
Parallelization Programming Techniques: Benefits and Drawbacks

Goran Martinovic
Faculty of Electrical Engineering
J.J. Strossmayer Univ. of Osijek

Osijek, Croatia
e-mail: goran.martinovic@etfos.hr

Zdravko Krpic
Faculty of Electrical Engineering
J.J. Strossmayer Univ. of Osijek

Osijek, Croatia
e-mail: zdravko.krpic@etfos.hr

Snjezana Rimac-Drlje
Faculty of Electrical Engineering
J.J. Strossmayer Univ. of Osijek

Osijek, Croatia
e-mail: snjezana.rimac@etfos.hr

Abstract-In engineering program implementations, there is
always a need for more computer resources, apart from which,
many computer resources are still unused. The most common
resource demanding applications are applications which
require a lot of processor power or RAM space. Today,
advancing technology offers processing power in grids,
clusters, multi-core CPUs, cloud computers, or even graphics
processing units. Thus, given all this computing power, smart
and efficient utilization of these systems is needed. All these
necessities and mentioned facts laid foundation for parallel
programming. One of the major issues in parallel
programming is reconfiguring of the existing applications to
work on a parallel system; not just to work, but to work faster
and more efficiently. In this paper some of the most common
parallelizing methods will be presented using MPI on the
Croatian National Grid Infrastructure (CRO-NGI), as well as
their advantages in terms of cost-effectiveness and simplicity.

Keywords: computational grid, load balancing, MPI, parallel
computing.

I. INTRODUCTION

The complexity, data requirements and processing in
scientific researches, such as visualization and modeling in
various scientific branches continue to increase. Problems in
medicine, weather prediction, global climate modeling,
complex stress calculations in mechanics, etc. are good
examples of computer intensive applications. Historically,
the computational power of computer resources has not
been able to keep pace with this increase and for this reason,
parallel computer systems (PCS) were developed. Not every
resource intensive problem can be solved in decent time
manner on simple mainstream computers, as shown in [3]
and [10]. Single-processor systems and single core
processor computers by themselves are getting time
consuming in running these applications, and are causing
major drawbacks of developing such applications. As
resource consumption by computers has become a concern
in recent years, parallel computing has become the dominant
paradigm in computer architecture, mainly in the form of
multi-core processors [14]. Today, there are various types of
parallel computing systems, like clusters, grids, distributed
systems, multi-core and many-core processors and a recent
concept – cloud computing systems, all based on spreading

use of parallel algorithms. Nowadays parallel computers are
very common in research facilities as well as companies all
over the world and they are used extensively for complex
computations. Some of the most powerful supercomputers
are made with over 10,000 processors, and are capable of
reaching over 1 petaFLOPS. Careful and effective parallel
programming is the only way to bridle such enormous
computing power. Massive migration to parallel systems
causes that still many applications need to be adjusted for
the use on these systems by means of two main options:
recoding or writing the code in parallel from scratch.
Sometimes, these procedures are not as intuitive as one may
think, because not all tasks can be parallelized.

In this paper different parallelizing methods and
techniques will be mentioned. A couple of experiments will
be used to support or to undermine these aforementioned
facts and myths about parallel programming. Finally,
efficiency of parallel computer systems will be questioned,
and their advantages and disadvantages will be compared to
serial systems. Section 2 describes basic aspects of
parallelization. The concept of automatic parallelization is
briefly explained in Section 3. Prior to experimental results
given in Section 5, Section 4 presents formerly known
benefits of parallel programming in order to experimentally
confirm or reject them. Section 6 presents planned work, and
Section 7 brings noted conclusions.

