data read 1.79 0.78 

Computation 3.77 8.00 

Total 5.56 8.78 

PMCO 2 

Data read 12.24 15.46 

Computation 0.20 0.15 

Total 12.44 15.61 
Program execution time 

difference (s) -6.88 -6.83 

TABLE III.  ALGORITHMS PMCO 1 AND 2 PERFORMANCE TEST (A 
LARGE DATA SET) 

 

4 – node 
computer 
grid time 

(s) 

6 – node 
computer 
grid time 

(s) 

PMCO 1 

Data read 9.89 3.18 

Computation 261.67 206.27 

Total 271.56 209.44 

PMCO 2 

Data read 42.60 55.75 

Computation 24.21 17.23 

Total 66.81 72.98 
Program execution time 

difference (s) 204.75 136.46 

Image size affects performance most, which is expected, 
because image size grows almost exponentially. 

Also, the number of grid nodes and processor cores, 
which can be distinguished in Figures 5 and 6, has a great 
impact on performance. Figure 7 shows that careful multi-
core parallel programming can lead to a significant 
performance boost, which is almost 90% of the increase, 
with doubling the number of cores. Multi-core processors 
show their true strength when loaded with applications 
optimized for multi-core execution. Also, multi-core 
platforms do not have one major drawback which grids and 
clusters have, and that is a relatively large process 
communication time in message passing applications. 
Figure 9 shows a process communication impact on 
application performance. It clarifies what was mentioned 
before; i.e., the grid suffers from great performance loss 
when using too much of communication between processes. 
Furthermore, this is more expressive in public 
computational grids and cloud systems, whose networks are 
always under some load, leading an application expected to 
finish faster to finish slower, waiting for processes to finish 
their communication. On the other hand, there is a 
communication between processes run on multiple cores 
onto one processor, whose process communication time can 

be safely ignored in performance analysis. This issue is a 
problem of its own and part of future work based on 
heterogeneity modeling. But not to be confused, grids offer 
a big advantage compared to multi-core processors. They 
can have much more nodes, which in turn can have multi-
core processors themselves, and modern commercial multi-
core processors can have only up to 8 cores, so it is up to the 
application which platform should be used in its execution. 
Another example are clouds, which are hybrid parallel 
systems and offer various performance advantages. 

More performance boost can be obtained by increasing 
the number of computer nodes executing the application, as 
shown in Figures 4 to 7. Usage of ETFOS installation of 
CRO-NGI lowers process communication a bit (because of 
a lighter network load), and decreases execution time 
significantly. 

VI. FUTURE WORK 

Further work will be based on implementing more parallel 
platforms such as GPGPUs (General-purpose computing on 
graphics processing units) in NVidia CUDA (Compute 
Unified Device Architecture) and ATI Stream [6]. This 
work will tend to put these parallel newcomers into 
performance tables of other parallel systems. Another 
research is covering the role of cloud computing systems as 
parallel systems with great computing power. Image 
processing algorithms will be thoroughly reworked. Due to 
image size limitations, new image processing algorithms 
will be used with support for color images. There are other 
algorithms being developed; each of them will put different 
aspects of parallel systems onto test. There is also an idea to 
provide a mathematical proof for the exact limit of 
parallelization efficiency, and profitability of using parallel 
systems opposed to other parallel and non-parallel systems.  

 
Figure 4. Performance gain 
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Figure 5. Communication impact on the overall performance 

 
Figure 6. Performance with a different number of processor cores 

 
Figure 7. Performance with a different number of computer nodes 

VII. CONCLUSION 

The latest technologies give many opportunities when it 
comes to execution of demanding applications. More recent 
parallel systems such as computational grids, clusters, 
multi-core systems, Massively Parallel Processors systems 
and Graphics Processing Units are platforms that offer much 
more computer resources than standard PCs, and their ideas 
and technologies are slowly making their way to desktop 
computers. The best examples are multi-core computers, 
which share some backbone principles with parallel 
systems. Many existing applications are made sequential, 
but sometimes with just few changes they can be made 
parallel, therefore reducing their executing time and other 

time demands. Parallelizing methods are chosen in 
accordance with the type of parallel systems they are run on. 
Many parallelizing methods are presented today, and their 
ultimate goal is to produce a fully automatic parallelizing 
system, which can be used as any other today’s 
programming language and system. The aforepresented 
experiments prove that parallel programming is the present 
and the future of all scientific research, not only in computer 
science, but in other researches as well. Parallel 
programming brings an enormous performance advantage, 
possibilities such as ability to process larger data and to 
calculate more complex mathematics and statistics. But this 
is only possible if these systems, their potential and their 
drawbacks are understood well. In order to make use of 
squeezing most out of these systems, careful and wise 
resource usage is needed, as well as efficient programming 
and work distribution. There are many other parallelization 
concepts, many of which are still being in their infant phase, 
but there is no doubt that research involved in them will 
produce more efficient, scalable and simple parallel 
applications and mechanisms. Such techniques involve 
function and block level parallelization, automatic 
parallelization, parallelization techniques for heterogeneous 
systems, speculative parallelization models, loop based 
parallelization techniques, and many more. Undoubtedly, 
parallel applications bring more performance, more options, 
and remove barriers for many research branches, bringing 
the overall sky-high progress in computing technology. It is 
obvious that in future, by combining these and similar 
methods, most advanced parallelization techniques will be 
created and parallel computing will be driven into the 
mainstream. 
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