II. PARALLELIZATION METHOD IN USE

Many parallelization tools and compilers are already
available and yet many more are in development. Two basic
modes of parallelization are automatic parallelization and
manual parallelization. Automatic parallelization techniques
are mainly the tools for real-time systems and scientific
computing industry [1], while manual parallelization allows
maximum application optimization for parallel execution
and performances gain. Interesting concepts are
parallelization compilers, which turn codes parallel and
make the application parallel at runtime by which they can
be perceived as automatic parallelization techniques [12].
Manual parallelization techniques are issued by
programmers. The latter techniques are based on speculative
parallelization [8], parallelization of loops [16], dynamic
data parallelization [2], load balancing, thread pipelining,

7

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

data access partitioning [7] and others. Parallel
programming techniques, parallel platforms and parallel
programming tools are in constant development.

The main goal of this paper is to point out some
problems that appear by optimization of sequentially written
programs for execution on parallel platforms, and presenting
various parallelization methods. Various data structures,
loops and iterations can be parallelized efficiently without
rewriting the whole program code. Another important issue
is load balancing, the goal of which is to gain a higher
throughput, and to reduce the user-perceived latency,
especially in the case of high network traffic or a high
request rate causing the network to be bottlenecked, or a
high computational load, [11]. Load balancing is hardly
achieved on, for example, cloud computing systems,
because of the high system heterogeneity, especially
network. These systems are overwhelmed with
inconsistency and are prone to many changes in the matter
of seconds, and that is why these systems have to use
standalone load balancing appliances or content switches.

The first step of parallelizing an application is to find the
most resource/time intensive part of the program
(algorithm). If this part cannot be made parallel, little can be
done for speeding up the application. The next step, step
two, is to determine whereas parallel parts of the code are
data independent, and remove this dependency if possible.
Then there comes step three, i.e., determining a method
which will be used in parallelization of kernels. These steps
alone comprise several sub-steps, which are chosen
according to the problem at hand. Several concepts will be
introduced in this paper for parallelization: data partitioning,
loop parallelization and functional decomposition, which are
given in detail in [2] and [9]. Other concepts are briefly
presented in Table 1.

Data parallelization (or data decomposition) is based on
parallelizing data, e.g., dividing large databases, matrices,
vectors and other data types into small chops often adjusted
to be processed on the nodes of parallel systems. Data can
be divided equally or in some other manner (load balancing
or adaptive parallelization, [11]). A negative impact of
dividing data in that manner is conspicuous on computer
grid systems with nodes interconnected with the network,
because the network is the slowest subsystem in inter-
application communication. Other important issue to be
confronted with is reducing communication between
processes. There are three different types of algorithms
based on communication frequency: coarse-grained, fine-
grained and embarrassingly parallel. There are various
methods of reducing user perceived latencies, which are
derived from inter-process communication. Another
shortcoming can be seen in heterogeneous systems in which
data should be divided in accordance with available
computer resources, see [10]. In heterogeneous systems the
best performance gain would be noticed if there is a system
monitoring current resource availability and sending
information about available resources back to the

application, which in turn sends appropriate portions of data
to computer nodes, as shown in [10]. These systems exist in
cloud computing systems, however, with only limited
functionality. There is a number of possible data
partitioning, first when portions of data are sent to nodes,
and second when a copy of the whole data is sent to all
computer nodes, as in Figure 1, the latter using more
communication, so it has to be tested thoroughly which
system benefits from this approach. Figure 2 shows which
data are computed by which node.

Figure 1. Example of data parallelization

Figure 2. Visual representation of data division amongst parallel nodes

Dividing data in programming is tightly coupled with loop
parallelization, because data containers are generally
accessed by loops, so a condition deciding which data is
going to which node should be put in the loop initialization
and termination. Loops are often parallelized by dividing the
number of iterations equally, if possible, amongst computer
nodes, as in [3], [9], [13], and [16]. Data division is prone to
data dependency, and by that care must be taken when
preparing data for parallel distribution. Loops can be made
parallel only if iterations are not data dependent. In other
words, Bernstein’s conditions [4] have to be fulfilled.

The third concept is based on functional decomposition,
described in [4] and [9]. This is done by dividing the
program into functional blocks independent of each other at
the time of execution, e.g., one does not require data of the
other. This is explained by the Church-Rosser property [4],
which holds that the arguments to a pure function can be
evaluated in any order or in parallel, without changing the
result. A negative side of functional decomposition can be
seen if parallel computations differ in the execution time a
lot, because the slowest one determines the total execution
time of this parallel part assuming that a computation result
must be provided before processes move on to the next

myRank = MPI::COMM_WORLD.Get_rank();
nProc = MPI::COMM_WORLD.Get_Size();

for(i=((CONST/nProc)*myRank);i<(CONST/nProc)+(
(CONST/nProc)*myRank);i++) {
 for (j=0;j<DIMV;j++) {
 if ((maxi[11] < optiMatrix[i][j]) &&
(matrix[i][j][16] !=0)) {
 maxi [0] = I;
 maxi[3] = j;
 maxi [11] = optiMatrix [i][j];
 }
 }
}

Node A Node B Node C

A B C D E
F G H I J
K L M N O
P Q R S T

8

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

program block, except in applications with active load
balancing. If the latter is not the case (computation results
are processed independently), the algorithm is called
embarrassingly parallel. Embarrassingly parallel algorithms
are often used in cloud computing systems.

Main program

Declarations and initializations
Common procedures

Node 1 Node 2 … Node n
Search the

DATA for value
“A”

Search the DATA
for value “B” …

Search the
DATA for
value “N”

Figure 3. Example of a pseudo-code of data parallelization for searching
for different values in the same data set

A living example is searching for two or more values in a
data matrix, then the first node searches for one number and
the second node searches for the other (if all nodes are
assumed to have access to all data), as in Figure 3.

Computer nodes intercommunication is generally done by
sending some signal in a preconfigured way by using some
routines. This type of parallel programming is called
Message Passing. Message passing applications
communicate over a high speed network in distributed
computing systems, or over high speed buses in shared
memory computers, so the program can hold sufficient
cohesiveness.

III. AUTOMATIC PARALLELIZATION

Given the example of [1], [3], [5] and [14], in order to
remove the burden from a programmer to manually rewrite
sequential codes for parallel execution, many new methods
are introduced as an attempt to solve this problem
automatically. They often comprise compilers which
“know” how to parallelize a certain program code. A vast
majority of automatic parallelization compilers are
developed for FORTRAN, such as the Vienna Fortran
compiler, the Paradigm compiler, the Polaris compiler, the
SUIF compiler, and some of the concepts independent of the
programming language, such as commutativity analysis
[14]. Automatic parallelization is the ultimate goal for
parallel programming, as it removes the programmer from
the parallelizing part in coding the application, thus making
parallel applications production faster and more efficient.
Every automatic parallelization concept has been done only
with limited success. Despite poor progress, automatic
parallelization has been intensively researched for the past
few decades, and a lot of work is still dedicated to it.

An interesting concept for automatic parallelization is
presented in [14], which is called commutativity analysis. It
aggregates both data and computation into larger grain units.
It then analyzes computation at this granularity to discover
when pieces of computation commute (i.e., generate the
same result regardless of the order in which they are
executed). If all of the operations required to perform a given
computation commute, the compiler can automatically
generate a parallel code. Some sources also describe various

hybrid approaches, such as in [9]. Parallelization
methodologies are expanded in Table 1, which gives
additional information about other main parallelization
techniques, advantages and disadvantages. Even with many
methods for automatic parallelization, fully automatic
parallelization of sequential programs by compilers remains
a grand challenge due to its need for a complex program
analysis and the unknown factors (such as the input data
range) during compilation. Automatic parallelization
combined with cloud computing systems in near future will
probably serve as self-sufficient parallel systems, which will
bring high performance computing to every computer user
connected to web.

IV. BENEFITS OF PARALLEL PROGRAMMING

It would be expected of parallel programs to have the
execution time cut in proportion with the number of nodes,
as opposed to sequential programs. However, if this fact is
analyzed more thoroughly, there is always some portion of
code which cannot be parallelized, and that portion must be
taken into account. This issue was addressed by Amdahl's
and Gustafson’s law [3]. Some researchers noticed that even
with Gustafson’s law, which suggests that it is beneficial to
build a large-scale parallel system as the speedup can grow
linearly with the system size, there are some physical
constraints which do not allow many applications to scale
up and meet the time bound constraint. In practice, that
constraint is often of physical nature in the form of memory
limitation.

To sum it all up, in [15] authors propose a memory
bounded speedup model. Amdahl’s law is a special case of a
memory bounded speedup model. This model is greatly
applicable to multi-core systems and GPU cores, which
represent home shared memory systems. Embarrassingly
parallel applications are not affected by Amdahl’s law, at
least not to such a great extent, and that is why these
applications can easily be run on clouds. These applications
often comprise independent tasks, which are then executed
on different computer nodes, without a need for any type of
communication, or data dependencies, except at the
beginning of a code. With all added up, parallel applications
have many benefits from today’s parallel systems. Most of
parallelizing methods can be run on almost all existing
parallel systems. There are limitations, but with constant
research in this field, the number of limitations decreases.
For example, cloud computing systems can serve as parallel
platform only for applications that are easily parallelized. In
all other cases this is nearly impossible, because cloud
system is too hard to handle resource-wise, which is caused
by the high system heterogeneity. With parallel system
properties in mind, it is easy to classify given parallelizing
methods from Table 1 in correspondence with these
platforms. Every existing application can be more or less
parallelized; it is the question of cost and time-effectiveness,
a parallel system on which the application is run, time bound
constraints on application and application environment
which method will be used.

9

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

V. EXPERIMENTAL SETUP

In order to visualize given facts into real appliances
benefits and speedup, two experiments will be shown. In the
first experiment, there are two multi-criteria optimization
algorithms, whose performance will be compared. In the
second algorithm, a parallel image processing algorithm is
tested in different environments and with a different setup.

A. Experiment 1: Multi-criteria optimization algorithms
(PMCO1 and PMCO2)

The first algorithm, Parallel Multi-Criteria Optimization
1 (PMCO1) is an example of computing large data in
parallel with a small amount of communication between
processes. It uses the approach described in [10]. The
system makes a decision based on different preferences
amongst options in a large data set. There are databases
containing various system parameters, and prior to program
execution it is necessary to extract data from these
databases, which are formed by plain text files. PMCO1
reads different databases in different computer nodes.

TABLE I. PARALLELIZATION MODELS
COMPARED

B. Experiment 1: Multi-criteria optimization algorithms
(PMCO1 and PMCO2)

The first algorithm, Parallel Multi-Criteria Optimization
1 (PMCO1) is an example of computing large data in
parallel with a small amount of communication between
processes. It uses the approach described in [10]. The
system makes a decision based on different preferences
amongst options in a large data set. There are databases
containing various system parameters, and prior to program
execution it is necessary to extract data from these
databases, which are formed by plain text files. PMCO1
reads different databases in different computer nodes. This
parallelism is based on function level parallelism (FLP). The
second algorithm, Parallel Multi-Criteria Optimization 2
(PMCO2) is a parallel algorithm which reads all databases
in every node, and serves the analysis of the computational
part of the program. PMCO2 is mainly a data parallel
model, but it uses a hybrid approach, explained in [2],
comprising FLP and data parallelism, and for the purpose of
illustration, its execution time is divided into reading data
and computation. In PMCO2, every node has access to all
data and there is a significant process communication time,
but communication takes place rarely. PMCO2 approach
enables all nodes to read only a portion of data, regardless
of the fact that they contain the whole database. On the
other hand, PMCO1 has more frequent communications
between processes, because nodes contain only a portion of
data. These small communications can make a great deal if
the database is very large as in Table 3. In a small data set,
PMCO1 tends to have better performance (Table 2).
PMCO2, though, has one more drawback, which is
memory-wise, considering the fact that every node holds all
data. So if the data is too large, it would not be possible to
run the program based on PMCO2, whereas on PMCO1 it
would be possible but slow.

C. Experiment 2: Parallel Image Processing Algorithm
(PIPA)

The second experiment deals with an image processing
algorithm, which does some basic pixel manipulation on the
grayscale satellite images in different sizes. The application
was run in parallel on the Croatian National GRID
infrastructure on 4 and 8 nodes, as well as on two different
CRO-NGI installations (ETFOS, located at the Faculty of
Electrical Engineering, University of Osijek and SRCE
(University Computing Center in Zagreb). What can be
easily seen is the difference in performance, as well as the
impact of different architectures and operating systems on
the application execution time. The application was also run
on a PC with a dual-core processor. In that way it can be
analyzed whether parallel programming and execution on
parallel systems can be justified by taking performance into
main consideration. Figure 4 shows dependency of the
application execution time on image size by different
operating systems, numbers of nodes, numbers of processor
cores and image sizes.

Parallel
Program
Design

Paralleli-
zation
technique

Positive features Negative features

Manual
Paralleli-
zation

Shared
Memory

No need for
communication
between tasks

Difficult data
locality management

Threads Fine program
granularity and
efficient platform
utilization

Not reusable, errors
affect whole process

Data
Parallel
Techni-
ques

Large performance
increase, error on one
data "chunk" rarely
affect other data

No performance
increase if the data is
not independent,
need for task
communication

Message
Passing

Universality, Data
locality management,
Easy debugging

Programmer
manages memory
placement and
communication
occurrence

Hybrid Combination of the
techniques above

Combination of two
or more
parallelization
techniques can
greatly reduce their
disadvantages

Automatic
Paralleli-
zation i.e.
paralleli-
zing
compilers
(pre-
processors)

Fully
Automatic

Parallelization
without programmer,
fast parallel code
generation, computer
aided parallelization
cost-effectiveness
analysis

Can produce wrong
results, application
performance can be
actually degraded,
much less flexible
than manual
techniques, if the
code is too complex
parallelization
cannot occur

Progra-
mmer
Directed

Usage of compiler
directives, better
parallelization
management

10

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

TABLE II. ALGORITHMS PMCO 1 AND 2 PERFORMANCE TEST (A
SMALL DATA SET)

4 – node
computer
grid time

(s)

6 – node
computer
grid time

(s)

PMCO 1

Data read 1.79 0.78

Computation 3.77 8.00

Total 5.56 8.78

PMCO 2

Data read 12.24 15.46

Computation 0.20 0.15

Total 12.44 15.61
Program execution time

difference (s) -6.88 -6.83

TABLE III. ALGORITHMS PMCO 1 AND 2 PERFORMANCE TEST (A
LARGE DATA SET)

4 – node
computer
grid time

(s)

6 – node
computer
grid time

(s)

PMCO 1

Data read 9.89 3.18

Computation 261.67 206.27

Total 271.56 209.44

PMCO 2

Data read 42.60 55.75

Computation 24.21 17.23

Total 66.81 72.98
Program execution time

difference (s) 204.75 136.46

Image size affects performance most, which is expected,
because image size grows almost exponentially.

Also, the number of grid nodes and processor cores,
which can be distinguished in Figures 5 and 6, has a great
impact on performance. Figure 7 shows that careful multi-
core parallel programming can lead to a significant
performance boost, which is almost 90% of the increase,
with doubling the number of cores. Multi-core processors
show their true strength when loaded with applications
optimized for multi-core execution. Also, multi-core
platforms do not have one major drawback which grids and
clusters have, and that is a relatively large process
communication time in message passing applications.
Figure 9 shows a process communication impact on
application performance. It clarifies what was mentioned
before; i.e., the grid suffers from great performance loss
when using too much of communication between processes.
Furthermore, this is more expressive in public
computational grids and cloud systems, whose networks are
always under some load, leading an application expected to
finish faster to finish slower, waiting for processes to finish
their communication. On the other hand, there is a
communication between processes run on multiple cores
onto one processor, whose process communication time can

be safely ignored in performance analysis. This issue is a
problem of its own and part of future work based on
heterogeneity modeling. But not to be confused, grids offer
a big advantage compared to multi-core processors. They
can have much more nodes, which in turn can have multi-
core processors themselves, and modern commercial multi-
core processors can have only up to 8 cores, so it is up to the
application which platform should be used in its execution.
Another example are clouds, which are hybrid parallel
systems and offer various performance advantages.

More performance boost can be obtained by increasing
the number of computer nodes executing the application, as
shown in Figures 4 to 7. Usage of ETFOS installation of
CRO-NGI lowers process communication a bit (because of
a lighter network load), and decreases execution time
significantly.

VI. FUTURE WORK

Further work will be based on implementing more parallel
platforms such as GPGPUs (General-purpose computing on
graphics processing units) in NVidia CUDA (Compute
Unified Device Architecture) and ATI Stream [6]. This
work will tend to put these parallel newcomers into
performance tables of other parallel systems. Another
research is covering the role of cloud computing systems as
parallel systems with great computing power. Image
processing algorithms will be thoroughly reworked. Due to
image size limitations, new image processing algorithms
will be used with support for color images. There are other
algorithms being developed; each of them will put different
aspects of parallel systems onto test. There is also an idea to
provide a mathematical proof for the exact limit of
parallelization efficiency, and profitability of using parallel
systems opposed to other parallel and non-parallel systems.

Figure 4. Performance gain

11

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Figure 5. Communication impact on the overall performance

Figure 6. Performance with a different number of processor cores

Figure 7. Performance with a different number of computer nodes

VII. CONCLUSION

The latest technologies give many opportunities when it
comes to execution of demanding applications. More recent
parallel systems such as computational grids, clusters,
multi-core systems, Massively Parallel Processors systems
and Graphics Processing Units are platforms that offer much
more computer resources than standard PCs, and their ideas
and technologies are slowly making their way to desktop
computers. The best examples are multi-core computers,
which share some backbone principles with parallel
systems. Many existing applications are made sequential,
but sometimes with just few changes they can be made
parallel, therefore reducing their executing time and other

time demands. Parallelizing methods are chosen in
accordance with the type of parallel systems they are run on.
Many parallelizing methods are presented today, and their
ultimate goal is to produce a fully automatic parallelizing
system, which can be used as any other today’s
programming language and system. The aforepresented
experiments prove that parallel programming is the present
and the future of all scientific research, not only in computer
science, but in other researches as well. Parallel
programming brings an enormous performance advantage,
possibilities such as ability to process larger data and to
calculate more complex mathematics and statistics. But this
is only possible if these systems, their potential and their
drawbacks are understood well. In order to make use of
squeezing most out of these systems, careful and wise
resource usage is needed, as well as efficient programming
and work distribution. There are many other parallelization
concepts, many of which are still being in their infant phase,
but there is no doubt that research involved in them will
produce more efficient, scalable and simple parallel
applications and mechanisms. Such techniques involve
function and block level parallelization, automatic
parallelization, parallelization techniques for heterogeneous
systems, speculative parallelization models, loop based
parallelization techniques, and many more. Undoubtedly,
parallel applications bring more performance, more options,
and remove barriers for many research branches, bringing
the overall sky-high progress in computing technology. It is
obvious that in future, by combining these and similar
methods, most advanced parallelization techniques will be
created and parallel computing will be driven into the
mainstream.

ACKNOWLEDGMENT

This work was supported by research project grant No.
165-0362980-2002 from the Ministry of Science, Education
and Sports of the Republic of Croatia.

REFERENCES

 [1] B. Armstrong and R. Eigenmann, Application of Automatic
Parallelization to Modern Challenges of Scientific Computing
Industries, Proc. 2008 Int. Conf. Parallel Processing, Portland,
OR, USA, Sept. 8-12, 2008, pp. 279-286.

[2] D. Banerjee and J. C. Browne, Complete Parallelization of
Computations: Integration of Data Partitioning and Functional
Parallelism for Dynamic Data Structures, Proc. 10th Int.
Parallel Processing Symp., Honolulu, HI, USA, Apr. 15-19,
1996, pp. 354-360.

[3] U. Banerjee, R. Eigenmann, A. Nicolau, and D.A. Padua,
Automatic Program Parallelization, Proc. of the IEEE, Vol.
81, No. 2, 1993, pp. 211-243.

[4] J. Błażewicz, K. Ecker, B. Plateau, and D. Trystram,
Handbook on Parallel and Distributed Processing, Springer,
2000, pp. 96-173.

[5] U. Bondhugula, et al., Towards Effective Automatic
Parallelization for Multi-core Systems, Proc. 22nd IEEE Int.

12

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

Symp. Parallel and Distributed Processing, Miami, FL, USA,
Apr. 14-18, 2008, pp. 1-5.

[6] G. Chen, G. Li, S. Pei, and B. Wu, High Performance
Computing Via a GPU, Proc. IEEE Int. Conf. on Information
Science and Engineering, Shanghai, China, Dec 26-28, 2009,
pp. 238 - 241.

[7] M. Chu, R. Ravindran, and S. Mahlke, Data Access
Partitioning for Fine-grain Parallelism on Multi-core Archs.,
Proc. IEEE/ACM Int. Symp. on Microarchitectures, Chicago,
IL, USA, Dec. 1-5, 2007, pp. 369-380.

[8] C. Tian, M. Feng, V. Nagarajan, and R. Gupta, Copy or
Discard Execution Model for Speculative Parallelization on
Multi-cores, 41st Ann IEEE/ACM Int. Symp. on
Microarchitectures, Lake Como, Italy, Nov. 8-12, 2008, pp.
330-341.

[9] K. A. Kumar, A.K. Pappu, K.S. Kumar, and S. Sanyal,
Hybrid Approach for Parallelization of Sequential Code with
Function Level and Block Level Parallelization, Proc. IEEE
Int. Symp. Parallel Computing in Electrical Engineering,
Bialystok, Poland, Sept. 13-17, 2006, pp. 161-166.

[10] G. Martinović, L. Budin, and Ž. Hocenski, Static-Dynamic
Mapping in Heterogeneous Comp. Environ., Proc. IEEE
Symp. Virtual Environments, Human-Computer Interfaces

and Measurement Systems, Lugano, Switzerland, July 27-29,
2003, pp. 32-37.

[11] G. Martinovic, Resource Management System for
Computational Grid Building, IEEE Int. Conf. Systems, Man,
and Cybernetics, San Antonio, TX, USA, Oct. 11-14, 2009,
pp. 1312-1316.

[12] T. Nakatani and K. Ebcioglu, Making Compaction-Based
Parallelization Affordable, IEEE Trans. Parallel Distributed
Systems, Vol. 4, No. 9, 1993, pp. 1014-1029.

[13] V. Purnell, P. H. Corr, and P. Milligan, A Novel Approach to
Loop Parallelization, Proc. IEEE Proc 23rd Euromicro Conf.,
Budapest, Hungary, Sept. 1-4, pp. 272-277.

[14] M. C. Rinard and P. Diniz, Commutativity Analysis: A New
Technique for Automatically Parallelizing Serial Programs,
10th Int. Parallel Processing Symp., Honolulu, HI, USA, April
15-19, 1996, pp. 14-14.

[15] X.-H. Sun and Y. Chen, Reevaluating Amdahl's Law in the
Multi-core Era, J. Parallel. Distrib. Comput., Vol. 70 (2010),
pp. 183-188.

[16] C. Xu and V. Chaudhary, Time Stamp Algorithms for
Runtime Parallelization of DOACROSS Loops with Dynamic
Dependences, IEEE Trans. Parallel and Distributed Systems,
Vol. 12, No. 5, 2001, pp. 433-450.

13

CLOUD COMPUTING 2010 : The First International Conference on Cloud Computing, GRIDs, and Virtualization

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-106-9

